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But the right way to go about it isn’t always so obvious. Go digital to 
get the grades. MindTap’s customizable study tools and eTextbook  
give you everything you need all in one place.

Engage with your course content, enjoy the flexibility of  
studying anytime and anywhere, stay connected to assignment due  
dates and instructor notifications with the MindTap Mobile app...

and most of all…EARN BETTER GRADES.

TO GET STARTED VISIT 
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Want to turn your 
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Analytic Solver® Platform for Education
www.solver.com/aspe

Your new textbook, Spreadsheet Modeling and Decision Analysis, 8e, uses 

this software throughout. Students can use the software in Excel® for Windows®, 

or “in the cloud” through a web browser. Here’s how to get it for your course.

For Instructors:

Setting Up the Course Code

To set up a course code for your course, please email Frontline Systems at 

academic@solver.com, or call 775-831-0300, press 0, and ask for the Academic 

Coordinator. Course codes MUST be renewed each time the course is taught.

The course code is free, and it can usually be issued within 24 to 48 hours (often

the same day). It will enable your students to use  AnalyticSolver.com, and 

download and install Analytic Solver®  Platform for Education for Excel®  with a 

semester-long (140 day) license.  It will also enable Frontline Systems to assist 

students with installation, and provide technical support to you during the course.

Please give the course code, plus the instructions on the reverse side, to your 

students. If you’re evaluating the book for adoption, you can use the course  

code yourself to download and install the software as described on the reverse.

Instructions for Students: See reverse.
Installing  Analytic Solver®  Platform for Education
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For Students:

Installing Analytic Solver® Platform for Education
1) To create your free account, and download and install Analytic Solver® Platform for Education 

from Frontline Systems to work with Microsoft® Excel® for Windows®, please visit:
www.solver.com/student

2) Fill out the registration form on this page, supplying your name, school, email address 
(key information will be sent to this address), course code (obtain this from your instructor),  
and textbook code (enter RSMDA8).  Once registered, you can login with your email and 
password on both Solver.com and AnalyticSolver.com (the cloud version of the software).

3)   On the download page, change 32-bit to 64-bit ONLY if you’ve confirmed that you have 
64-bit Excel® (see below). Click the Download Now button, and save the downloaded file 
(SolverSetup.exe or SolverSetup64.exe).

4) Close any Excel® windows you have open, then run SolverSetup/SolverSetup64 to  
install the software. Only if you are prompted, enter the installation password and license 
activation code in the email sent to the address you entered on the form above.

If you have problems downloading or installing, please use live chat on Solver.com, email 
support@solver.com, or call 775-831-0300 and press 4 (tech support). Say that you have  
Analytic Solver® Platform for Education, and have your course code and textbook code available.

If you have problems setting up or solving your model, or interpreting the results, please ask  
your instructor for assistance. Frontline Systems cannot help you with homework problems.

If you have this textbook but you aren’t enrolled in a course, call 775-831-0300 and  
press 0 for assistance with the software.

SolverSetup is Windows only.  If you have a Mac, you can use AnalyticSolver.com from  
Safari, or you can install “dual-boot” or VM software, Microsoft Windows®, and Office or 

Excel® for Windows®, then run SolverSetup. Excel®  for Mac will NOT work.

Do You Have 64-bit Excel®? 
Excel® 2007 is 32-bit only. In Excel® 2010, choose File > Help and look in the lower right. 

In Excel® 2013 or Excel® 2016, choose File > Account > About Excel® and look at the top 
of the dialog. Download SolverSetup64  ONLY if you see “64-bit” displayed.
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Preface
Spreadsheets are one of the most popular and ubiquitous software packages on the 
planet. Every day, millions of business people use spreadsheet programs to build models 
of the decision problems they face as a regular part of their work activities. As a result, 
employers look for experience and ability with spreadsheets in the people they recruit.

Spreadsheets have also become the standard vehicle for introducing undergraduate 
and graduate students in business and engineering to the concepts and tools covered 
in the introductory business analytics course. This simultaneously develops students’ 
skills with a standard tool of today’s business world and opens their eyes to how a 
variety of quantitative analysis techniques can be used in this modeling environment. 
Spreadsheets also capture students’ interest and add a new relevance to business ana-
lytics, as they see how it can be applied with popular commercial software being used 
in the business world. 

Spreadsheet Modeling & Decision Analysis provides an introduction to the most com-
monly used descriptive, predictive, and prescriptive business analytics techniques and 
shows how these tools can be implemented using Microsoft® Excel. Prior experience 
with Excel is certainly helpful, but is not a requirement for using this text. In general, a 
student familiar with computers and the spreadsheet concepts presented in most intro-
ductory computer courses should have no trouble using this text. Step-by-step instruc-
tions and screen shots are provided for each example, and software tips are included 
throughout the text as needed.

What’s New in the Eighth Edition?
The eighth edition introduces a brand new MindTap product. For each chapter, this 
all-digital version of the book enhances learning with an engagement video and discus-
sion, a quiz with rich feedback, videos by the author that explain chapter concepts, and 
end-of-chapter assignments that are tailored to work well digitally. If you’re interested 
in all these features, talk to your Cengage learning consultant.

The most significant feature in the eighth edition of Spreadsheet Modeling & Decision 
Analysis is its focus on business analytics and extensive coverage and use of Analytic 
Solver Platform for Education by Frontline Systems, Inc. Analytic Solver Platform for 
Education is an add-in for Excel that provides access to analytical tools for performing 
optimization, simulation, sensitivity analysis, and decision tree analysis, as well as a 
variety of tools for data mining. Analytic Solver Platform for Education makes it easy 
to run multiple parameterized optimizations and simulations and apply optimization 
techniques to simulation models in one integrated, coherent interface. Analytic Solver 
Platform also offers amazing interactive simulation features in which simulation results 
are automatically updated in real-time whenever a manual change is made to a spread-
sheet. Additionally, when run in its optional “Guided Mode,” Analytic Solver Platform 
provides students with over 100 customized dialog boxes that provide diagnoses of 
various model conditions and explain the steps involved in solving problems. Analytic 
Solver Platform also includes Frontline’s XLMiner Platform product that offers easy 
access to a variety of data mining techniques including discriminant analysis, logistic 
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regression, neural networks, classification and regression trees, k-nearest neighbor clas-
sification, cluster analysis, and affinity analysis. Analytic Solver Platform offers numer-
ous other features and, I believe, will transform the way we approach education in 
quantitative analysis now and in the future. 

Additional changes in the eighth edition of Spreadsheet Modeling & Decision Analysis
from the seventh edition include:

•	 Microsoft® Office 2016 is featured throughout.
•	 Data files and software to accompany the book are now available for download 

online at the book’s companion site, which you can access at www.CengageBrain.
com. There, enter this book’s ISBN number and you’ll be able to access the accom-
panying materials.

•	 Chapter 1 includes an expanded discussion and definition of good decision making.
•	 Chapter 6 features a new section on the topic of line balancing problems.
•	 Chapter 10 has undergone extensive revision to reflect changes in XLMiner Plat-

form and was expanded to include  discussion of precision, recall (sensitivity), spec-
ificity, F1 scores, and ROC curves.

•	 Chapter 11 introduces new, simplified techniques for producing forecasts for sta-
tionary time series data.

•	 Several new and revised end-of-chapter problems are included throughout.

Innovative Features
Aside from its strong spreadsheet orientation, the eighth edition of Spreadsheet Modeling & 
Decision Analysis contains several other unique features that distinguish it from other texts.

•	 Algebraic formulations and spreadsheets are used side-by-side to help develop 
conceptual thinking skills.

•	 Step-by-step instructions and numerous annotated screen shots make examples 
easy to follow and understand.

•	 Emphasis is placed on model formulation and interpretation rather than on 
algorithms.

•	 Realistic examples motivate the discussion of each topic.
•	 Solutions to example problems are analyzed from a managerial perspective.
•	 Spreadsheet files for all the examples are provided on a data disk bundled with the text.
•	 A unique and accessible chapter covering data mining is provided.
•	 Sections entitled “The World of Business Analytics” show how each topic has been 

applied in a real company.

Organization
The table of contents for Spreadsheet Modeling & Decision Analysis is laid out in a fairly 
traditional format, but topics may be covered in a variety of ways. The text begins with 
an overview of business analytics in Chapter 1. Chapters 2 through 8 cover various topics 
in prescriptive modeling techniques: linear programming, sensitivity analysis, networks, 
integer programming, goal programming and multiple objective optimization, and non-
linear and evolutionary programming. Chapters 9 through 11 cover predictive modeling 
and forecasting techniques: regression analysis, data mining, and time series analysis.

Chapters 12 and 13 cover descriptive modeling techniques: simulation and queuing 
theory. Chapter 14 covers decision analysis, and Chapter 15 (available exclusively in 
MindTap) provides an introduction to project management.
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After completing Chapter 1, a quick refresher on spreadsheet fundamentals 
(entering and copying formulas, basic formatting and editing, etc.) is always a good 
idea.  Suggestions for the Excel review may be found at this book’s companion site. 
(To access, go to www.CengageBrain.com and add this book to your bookshelf by 
searching its ISBN.) Following this, an instructor could cover the material on optimiza-
tion, regression, forecasting, data mining, or simulation, depending on personal pref-
erences. The chapters on queuing and project management make general references to 
simulation and, therefore, should follow the discussion of that topic.

Ancillary Materials
Several excellent ancillaries for the instructor accompany this edition of Spreadsheet 
Modeling & Decision Analysis. All instructor ancillaries are provided at www.Cengage-
Brain.com. Included in this convenient format are: 

•	 Instructor’s Manual. The Instructor’s Manual, prepared by the author, contains 
solutions to all the text problems and cases.

•	 Test Bank. The Test Bank, prepared by Tom Bramorski, University of Georgia, 
includes multiple choice, true/false, and short answer problems for each text 
chapter. Cengage Learning Testing Powered by Cognero is a flexible, online sys-
tem that allows you to author, edit, and manage test bank content, create multiple 
test  versions in an instant, and deliver tests from your LMS, in your classroom or 
through CengageNOW.

On the book’s companion site, you’ll also find the test bank in Microsoft® Word format. 

•	 PowerPoint Presentation Slides. PowerPoint presentation slides, prepared by the 
author, provide ready-made lecture material for each chapter in the book.
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1

Chapter 1
Introduction to Modeling  
and Decision Analysis

1.0 Introduction
This book is titled Spreadsheet Modeling and Decision Analysis: A Practical Introduction to 
Business Analytics, so let’s begin by discussing exactly what this title means. By the very 
nature of life, all of us must continually make decisions that we hope will solve prob-
lems and lead to increased opportunities, for ourselves or the organizations for which 
we work. But making good decisions is rarely an easy task. The problems faced by deci-
sion makers in today’s competitive, data-intensive, fast-paced business environment 
are often extremely complex and can be addressed by numerous possible courses of 
action. Evaluating these alternatives and choosing the best course of action represents 
the essence of decision analysis.

Since the inception of the electronic spreadsheet in the early 1980s, millions of busi-
ness people have discovered that one of the most effective ways to analyze and eval-
uate decision alternatives involves using a spreadsheet package to build computer 
models of the business opportunities and decision problems they face. A computer 
model is a set of mathematical relationships and logical assumptions implemented in a 
computer as a representation of some real-world object, decision problem, or phenom-
enon. Today, electronic spreadsheets provide the most convenient and useful way for 
business people to implement and analyze computer models. Indeed, most business 
people would probably rate the electronic spreadsheet as their most important analyti-
cal tool—apart from their brain! Using a spreadsheet model (a computer model imple-
mented via a spreadsheet), a business person can analyze decision alternatives before 
having to choose a specific plan for implementation.

This book introduces you to a variety of techniques from the field of  business ana-
lytics that can be applied in spreadsheet models to assist in the  decision-analysis pro-
cess. For our purposes, we will define business analytics as a field of study that uses 
data, computers, statistics, and mathematics to solve  business problems. It involves 
using the methods and tools of science to drive business decision making. It is the 
science of making better decisions. Business analytics is also sometimes referred to 
as operations research, management science, or decision science. See Figure 1.1 for a 
summary of how business analytics has been applied successfully in a number of real-
world situations.

In the not too distant past, business analytics was a highly specialized field that 
generally could be practiced only by those who had access to mainframe computers 
and who possessed an advanced knowledge of mathematics, computer programming 
languages, and specialized software packages. However, the proliferation of powerful 
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2 Chapter 1 Introduction to Modeling and Decision Analysis 

Home Runs in Business Analytics 
Over the past decade, thousands of business analytics projects saved or gener-
ated millions of dollars for companies across a variety of industries. Each year, 
the Institute for Operations Research and the Management Sciences (INFORMS) 
sponsors the Franz Edelman Awards competition to recognize some of the most 
outstanding business analytics projects during the past year. Here are some of the 
“home runs” from the 2013 and 2014 Edelman Awards (described in Interfaces, 
Vol. 44, No. 1, January–February, 2014 and Vol. 45, No. 1, January–February 2015).

•	 Chevron created an optimization software tool used at all of its refineries. 
The company uses this tool for operational and strategic planning to do such 
things as optimize the mix of crude oils and products to produce, determine 
refinery operations settings, and plan capital expenditures. This sort of mod-
eling activity is an integral part of Chevron’s business processes and culture. 
Annual savings from Chevron’s optimization work is estimated at $1 billion. 

•	 In the1980s, Dell became successful by allowing customers to order cus-
tom-configured computers. More recently, Dell ventured into the fixed hard-
ware configurations (FHCs) market to address growing competition. Dell’s 
analytics team used a variety of statistical techniques to create a set of FHCs 
and to improve its website’s design. The analytics team also created models 
that analyze supply and demand variability to identify when different pro-
motions should be used. These efforts generated more than $140 million by 
reducing required markdowns, increasing online customer conversion rates, 
improving logistics, and improving customer satisfaction. 

•	 The Kroger Company operates 1,950 in-store pharmacies throughout its gro-
cery chain. Using actual demand data, its analytics team created a simula-
tion-optimization model to determine reorder points and order-up-to levels 
for items in its pharmacies. This analytics effort reduced annual out of stocks 
by 1.6 million prescriptions, lowered inventory by more than $120 million, 
and increased annual revenue by about $80 million.

•	 The National Broadcast Network Company (NBNC) is a government-owned 
entity responsible for providing broadband network service throughout 
Australia. NBNC recently worked with an analytics consulting company to 
develop a set of mixed-integer programming models that automate and opti-
mize the design of a network providing broadband coverage to approximately 
eight million locations. Reductions in design time and other savings have an 
estimated value of about $1.7 billion.

•	 The Alliance for Paired Donations (APD) seeks to save lives by securing a liv-
ing donor kidney for every patient who needs a transplant. People needing a 
kidney transplant often have a relative or friend willing to donate one, but the 
donor kidney is often incompatible with the intended recipient. Exchanges 
with other patient-donor pairs can sometimes overcomes these incompatibil-
ities. The APD uses integer programming techniques to determine the best 
paired-matches for this kidney exchange problem. Since 2006, the APD’s 
efforts have saved more than 220 lives—and those savings are priceless.

FIGURE 1.1

Examples of 
successful 
business analytics 
applications

PCs and the development of easy-to-use electronic spreadsheets have made the tools of 
business analytics far more practical and available to a much larger audience. Virtually 
everyone who uses a spreadsheet today for model building and decision making is a 
practitioner of business analytics—whether they realize it or not. 
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Characteristics and Benefits of Modeling 3

1.1 The Modeling Approach  
to Decision Making
The idea of using models in problem solving and decision analysis is not new, and is 
certainly not tied to the use of computers. At some point, all of us have used a model-
ing approach to make a decision. For example, if you have ever moved into a dormi-
tory, apartment, or house, you undoubtedly faced a decision about how to arrange the 
furniture in your new dwelling. There were probably a number of different arrange-
ments to consider. One arrangement might give you the most open space but require 
that you build a loft. Another might give you less space but allow you to avoid the 
hassle and expense of building a loft. To analyze these different arrangements and 
make a decision, you did not build the loft. You more likely built a mental model of 
the two arrangements, picturing what each looked like in your mind’s eye. Thus, a 
simple mental model is sometimes all that is required to analyze a problem and make 
a decision.

For more complex decisions, a mental model might be impossible or insufficient and 
other types of models might be required. For example, a set of drawings or blueprints 
for a house or building provides a visual model of the real-world structure. These 
drawings help illustrate how the various parts of the structure will fit together when it 
is completed. A road map is another type of visual model because it assists a driver in 
analyzing the various routes from one location to another.

You have probably also seen car commercials on television showing automotive 
engineers using physical, or scale, models to study the aerodynamics of various car 
designs to find the shape that creates the least wind resistance and maximizes fuel 
economy. Similarly, aeronautical engineers use scale models of airplanes to study the 
flight characteristics of various fuselage and wing designs. And civil engineers might 
use scale models of buildings and bridges to study the strengths of different construc-
tion techniques.

Another common type of model is a mathematical model, which uses mathematical 
relationships to describe or represent an object or decision problem. Throughout this 
book we will study how various mathematical models can be implemented and ana-
lyzed on computers using spreadsheet software. But before we move to an in-depth 
discussion of spreadsheet models, let’s look at some of the more general characteristics 
and benefits of modeling.

1.2 Characteristics and Benefits 
of Modeling
Although this book focuses on mathematical models implemented in computers via 
spreadsheets, the examples of nonmathematical models given earlier are worth dis-
cussing a bit more because they help illustrate a number of important characteristics 
and benefits of modeling in general. First, the models mentioned earlier are usually 
simplified versions of the object or decision problem they represent. To study the aero-
dynamics of a car design, we do not need to build the entire car complete with engine 
and stereo. Such components have little or no effect on aerodynamics. So, although a 
model is often a simplified representation of reality, the model is useful as long as it is 
valid. A valid model is one that accurately represents the relevant characteristics of the 
object or decision problem being studied.
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Second, it is often less expensive to analyze decision problems using a model. This 
is especially easy to understand with respect to scale models of big-ticket items such as 
cars and planes. Besides the lower financial cost of building a model, the analysis of a 
model can help avoid costly mistakes that might result from poor decision making. For 
example, it is far less costly to discover a flawed wing design using a scale model of an 
aircraft than after the crash of a fully loaded jet liner.

Frank Brock, former executive vice president of the Brock Candy Company, related 
the following story about blueprints his company prepared for a new production facil-
ity. After months of careful design work, he proudly showed the plans to several of 
his production workers. When he asked for their comments, one worker responded, 
“It’s a fine looking building Mr. Brock, but that sugar valve looks like it’s about twenty 
feet away from the steam valve.” “What’s wrong with that?” asked Brock. “Well, noth-
ing,” said the worker, “except that I have to have my hands on both valves at the same 
time!”1 Needless to say, it was far less expensive to discover and correct this “little” 
problem using a visual model before pouring the concrete and laying the pipes as orig-
inally planned.

Third, models often deliver needed information on a more timely basis. Again, it is 
relatively easy to see that scale models of cars or airplanes can be created and analyzed 
more quickly than their real-world counterparts. Timeliness is also an issue when vital 
data will not become available until some later point in time. In these cases, we might 
create a model to help predict the missing data to assist in current decision making.

Fourth, models are frequently helpful in examining things that would be impossible 
to do in reality. For example, human models (crash dummies) are used in crash tests 
to see what might happen to an actual person if a car hits a brick wall at a high speed. 
Likewise, models of DNA can be used to visualize how molecules fit together. Both of 
these are difficult, if not impossible, to do without the use of models.

Finally, and probably most importantly, models allow us to gain insight and under-
standing about the object or decision problem under investigation. The ultimate pur-
pose of using models is to improve decision making. As you will see, the process of 
building a model can shed important light and understanding on a problem. In some 
cases, a decision might be made while building the model, as a previously misunder-
stood element of the problem is discovered or eliminated. In other cases, a careful anal-
ysis of a completed model might be required to “get a handle” on a problem and gain 
the insights needed to make a decision. In any event, it is the insight gained from the 
modeling process that ultimately leads to better decision making.

1.3 Mathematical Models
As mentioned earlier, the modeling techniques in this book differ quite a bit from scale 
models of cars and planes or visual models of production plants. The models we will 
build use mathematics to describe a decision problem. We use the term “mathematics” 
in its broadest sense, encompassing not only the most familiar elements of math, such 
as algebra, but also the related topic of logic. 

Now, let’s consider a simple example of a mathematical model:

PROFIT 5 REVENUE 2 EXPENSES 1.1 

1  Colson, Charles and Jack Eckerd. Why America Doesn’t Work (Denver, Colorado: Word 
Publishing, 1991), 146–147.
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Mathematical Models 5

Equation 1.1 describes a simple relationship between revenue, expenses, and 
profit. It is a mathematical relationship that describes the operation of determining 
profit—or a mathematical model of profit. Of course, not all models are this simple, 
but taken piece by piece, the models we will discuss are not much more complex 
than this one.

Frequently, mathematical models describe functional relationships. For example, the 
mathematical model in equation 1.1 describes a functional relationship between reve-
nue, expenses, and profit. Using the symbols of mathematics, this functional relation-
ship is represented as:

PROFIT 5 f (REVENUE, EXPENSES) 1.2 

In words, the previous expression means “profit is a function of revenue and 
expenses.” We could also say that profit depends on (or is dependent on) revenue and 
expenses. Thus, the term PROFIT in equation 1.2 represents a dependent variable, 
whereas REVENUE and EXPENSES are independent variables. Frequently, compact 
symbols (such as A, B, and C) are used to represent variables in an equation such as 
1.2. For instance, if we let Y, X1, and X2 represent PROFIT, REVENUE, and EXPENSES, 
respectively, we could rewrite equation 1.2 as follows:

 Y 5 f (X1, X2) 1.3 

The notation f (?) represents the function that defines the relationship between the 
dependent variable Y and the independent variables X1 and X2. In the case of determin-
ing PROFIT from REVENUE and EXPENSES, the mathematical form of the function 
f (?) is quite simple because we know that f (X1, X2) = X1 ] X2. However, in many other 
situations we will model, the form of f (?) is quite complex and might involve many 
independent variables. But regardless of the complexity of f (?) or the number of inde-
pendent variables involved, many of the decision problems encountered in business 
can be represented by models that assume the general form,

 Y = f (X1, X2, . . . , Xk) 1.4 

In equation 1.4, the dependent variable Y represents some bottom-line perfor-
mance measure of the problem we are modeling. The terms X1, X2, . . . , Xk repre-
sent the different independent variables that play some role or have some impact 
in determining the value of Y. Again, f (?) is the function (possibly quite complex) 
that specifies or describes the relationship between the dependent and independent 
variables. 

The relationship expressed in equation 1.4 is very similar to what occurs in most 
spreadsheet models. Consider a simple spreadsheet model to calculate the monthly 
payment for a car loan, as shown in Figure 1.2.

The spreadsheet in Figure 1.2 contains a variety of input cells (e.g., purchase price, 
down payment, trade-in, term of loan, annual interest rate) that correspond concep-
tually to the independent variables X1, X2, . . . , Xk in equation 1.4. Similarly, a variety 
of mathematical operations are performed using these input cells in a manner analo-
gous to the function f (?) in equation 1.4. The results of these mathematical operations 
determine the value of some output cell in the spreadsheet (e.g., monthly payment) 
that corresponds to the dependent variable Y in equation 1.4. Thus, there is a direct 
correspondence between equation 1.4 and the spreadsheet in Figure 1.2. This type of 
correspondence exists for most of the spreadsheet models in this book. 
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6 Chapter 1 Introduction to Modeling and Decision Analysis 

Figure 1.2

Example of a 
simple spreadsheet 
model

1.4 Categories of Mathematical Models
Not only does equation 1.4 describe the major elements of mathematical or spreadsheet 
models, but it also provides a convenient means for comparing and contrasting the 
three categories of modeling techniques presented in this book—Prescriptive Models, 
Predictive Models, and Descriptive Models. Figure 1.3 summarizes the characteristics 
and some of the techniques associated with each of these categories.

In some situations, a manager might face a decision problem involving a very  precise, 
well-defined functional relationship f (?) between the independent variables X1, X2, . . . , Xk

and the dependent variable Y. If the values for the independent variables are under the 
decision maker’s control, the decision problem in these types of situations boils down 

Model Characteristics:

 
Category

 
Form of f (·) 

Values of independent 
Variables

Business Analytics 
Techniques

Prescriptive 
Models

known, 
well-defined

known or under 
decision maker’s 
control

Linear Programming, 
Networks, Integer 
Programming, CPM, 
Goal Programming, EOQ, 
Nonlinear Programming

Predictive 
Models

unknown, 
ill-defined

known or under 
decision maker’s 
control

Regression Analysis, 
Time Series Analysis, 
Discriminant Analysis, 
Neural Networks, Logistic 
Regression, Affinity 
Analysis, Cluster Analysis

Descriptive 
Models

known, 
well-defined

unknown or 
uncertain

Simulation, Queuing, 
PERT, Inventory Models

Figure 1.3

Categories and 
characteristics 
of business 
analytics modeling 
techniques

47412_ch01_ptg01_001-016.indd   6 11/08/16   10:22 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Business Analytics and the Problem-Solving Process 7

to determining the values of the independent variables X1, X2, . . . , Xk that produce 
the best possible value for the dependent variable Y. These types of models are called 
prescriptive models because their solutions tell the decision maker what actions to 
take. For example, you might be interested in determining how a given sum of money 
should be allocated to different investments (represented by the independent variables) 
to maximize the return on a portfolio without exceeding a certain level of risk.

A second category of decision problems is one in which the objective is to predict or 
estimate what value the dependent variable Y will take on when the independent vari-
ables X1, X2, . . . , Xk take on specific values. If the function f (?) relating the dependent 
and independent variables is known, this is a very simple task— simply enter the spec-
ified values for X1, X2, . . . , Xk into the function f (?) and  compute Y. In some cases, how-
ever, the functional form of f (?) might be unknown and must be estimated in order for 
the decision maker to make predictions about the dependent variable Y. These types of 
models are called predictive models. For example, a real estate appraiser might know 
that the value of a commercial property (Y) is influenced by its total square footage 
(X1) and age (X2), among other things. However, the functional relationship f (?) that 
relates these variables to one another might be unknown. By analyzing the relationship 
between the selling price, total square footage, and age of other commercial properties, 
the appraiser might be able to identify a function f (?) that relates these variables in a 
reasonably accurate manner.

The third category of models you are likely to encounter in the business world is 
called descriptive models. In these situations, a manager might face a decision prob-
lem that has a very precise, well-defined functional relationship f (?) between the inde-
pendent variables X1, X2, . . . , Xk and the dependent variable Y. However, there might 
be great uncertainty as to the exact values that will be assumed by one or more of the 
independent variables X1, X2, . . . , Xk. In these types of problems, the objective is to 
describe the outcome or behavior of a given operation or system. For example, suppose 
a company is building a new manufacturing facility and has several choices about the 
type of machines to put in the new plant, as well as various options for arranging the 
machines. Management might be interested in studying how the various plant con-
figurations would affect on-time shipments of orders (Y), given the uncertain number 
of orders that might be received (X1) and the uncertain due dates (X2) that might be 
required by these orders.

1.5 Business Analytics and 
the Problem-Solving Process
Business analytics focuses on identifying and leveraging business opportunities. But 
business opportunities can often be viewed or formulated as decision problems that 
need to be solved. As a result, the words “opportunity” and “problem” are used some-
what synonymously throughout this book. Indeed, some use the phrase “probortu-
nity” to denote that every problem is also an opportunity. 

Throughout our discussion, we have said that the ultimate goal in building models 
is to assist managers in making decisions that solve problems. The modeling  techniques 
we will study represent a small but important part of the total problem-solving pro-
cess. The “problem-solving process” discussed here is usually focused on leveraging 
a business opportunity of one sort or another. To become an effective modeler, it is 
important to understand how modeling fits into the entire problem-solving process. 
Because a model can be used to represent a decision problem or phenomenon, we 
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8 Chapter 1 Introduction to Modeling and Decision Analysis 

might be able to create a visual model of the phenomenon that occurs when people 
solve  problems—what we call the problem-solving process. Although a variety of 
models could be equally valid, the one in Figure 1.4 summarizes the key elements of 
the problem- solving process and is sufficient for our purposes.

The first step of the problem-solving process, identifying the problem (or ‘probor-
tunity’), is also the most important. If we do not identify the correct decision problem 
associated with the business opportunity at hand, all the work that follows will amount 
to nothing more than wasted effort, time, and money. Unfortunately, identifying the 
problem to solve is often not as easy as it seems. We know that a problem exists when 
there is a gap or disparity between the present situation and some desired state of 
affairs. However, we usually are not faced with a neat, well-defined problem. Instead, 
we often find ourselves facing a “mess”!2 Identifying the real problem involves gather-
ing a lot of information and talking with many people to increase our understanding 
of the mess. We must then sift through all this information and try to identify the root 
problem or problems causing the mess. Thus, identifying the real problem (and not just 
the symptoms of the problem) requires insight, some imagination, time, and a good bit 
of detective work.

The end result of the problem-identification step is a well-defined statement of the 
problem. Simply defining a problem well will often make it much easier to solve. There 
is much truth in the saying, “A problem clearly stated is a problem half solved.” Hav-
ing identified the problem, we turn our attention to creating or formulating a model of 
the problem. Depending on the nature of the problem, we might use a  mental model, a 
visual model, a scale model, or a mathematical model. Although this book focuses on 
mathematical models, this does not mean that mathematical models are always appli-
cable or best. In most situations, the best model is the  simplest model that accurately 
reflects the relevant characteristic or essence of the  problem being studied. 

We will discuss several different business analytics techniques in this book. It is 
important that you not develop too strong a preference for any one technique. Some 
people want to formulate every problem they face as something that can be solved by 
their favorite modeling technique. This simply will not work.

As indicated earlier in Figure 1.3, there are fundamental differences in the types 
of problems a manager might face. Sometimes, the values of the independent vari-
ables affecting a problem are under the manager’s control; sometimes they are not. 
Sometimes, the form of the functional relationship f (?) relating the dependent and 
independent variables is well-defined, and sometimes it is not. These fundamental 
characteristics of the problem should guide your selection of an appropriate business 
analytics modeling technique. Your goal at the model-formulation stage is to select a 
modeling technique that fits your problem, rather than trying to fit your problem into 
the required format of a preselected modeling technique.

After you select an appropriate representation or formulation of your problem, the 
next step is to implement this formulation as a spreadsheet model. We will not dwell 
on the implementation process now because that is the focus of the remainder of this 

2  This characterization is borrowed from James R. Evans, Creative Thinking in the Decision and 
Management Sciences (Cincinnati, Ohio: South-Western Publishing, 1991), 89–115.

Unsatisfactory Results

Formulate and
Implement Model

Identify Problem 
(or “Probortunity”)

Analyze
Model

Test
Results

Implement
Solution

Figure 1.4

A visual model 
of the problem-
solving process 
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Business Analytics and the Problem-Solving Process 9

book. After you verify that your spreadsheet model has been implemented accurately, 
the next step in the problem-solving process is to use the model to analyze the problem 
it represents. The main focus of this step is to generate and evaluate alternatives that 
might lead to a solution of the problem. This often involves playing out a number of 
scenarios or asking several “What if?” questions. Spreadsheets are particularly help-
ful in analyzing mathematical models in this manner. In a well-designed spreadsheet 
model, it should be fairly simple to change some of the assumptions in the model to see 
what might happen in different situations. As we proceed, we will highlight some tech-
niques for designing spreadsheet models that facilitate this type of “What if” analysis. 
“What if” analysis is also very appropriate and useful when working with nonmathe-
matical models.

The end result of analyzing a model does not always provide a solution to the actual 
problem being studied. As we analyze a model by asking various “What if?” ques-
tions, it is important to test the feasibility and quality of each potential solution. The 
blueprints Frank Brock showed to his production employees represented the end result 
of his analysis of the problem he faced. He wisely tested the feasibility and quality of 
this alternative before implementing it, and discovered an important flaw in his plans. 
Thus, the testing process can give important new insights into the nature of a problem. 
The testing process is also important because it provides the opportunity to double 
check the validity of the model. At times, we might discover an alternative that appears 
to be too good to be true. This could lead us to find that some important assumption 
has been left out of the model. Testing the results of the model against known results 
(and simple common sense) helps ensure the structural integrity and validity of the 
model. After analyzing the model, we might discover that we need to go back and 
modify it.

The last step of the problem-solving process, implementation, is often the most 
difficult. Implementation begins by deriving managerial insights from our modeling 
efforts, framed in the context of the real-world problem we are solving, and communi-
cating those insights to influence actions that affect the business situation. This requires 
crafting a message that is understood by various stakeholders in an organization and 
persuading them to take a particular course of action. (See Grossman et al., 2008 for 
numerous helpful suggestions on this process.) It has been said that managers would 
rather live with problems they cannot solve than accept solutions they cannot under-
stand. Making solutions understandable and acceptable is the heart of the implementa-
tion process.

By their very nature, solutions to problems involve people and change. For better or 
for worse, most people resist change. However, there are ways to minimize the seem-
ingly inevitable resistance to change. For example, it is wise, if possible, to involve any-
one who will be affected by the decision in all steps of the problem-solving process. 
This not only helps develop a sense of ownership and understanding of the ultimate 
solution, but it also can be the source of important information throughout the prob-
lem-solving process. As the Brock Candy story illustrates, even if it is impossible to 
include those affected by the solution in all steps, their input should be solicited and 
considered before a solution is accepted for implementation. Resistance to change and 
new systems can also be eased by creating flexible, user-friendly interfaces for the 
mathematical models that are often developed in the problem-solving process.

Throughout this book, we focus mostly on the model formulation, implementation, 
analysis, and testing steps of the problem-solving process, summarized previously in 
Figure 1.4. Again, this does not imply that these steps are more important than the 
others. If we do not identify the correct problem, the best we can hope for from our 
modeling effort is “the right answer to the wrong question,” which does not solve 
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10 Chapter 1 Introduction to Modeling and Decision Analysis 

the real problem. Similarly, even if we do identify the problem correctly and design 
a model that leads to a perfect solution, if we cannot implement the solution, then we 
still have not solved the problem. Developing the interpersonal and investigative skills 
required to work with people in defining the problem and implementing the solution is 
as important as the mathematical modeling skills you will develop by working through 
this book.

1.6 Anchoring and Framing Effects
At this point, some of you are probably thinking it is better to rely on subjective judg-
ment and intuition rather than models when making decisions. Indeed, most nontrivial 
decision problems involve some issues that are difficult or impossible to structure and 
analyze as a mathematical model. These unstructurable aspects of a decision problem 
may require the use of judgment and intuition. However, it is important to realize that 
human cognition is often flawed and can lead to incorrect judgments and irrational 
decisions. Errors in human judgment often arise because of what psychologists term 
anchoring and framing effects associated with decision problems.

Anchoring effects arise when a seemingly trivial factor serves as a starting point (or 
anchor) for estimations in a decision-making problem. Decision makers adjust their 
estimates from this anchor but nevertheless remain too close to the anchor and usu-
ally under-adjust. In a classic psychological study on this issue, one group of subjects 
were asked to individually estimate the value of 1 3 2 3 3 3 4 3 5 3 6 3 7 3 8 (without 
using a calculator). Another group of subjects were each asked to estimate the value 
of 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1. The researchers hypothesized that the first number 
 presented (or perhaps the product of the first three or four numbers) would serve as a 
mental anchor. The results supported the hypothesis. The median estimate of subjects 
shown the numbers in ascending sequence (1 3 2 3 3 . . .) was 512, whereas the median 
estimate of subjects shown the sequence in descending order (8 3 7 3 6 . . .) was 2,250. 
Of course, the order of multiplication for these numbers is irrelevant and the product of 
both series is the same: 40,320.

Framing effects refer to how a decision maker views or perceives the alternatives 
in a decision problem—often involving a win/loss perspective. The way a problem is 
framed often influences the choices made by a decision maker and can lead to irrational 
behavior. For example, suppose you have just been given $1,000 but must choose one of 
the following alternatives: (A1) Receive an additional $500 with certainty, or (B1) Flip a 
fair coin and receive an additional $1,000 if heads occurs or $0 additional if tails occurs. 
Here, alternative A1 is a “sure win” and is the alternative most people prefer. Now 
suppose you have been given $2,000 and must choose one of the following alterna-
tives: (A2) Give back $500 immediately, or (B2) Flip a fair coin and give back $0 if heads 
occurs or $1,000 if tails occurs. When the problem is framed this way, alternative A2 is 
a “sure loss” and many people who previously preferred alternative A1 now opt for 
alternative B2 (because it holds a chance of avoiding a loss). However, Figure 1.5 shows 
a single decision tree for these two scenarios making it clear that, in both cases, the “A” 
alternative guarantees a total payoff of $1,500, whereas the “B” alternative offers a 50% 
chance of a $2,000 total payoff and a 50% chance of a $1,000 total payoff. (Decision trees 
will be covered in greater detail in a later chapter.) A purely rational decision maker 
should focus on the consequences of his or her choices and consistently select the same 
alternative, regardless of how the problem is framed.

Whether we want to admit it or not, we are all prone to make errors in estima-
tion due to anchoring effects and may exhibit irrationality in decision making due to 
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Good Decisions vs. Good Outcomes 11

framing effects. As a result, it is best to use computer models to do what they are best at 
(i.e., modeling structurable portions of a decision problem) and let the human brain do 
what it is best at (i.e., dealing with the unstructurable portion of a decision problem). 

1.7 Good Decisions vs. Good Outcomes
The goal of the modeling approach to problem solving is to help individuals make good 
decisions. But good decisions do not always result in good outcomes. For example, sup-
pose the weather report on the evening news predicts a warm, dry, sunny day tomorrow. 
When you get up and look out the window tomorrow morning, suppose there is not a 
cloud in sight. If you decide to leave your umbrella at home and subsequently get soaked 
in an unexpected afternoon thundershower, did you make a bad decision?  Certainly not. 
Unforeseeable circumstances beyond your control caused you to  experience a bad out-
come, but it would be unfair to say that you made a bad decision. A good decision is one 
that is in harmony with what you know, what you want, what you can do, and to which 
you are committed. But good decisions sometimes result in bad outcomes. See Figure 1.6 
for the story of another good decision having a bad outcome. 

Initial state

Alternative A
Payoffs
$1,500

$2,000

$1,000

Alternative B
(Flip coin)

Heads (50%)

Tails (50%)

Figure 1.5

Decision tree for 
framing effects

Figure 1.6

A good decision 
with a bad outcome

Andre-Francois Raffray thought he had a great deal in 1965 when he agreed to 
pay a 90-year-old woman named Jeanne Calment $500 a month until she died 
to acquire her grand apartment in Arles, northwest of Marseilles in the south of 
France—a town Vincent Van Gogh once roamed. Buying apartments “for life” is 
common in France. The elderly owner gets to enjoy a monthly income from the 
buyer who gambles on getting a real estate bargain—betting the owner doesn’t 
live too long. Upon the owner’s death, the buyer inherits the apartment regard-
less of how much was paid. But in December of 1995, Raffray died at age 77, hav-
ing paid more than $180,000 for an apartment he never got to live in. 

On the same day, Calment, then the world’s oldest living person at 120, dined 
on foie gras, duck thighs, cheese, and chocolate cake at her nursing home near the 
sought-after apartment. And she does not need to worry about losing her $500 
monthly income. Although the amount Raffray already paid is twice the apart-
ment’s current market value, his widow is obligated to keep sending the monthly 
check to Calment. If Calment also outlives her, then the Raffray children will have 
to pay. “In life, one sometimes makes bad deals,” said Calment of the outcome of 
Raffray’s decision. (Source: The Savannah Morning News, 12/29/95.)
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The modeling techniques presented in this book can help you make good decisions, 
but cannot guarantee that good outcomes will always occur as a result of those deci-
sions. Figure 1.7 describes the possible combinations of good and bad decisions and 
good and bad outcomes. When a good or bad decision is made, luck often plays a role 
in determining whether a good or bad outcome occurs. However, consistently using a 
structured, data-driven, and model-based process to make decisions should produce 
good outcomes (and deserved success) more frequently than making decisions in a 
more haphazard manner.

1.8 Summary 
This book introduces you to a variety of techniques from the field of business analytics 
that can be applied in spreadsheet models to assist in decision analysis and problem 
solving. This chapter discussed how spreadsheet models of decision problems can be 
used to analyze the consequences of possible courses of action before a particular alter-
native is selected for implementation. It described how models of decision problems 
differ in a number of important characteristics and how you should select a modeling 
technique that is most appropriate for the type of problem being faced. It discussed 
how spreadsheet modeling and analysis fit into the problem-solving process. It then 
discussed how the psychological phenomena of anchoring and framing can influence 
human judgment and decision making. Finally, it described the importance of distin-
guishing between the quality of a decision-making process and the quality of decision 
outcomes.
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Figure 1.7

Decision quality 
and outcome 
quality matrix

Adapted from: J. Russo and P. Shoemaker, Winning Decisions (New York, NY: Doubleday, 2002).
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THE WORLD OF BUSINESS ANALYTICS

“Business Analysts Trained in Management Science Can Be a 
Secret Weapon in a CIO’s Quest for Bottom-Line Results.”

Efficiency nuts. These are the people you see at cocktail parties explaining how 
the host could disperse that crowd around the popular shrimp dip if he would 
divide it into three bowls and place them around the room. As she draws the 
improved traffic flow on a paper napkin, you notice that her favorite word is 
“optimize”—a tell-tale sign she has studied the field of “operations research” or 
“management science” (also known as OR/MS or business analytics).

OR/MS professionals are driven to solve logistics problems. This trait may not 
make them the most popular people at parties but is exactly what today’s infor-
mation systems (IS) departments need to deliver more business value. Experts 
say smart IS executives will learn to exploit the talents of these mathematical wiz-
ards in their quest to boost a company’s bottom line.

According to Ron J. Ponder, chief information officer (CIO) at Sprint Corp. in 
Kansas City, Mo. and former CIO at Federal Express Corp., “If IS departments 
had more participation from operations research analysts, they would be build-
ing much better, richer IS solutions.” As someone who has a Ph.D. in opera-
tions research and who built the renowned package-tracking systems at Federal 
Express, Ponder is a true believer in OR/MS. Ponder and others say analysts 
trained in OR/MS can turn ordinary information systems into money-saving, 
decision-support systems and are ideally suited to be members of the business 
process reengineering team. “I’ve always had an operations research department 
reporting to me, and it’s been invaluable. Now I’m building one at Sprint,” says 
Ponder.

The Beginnings
OR/MS got its start in World War II, when the military had to make important 
decisions about allocating scarce resources to various military operations. One of 
the first business applications for computers in the 1950s was to solve operations 
research problems for the petroleum industry. A technique called linear program-
ming was used to figure out how to blend gasoline for the right flash point, vis-
cosity, and octane in the most economical way. Since then, OR/MS has spread 
throughout business and government, from designing efficient drive-thru win-
dow operations for Burger King Corp. to creating ultrasophisticated computer-
ized stock trading systems.

A classic OR/MS example is the crew scheduling problem faced by all major 
airlines. How do you plan the itineraries of 8,000 pilots and 17,000 flight atten-
dants when there is an astronomical number of combinations of planes, crews, 
and cities? The OR/MS analysts at United Airlines came up with a scheduling 
system called Paragon that attempts to minimize the amount of paid time that 
crews spend waiting for flights. Their model factors in constraints such as union 
rules and Federal Aviation Administration regulations and is projected to save the 
airline at least $1 million a year.

(Continued)
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OR/MS TODAY
Today’s OR/MS professionals are involved in a variety of business analytics 
projects, including the analysis of social media data, inventory assortment plan-
ning and management, text mining of online customer comments, computer-in-
tegrated manufacturing, cyber-security, healthcare management, and cognitive 
computing. OR/MS analysts can also model how a business process works now 
and simulate how it could work more efficiently in the future. Therefore, it makes 
sense to have an OR/MS analyst on the interdisciplinary team that tackles busi-
ness process reengineering projects. In essence, OR/MS professionals add more 
value to businesses by building “tools that really help decision makers analyze 
complex situations,” says Andrew B. Whinston, director of the Center for Infor-
mation Systems Management at the University of Texas at Austin. 

Thomas M. Cook, president of American Airlines Decision Technologies, Inc., 
says that adding OR/MS skills to anIS team can produce intelligent systems that 
actually recommend solutions to business problems. One of the big success stories 
at Cook’s operations research shop is a “yield management” system that decides 
how much to overbook and how to set prices for each seat so that a plane is filled 
up and profits are maximized. The yield management system deals with more 
than 250 decision variables and accounts for a significant amount of American 
Airlines’ revenue. 

Where to Start
So how can the CIO start down the road toward collaboration with OR/MS ana-
lysts? If the company already has a group of OR/MS professionals, the IS depart-
ment can draw on their expertise as internal consultants. Otherwise, the CIO can 
simply hire a few OR/MS wizards, throw a problem at them, and see what hap-
pens. The payback may come surprisingly fast. As one former OR/MS profes-
sional put it: “If I couldn’t save my employer the equivalent of my own salary in 
the first month of the year, then I wouldn’t feel like I was doing my job.”

Adapted from: Mitch Betts, “Efficiency Einsteins,” ComputerWorld, March 22, 1993, p. 64.

Questions and Problems
1. What is meant by the term decision analysis?
2. Define the term computer model.
3. What is the difference between a spreadsheet model and a computer model?
4. Define the term business analytics.
5. What is the relationship between business analytics and spreadsheet modeling?
6. What kinds of spreadsheet applications would not be considered business 

analytics?
7. In what ways do spreadsheet models facilitate the decision-making process?
8. What are the benefits of using a modeling approach to decision making?
9. What is a dependent variable?

10. What is an independent variable?
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11. Can a model have more than one dependent variable?
12. Can a decision problem have more than one dependent variable?
13. In what ways are prescriptive models different from descriptive models?
14. In what ways are prescriptive models different from predictive models?
15. In what ways are descriptive models different from predictive models?
16. How would you define the words description, prediction, and prescription? 

Carefully consider what is unique about the meaning of each word.
17. Identify one or more mental models you have used. Can any of them be expressed 

mathematically? If so, identify the dependent and independent variables in your model.
18. Consider the spreadsheet model shown in Figure 1.2. Is this model descriptive, pre-

dictive, or prescriptive in nature, or does it not fall into any of these categories?
19. Discuss the meaning of the phrase “probortunity.”
20. What are the steps in the problem-solving process?
21. Which step in the problem-solving process do you think is most important? Why?
22. Must a model accurately represent every detail of a decision situation to be useful? 

Why or why not?
23. If you were presented with several different models of a given decision problem, 

which would you be most inclined to use? Why?
24. Describe an example in which business or political organizations may use anchor-

ing effects to influence decision making.
25. Describe an example in which business or political organizations may use framing 

effects to influence decision making.
26. Suppose sharks have been spotted along the beach where you are vacationing with 

a friend. You and your friend have been informed of the shark sightings and are 
aware of the damage a shark attack can inflict on human flesh. You both decide 
(individually) to go swimming anyway. You are promptly attacked by a shark while 
your friend has a nice time body surfing in the waves. Did you make a good or bad 
decision? Did your friend make a good or bad decision? Explain your answer.

27. Describe an example in which a well-known business, political, or military leader 
made a good decision that resulted in a bad outcome, or a bad decision that resulted 
in a good outcome.

Patrick’s Paradox
Patrick’s luck had changed over night – but not his skill at mathematical reasoning. The 
day after graduating from college he used the $20 that his grandmother had given him 
as a graduation gift to buy a lottery ticket. He knew his chances of winning the lottery 
were extremely low and it probably was not a good way to spend this money. But he 
also remembered from the class he took in business analytics that bad decisions some-
times result in good outcomes. So he said to himself, “What the heck? Maybe this bad 
decision will be the one with a good outcome.” And with that thought, he bought his 
lottery ticket.

The next day Patrick pulled the crumpled lottery ticket out of the back pocket of 
his bluejeans and tried to compare his numbers to the winning numbers printed in 
the paper. When his eyes finally came into focus on the numbers they also just about 
popped out of his head. He had a winning ticket! In the ensuing days he learned that 
his share of the jackpot would give him a lump sum payout of about $500,000 after 
taxes. He knew what he was going to do with part of the money, buy a new car, pay off 
his college loans, and send his grandmother on an all expenses paid trip to Hawaii. But 

CAse 1.1
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he also knew that he couldn’t continue to hope for good outcomes to arise from more 
bad decisions. So he decided to take half of his winnings and invest it for his retirement.

A few days later, Patrick was sitting around with two of his fraternity buddies, Josh 
and Peyton, trying to figure out how much money his new retirement fund might be 
worth in 30 years. They were all business majors in college and remembered from their 
finance class that if you invest p dollars for n years at an annual interest rate of i percent 
then in n years you would have p(1 1 i)n dollars. So they figure that if Patrick invested 
$250,000 for 30 years in an investment with a 10% annual return, then in 30 years he 
would have $4,362,351 (i.e., $250,000(1 1 0.10)30).

But after thinking about it a little more, they all agreed that it would be unlikely 
for Patrick to find an investment that would produce a return of exactly 10% each and 
every year for the next 30 years. If any of this money is invested in stocks, then some 
years the return might be higher than 10% and some years it would probably be lower. 
So to help account for the potential variability in the investment returns Patrick and 
his friends came up with a plan; they would assume he could find an investment that 
would produce an annual return of 17.5% seventy percent of the time and a return (or 
actually a loss) of ]7.5% thirty percent of the time. Such an investment should pro-
duce an average annual return of 0.7(17.5%) 1 0.3(]7.5%) 5 10%. Josh felt certain that 
this meant Patrick could still expect his $250,000 investment to grow to $4,362,351 in  
30 years (because $250,000(1 1 0.10)30 = $4,362,351).

After sitting quietly and thinking about it for a while, Peyton said that he thought Josh 
was wrong. The way Peyton looked at it, Patrick should see a 17.5% return in 70% of the 
30 years (or 0.7(30) 5 21 years) and a ]7.5% return in 30% of the 30 years (or 0.3(30) 5 9 
years). So, according to Peyton, that would mean Patrick should have $250,000 
(1 1 0.175)21(1 ] 0.075)9 5 $3,664,467 after 30 years. But that’s $697,884 less than what 
Josh says Patrick should have.

After listening to Peyton’s argument, Josh said he thought Peyton was wrong 
because his calculation assumes that the “good” return of 17.5% would occur in each 
of the first 21 years and the “bad” return of ]7.5% would occur in each of the last  
9 years. But Peyton countered this argument by saying that the order of good and bad 
returns does not matter. The commutative law of arithmetic says that when you add 
or multiply numbers, the order doesn’t matter (i.e., X 1 Y 5 Y 1 X and X 3 Y 5 Y 3 X). 
So Peyton says that because Patrick can expect 21 “good” returns and 9 “bad” returns 
and it doesn’t matter in what order they occur, then the expected outcome of the invest-
ment should be $3,664,467 after 30 years. 

Patrick is now really confused. Both of his friends’ arguments seem to make perfect 
sense logically—but they lead to such different answers, and they can’t both be right. 
What really worries Patrick is that he is starting his new job as a business analyst in 
a couple of weeks. And if he can’t reason his way to the right answer in a relatively 
simple problem like this, what is he going to do when he encounters the more difficult 
problems awaiting him the business world? Now he really wishes he had paid more 
attention in his business analytics class.

So what do you think? Who is right, Joshua or Peyton? And more importantly, why?
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Chapter 2
Introduction to Optimization and 
Linear Programming

2.0 Introduction
Our world is filled with limited resources. The amount of oil we can pump out of the 
earth is limited. The amount of land available for garbage dumps and hazardous waste is 
limited and, in many areas, diminishing rapidly. On a more personal level, each of us has 
a limited amount of time in which to accomplish or enjoy the activities we schedule each 
day. Most of us have a limited amount of money to spend while pursuing these activities. 
Businesses also have limited resources. A manufacturing organization employs a limited 
number of workers. A restaurant has a limited amount of space available for seating.

Deciding how best to use the limited resources available to an individual or a busi-
ness is a universal problem. In today’s competitive business environment, it is increas-
ingly important to make sure that a company’s limited resources are used in the most 
efficient manner possible. Typically, this involves determining how to allocate the 
resources in such a way as to maximize profits or minimize costs. Mathematical pro-
gramming (MP) is an area in business analytics that finds the optimal, or most efficient, 
way of using limited resources to achieve the objectives of an individual or a business. 
For this reason, mathematical programming is often referred to as optimization.

2.1 Applications of Mathematical 
Optimization
To help you understand the purpose of optimization and the types of problems for 
which it can be used, let’s consider several examples of decision-making situations in 
which MP techniques have been applied.

Determining Product Mix. Most manufacturing companies can make a variety of 
products. However, each product usually requires different amounts of raw materials 
and labor. Similarly, the amount of profit generated by the products varies. The man-
ager of such a company must decide how many of each product to produce in order to 
maximize profits or to satisfy demand at minimum cost.

Manufacturing. Printed circuit boards, like those used in most computers, often 
have hundreds or thousands of holes drilled in them to accommodate the different 
electrical components that must be plugged into them. To manufacture these boards, a 
computer-controlled drilling machine must be programmed to drill in a given location, 
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18 Chapter 2 Introduction to Optimization and Linear Programming

then move the drill bit to the next location and drill again. This process is repeated hun-
dreds or thousands of times to complete all the holes on a circuit board. Manufacturers 
of these boards would benefit from determining the drilling order that minimizes the 
total distance the drill bit must be moved.

Routing and Logistics. Many retail companies have warehouses around the coun-
try that are responsible for keeping stores supplied with merchandise. The amount of 
merchandise available at the warehouses and the amount needed at each store tend to 
fluctuate, as does the cost of shipping or delivering merchandise from the warehouses 
to the retail locations. Large amounts of money can be saved by determining the least 
costly method of transferring merchandise from the warehouses to the stores.

Financial Planning. The federal government requires individuals to begin withdrawing 
money from individual retirement accounts (IRAs) and other tax-sheltered retirement 
programs no later than age 70.5. Various rules must be followed to avoid paying penalty 
taxes on these withdrawals. Most individuals want to withdraw their money in a manner 
that minimizes the amount of taxes they must pay while still obeying the tax laws.

O p t i m i z a t i o n  I s  E v e r y w h e r e
Going to Disney World this summer? Optimization will be your ubiquitous 
companion, scheduling the crews and planes, pricing the airline tickets and 
hotel rooms, even helping to set capacities on the theme park rides. If you 
use Orbitz to book your flights, an optimization engine sifts through millions 
of options to find the cheapest fares. If you get directions to your hotel from 
MapQuest, another optimization engine figures out the most direct route. If you 
ship souvenirs home, an optimization engine tells UPS which truck to put the 
packages on, exactly where on the truck the packages should go to make them 
fastest to load and unload, and what route the driver should follow to make his 
deliveries most efficiently. 

(Adapted from: V. Postrel, “Operation Everything,” The Boston Globe, June 27, 2004.)

2.2 Characteristics of Optimization 
Problems
These examples represent just a few areas in which MP has been used successfully. We 
will consider many other examples throughout this book. However, these examples 
give you some idea of the issues involved in optimization. For instance, each example 
involves one or more decisions that must be made: How many of each product should 
be produced? Which hole should be drilled next? How much of each product should be 
shipped from each warehouse to the various retail locations? How much money should 
an individual withdraw each year from various retirement accounts?

Also, in each example, restrictions, or constraints, are likely to be placed on the 
alternatives available to the decision maker. In the first example, when determining the 
number of products to manufacture, a production manager is probably faced with a 
limited amount of raw materials and a limited amount of labor. In the second example, 
the drill should never return to a position where a hole has already been drilled. 
In the third example, there is a physical limitation on the amount of merchandise a 
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Expressing Optimization Problems Mathematically  19

truck can carry from one warehouse to the stores on its route. In the fourth example, 
laws determine the minimum and maximum amounts that can be withdrawn from 
retirement accounts without incurring a penalty. Many other constraints can also be 
identified for these examples. Indeed, it is not unusual for real-world optimization 
problems to have hundreds or thousands of constraints.

A final common element in each of the examples is the existence of some goal or 
objective that the decision maker considers when deciding which course of action 
is best. In the first example, the production manager can decide to produce several 
different product mixes given the available resources, but the manager will probably 
choose the mix of products that maximizes profits. In the second example, a large 
number of possible drilling patterns can be used, but the ideal pattern will probably 
involve moving the drill bit the shortest total distance. In the third example, there are 
numerous ways merchandise can be shipped from the warehouses to supply the stores, 
but the company will probably want to identify the routing that minimizes the total 
transportation cost. Finally, in the fourth example, individuals can withdraw money 
from their retirement accounts in many ways without violating tax laws, but they 
probably want to find the method that minimizes their tax liability.

2.3 Expressing Optimization  
Problems Mathematically
From the preceding discussion, we know that optimization problems involve three ele-
ments: decisions, constraints, and an objective. If we intend to build a mathematical 
model of an optimization problem, we will need mathematical terms or symbols to 
represent each of these three elements.

2.3.1 DEcIsIOns
The decisions in an optimization problem are often represented in a mathematical 
model by the symbols X1, X2, . . . , Xn. We will refer to X1, X2, . . . , Xn as the  decision 
variables (or simply the variables) in the model. These variables might represent the 
quantities of different products the production manager can choose to produce. They 
might represent the amount of different pieces of merchandise to ship from a ware-
house to a certain store. They might represent the amount of money to be withdrawn 
from different retirement accounts.

The exact symbols used to represent the decision variables are not particularly 
important. You could use Z1, Z2, . . . , Zn or symbols like Dog, Cat, and Monkey  
to represent the decision variables in the model. The choice of which symbols to 
use is largely a matter of personal preference and might vary from one problem to  
the next.

2.3.2 cOnstRaInts
The constraints in an optimization problem can be represented in a mathematical 
model in a number of ways. Three general ways of expressing the possible constraint 
relationships in an optimization problem are:

A less than or equal to constraint: f(X1, X2, . . . , Xn) # b
 A greater than or equal to constraint: f(X1, X2, . . . , Xn) $ b
 An equal to constraint: f(X1, X2, . . . , Xn) 5 b
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20 Chapter 2 Introduction to Optimization and Linear Programming

In each case, the constraint is some function of the decision variables that must be less 
than or equal to, greater than or equal to, or equal to some specific value (represented 
by the letter b). We will refer to f(X1, X2, . . . , Xn) as the left-hand-side (LHS) of the 
constraint and to b as the right-hand-side (RHS) value of the constraint.

For example, we might use a less than or equal to constraint to ensure that the total 
labor used in producing a given number of products does not exceed the amount of 
available labor. We might use a greater than or equal to constraint to ensure that the 
total amount of money withdrawn from a person’s retirement accounts is at least the 
minimum amount required by the IRS. You can use any number of these constraints to 
represent a given optimization problem depending on the requirements of the situation.

2.3.3 ObjEctIvE
The objective in an optimization problem is represented mathematically by an objective 
function in the general format:

MAX (or MIN):   f 
1X1, X2, . . . , Xn 2

The objective function identifies some function of the decision variables that the 
decision maker wants to either MAXimize or MINimize. In our earlier examples, this 
function might be used to describe the total profit associated with a product mix, the 
total distance the drill bit must be moved, the total cost of  transporting merchandise, or 
a retiree’s total tax liability.

The mathematical formulation of an optimization problem can be described in the 
general format:

MAX (or MIN): f0 1X1, X2, . . . , Xn 2  2.1

Subject to: f1 1X1, X2, . . . , Xn 2  # b1 2.2

(
fk 1X1, X2, . . . , Xn 2  $ bk 2.3

(
fm 1X1, X2, . . . , Xn 2 5 bm 2.4

This representation identifies the objective function (equation 2.1) that will be 
maximized (or minimized) and the constraints that must be satisfied (equations 2.2 
through 2.4). Subscripts added to the f and b in each equation emphasize that the 
functions describing the objective and constraints can all be different and there can be 
any number of each type of constraint. The goal in optimization is to find the values 
of the decision variables that maximize (or minimize) the objective function without 
violating any of the constraints.

2.4 Mathematical Programming Techniques
Our general representation of an MP model is just that—general. There are many kinds 
of functions you can use to represent the objective function and the constraints in an 
MP model. Of course, you should always use functions that accurately describe the 
objective and constraints of the problem you are trying to solve. Sometimes, the func-
tions in a model are linear in nature (i.e., form straight lines or flat surfaces); other 
times, they are nonlinear (i.e., form curved lines or curved surfaces). Sometimes, the 
optimal values of the decision variables in a model must take on integer values (whole 
numbers); other times, the decision variables can assume fractional values.
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Formulating LP Models 21

Given the diversity of MP problems that can be encountered, many techniques have 
been developed to solve different types of MP problems. In the next several chapters, we 
will look at these MP techniques and develop an understanding of how they differ and 
when each should be used. We will begin by examining a technique called linear pro-
gramming (LP), which involves creating and solving optimization problems with linear 
objective functions and linear constraints. LP is a very powerful tool that can be applied in 
many business situations. It also forms a basis for several other techniques discussed later 
and is, therefore, a good starting point for our investigation into the field of optimization.

2.5 An Example LP Problem
We will begin our study of LP by considering a simple example. You should not inter-
pret this to mean that LP cannot solve more complex or realistic problems. LP has been 
used to solve extremely complicated problems, saving companies millions of dollars. 
However, jumping directly into one of these complicated problems would be like start-
ing a marathon without ever having gone out for a jog—you would get winded and 
could be left behind very quickly. So we’ll start with something simple.

Blue Ridge Hot Tubs manufactures and sells two models of hot tubs: the Aqua-Spa 
and the Hydro-Lux. Howie Jones, the owner and manager of the company, needs 
to decide how many of each type of hot tub to produce during his next production 
cycle. Howie buys prefabricated fiberglass hot tub shells from a local supplier and 
adds the pump and tubing to the shells to create his hot tubs. (This supplier has the 
capacity to deliver as many hot tub shells as Howie needs.) Howie installs the same 
type of pump into both hot tubs. He will have only 200 pumps available during 
his next production cycle. From a manufacturing standpoint, the main difference 
between the two models of hot tubs is the amount of tubing and labor required. Each 
Aqua-Spa requires 9 hours of labor and 12 feet of tubing. Each Hydro-Lux requires 
6 hours of labor and 16 feet of tubing. Howie expects to have 1,566 production labor 
hours and 2,880 feet of tubing available during the next production cycle. Howie 
earns a profit of $350 on each Aqua-Spa he sells and $300 on each Hydro-Lux he 
sells. He is confident that he can sell all the hot tubs he produces. The question 
is, how many Aqua-Spas and Hydro-Luxes should Howie produce if he wants to 
maximize his profits during the next production cycle?

2.6 Formulating LP Models
The process of taking a practical problem—such as determining how many  Aqua-Spas 
and Hydro-Luxes Howie should produce—and expressing it algebraically in the form 
of an LP model is known as formulating the model. Throughout the next several chap-
ters, you will see that formulating an LP model is as much an art as a science.

2.6.1 stEPs In FORMuLatIng an LP MODEL
There are some general steps you can follow to help make sure your formulation of a par-
ticular problem is accurate. We will walk through these steps using the hot tub example.

1. Understand the problem. This step appears to be so obvious that it hardly seems 
worth mentioning. However, many people tend to jump into a problem and start 
writing the objective function and constraints before they really understand the 
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22 Chapter 2 Introduction to Optimization and Linear Programming

problem. If you do not fully understand the problem you face, it is unlikely that 
your formulation of the problem will be correct.

The problem in our example is fairly easy to understand: How many Aqua-Spas 
and Hydro-Luxes should Howie produce to maximize his profit, while using no 
more than 200 pumps, 1,566 labor hours, and 2,880 feet of tubing?

2. Identify the decision variables. After you are sure you understand the problem, 
you need to identify the decision variables. Ask yourself, what are the fundamental 
decisions that must be made in order to solve the problem? The answers to this 
question often will help you identify appropriate decision variables for your 
model. Identifying the decision variables means determining what the symbols 
X1, X2, . . . , Xn represent in your model.

In our example, the fundamental decision Howie faces is this: How many Aqua-
Spas and Hydro-Luxes should be produced? In this problem, we will let X1 represent 
the number of Aqua-Spas to produce and X2 represent the number of Hydro-Luxes 
to produce.

3. State the objective function as a linear combination of the decision variables. After 
determining the decision variables you will use, the next step is to create the objective 
function for the model. This function expresses the mathematical relationship 
between the decision variables in the model to be maximized or minimized.

In our example, Howie earns a profit of $350 on each Aqua-Spa 1X1 2  he sells and 
$300 on each Hydro-Lux 1X2 2  he sells. Thus, Howie’s objective of maximizing the 
profit he earns is stated mathematically as:

MAX:    350X1 1 300X2

For whatever values might be assigned to X1 and X2, the previous function 
calculates the associated total profit that Howie would earn. Obviously, Howie 
wants to maximize this value.

4. State the constraints as linear combinations of the decision variables. As 
mentioned earlier, there are usually some limitations on the values that can be 
assumed by the decision variables in an LP model. These restrictions must be 
identified and stated in the form of constraints.

In our example, Howie faces three major constraints. Because only 200 pumps 
are available and each hot tub requires one pump, Howie cannot produce more 
than a total of 200 hot tubs. This restriction is stated mathematically as:

 1X1 1 1X2 #  200

This constraint indicates that each unit of X1 produced (i.e., each Aqua-Spa built) 
will use one of the 200 pumps available—as will each unit of X2 produced (that is, 
each Hydro-Lux built). The total number of pumps used (represented by 1X1 1 1X2 ) 
must be less than or equal to 200.

Another restriction Howie faces is that he has only 1,566 labor hours available 
during the next production cycle. Because each Aqua-Spa he builds (each unit of X1) 
requires 9 labor hours and each Hydro-Lux (each unit of X2) requires 6 labor hours, 
the constraint on the number of labor hours is stated as:

 9X1 1 6X2 # 1,566

The total number of labor hours used (represented by 9X1 1 6X2) must be less 
than or equal to the total labor hours available, which is 1,566.

The final constraint specifies that only 2,880 feet of tubing is available for the 
next production cycle. Each Aqua-Spa produced (each unit of X1) requires 12 feet of 
tubing, and each Hydro-Lux produced (each unit of X2) requires 16 feet of tubing. 

47412_ch02_ptg01_017-045.indd   22 11/08/16   10:23 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



The General Form of an LP Model 23

The following constraint is necessary to ensure that Howie’s production plan does 
not use more tubing than is available:

12X1 1 16X2 # 2,880

The total number of feet of tubing used (represented by 12X1 1 16X2) must be 
less than or equal to the total number of feet of tubing available, which is 2,880.

5. Identify any upper or lower bounds on the decision variables. Often, simple 
upper or lower bounds apply to the decision variables. You can view upper and 
lower bounds as additional constraints in the problem.

In our example, there are simple lower bounds of zero on the variables X1 and 
X2 because it is impossible to produce a negative number of hot tubs. Therefore, the 
following two constraints also apply to this problem:

 X1 $ 0
X2 $ 0

Constraints like these are often referred to as nonnegativity conditions and are 
quite common in LP problems.

2.7 Summary of the LP Model  
for the Example Problem
The complete LP model for Howie’s decision problem can be stated as:

MAX: 350X1 1 300X2 2.5

Subject to: 1X1 1 1X2 # 200 2.6

 9X1 1 6X2 # 1,566 2.7

 12X1 1 16X2 # 2,880 2.8

 1X1 $ 0 2.9

1X2 $ 0 2.10

In this model, the decision variables X1 and X2 represent the number of Aqua-Spas 
and Hydro-Luxes to produce, respectively. Our goal is to determine the values for X1

and X2 that maximize the objective in equation 2.5 while simultaneously satisfying all 
the constraints in equations 2.6 through 2.10.

2.8 The General Form of an LP Model
The technique of linear programming is so-named because the MP problems to which 
it applies are linear in nature. That is, it must be possible to express all the functions in 
an LP model as some weighted sum (or linear combination) of the decision variables. 
So, an LP model takes on the general form:

MAX (or MIN): c1X1 1 c2X2 1 ? ? ? 1 cnXn 2.11

Subject to:  a11X1 1 a12X2 1 ? ? ? 1 a1nXn # b1 2.12

(
ak1X1 1 ak2X2 1 ? ? ? 1 aknXn $ bk 2.13

(
am1X1 1 am2X2 1 ? ? ? 1  amnXn 5 bm 2.14

Up to this point, we have suggested that the constraints in an LP model represent 
some type of limited resource. Although this is frequently the case, in later chapters 
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24 Chapter 2 Introduction to Optimization and Linear Programming

you will see examples of LP models in which the constraints represent things other than 
limited resources. The important point here is that any problem that can be formulated 
in the preceding fashion is an LP problem.

The symbols c1, c2, . . . , cn in equation 2.11 are called objective function coefficients 
and might represent the marginal profits (or costs) associated with the decision vari-
ables X1, X2, . . . , Xn, respectively. The symbol aij found throughout equations 2.12 
through 2.14 represents the numeric coefficient in the ith constraint for variable Xj. The 
objective function and constraints of an LP problem represent different weighted sums 
of the decision variables. The bi symbols in the constraints, once again, represent values 
that the corresponding linear combination of the decision variables must be less than or 
equal to, greater than or equal to, or equal to.

You should now see a direct connection between the LP model we formulated for 
Blue Ridge Hot Tubs in equations 2.5 through 2.10 and the general definition of an LP 
model given in equations 2.11 through 2.14. In particular, note that the various symbols 
used in equations 2.11 through 2.14 to represent numeric constants (i.e., the cj, aij, and bi)  
were replaced by actual numeric values in  equations 2.5 through 2.10. Also, note that 
our formulation of the LP model for Blue Ridge Hot Tubs did not require the use of 
equal to constraints. Different problems require different types of constraints, and you 
should use whatever types of constraints are necessary for the problem at hand.

2.9 Solving LP Problems: An Intuitive 
Approach
After an LP model has been formulated, our interest naturally turns to solving it. But 
before we actually solve our example problem for Blue Ridge Hot Tubs, what do you 
think is the optimal solution to the problem? Just by looking at the model, what values 
for X1 and X2 do you think would give Howie the largest profit?

Following one line of reasoning, it might seem that Howie should produce as many 
units of X1 (Aqua-Spas) as possible because each of these generates a profit of $350, 
whereas each unit of X2 (Hydro-Luxes) generates a profit of only $300. But what is the 
maximum number of Aqua-Spas that Howie could produce?

Howie can produce the maximum number of units of X1 by making no units of X2 
and devoting all his resources to the production of X1. Suppose we let X2 5 0 in the 
model in equations 2.5 through 2.10 to indicate that no Hydro-Luxes will be produced. 
What then is the largest possible value of X1? If X2 5 0 then the inequality in equation 
2.6 tells us:

 X1 # 200 2.15

So we know that X1 cannot be any greater than 200 if X2 5 0. However, we also have 
to consider the constraints in equations 2.7 and 2.8. If X2 5 0, then the inequality in 
equation 2.7 reduces to:

 9X1 # 1,566 2.16

If we divide both sides of this inequality by 9, we find that the previous constraint is 
equivalent to:

 X1 # 174 2.17

Now consider the constraint in equation 2.8. If X2 5 0, then the inequality in equation 2.8  
reduces to:

 12X1 # 2,880 2.18
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Again, if we divide both sides of this inequality by 12, we find that the previous con-
straint is equivalent to:

X1 # 240 2.19

So, if X2 5 0, the three constraints in our model imposing upper limits on the value 
of X1 reduce to the values shown in equations 2.15, 2.17, and 2.19. The most restrictive 
of these constraints is equation 2.17. Therefore, the maximum number of units of X1

that can be produced is 174. In other words, 174 is the largest value X1 can take on and 
still satisfy all the constraints in the model.

If Howie builds 174 units of X1 (Aqua-Spas) and 0 units of X2 (Hydro-Luxes), he 
will have used all of the labor that is available for production (9X1 5 1,566 if X1 5 174). 
However, he will have 26 pumps remaining (200 2 X1 5 26 if X1 5 174) and 792 feet of 
tubing remaining (2,880 2 12X1 5 792 if X1 5 174). Also, notice that the objective func-
tion value (or total profit) associated with this solution is:

 $350X1 1 $300X2 5 $350 3 174 1 $300 3 0 5 $60,900

From this analysis, we see that the solution X1 5 174, X2 5 0 is a feasible  solution to 
the problem because it satisfies all the constraints of the model. But is it the optimal 
solution? In other words, is there any other possible set of values for X1 and X2 that also 
satisfies all the constraints and results in a higher objective function value? As you will 
see, the intuitive approach to solving LP problems that we have taken here cannot be 
trusted because there actually is a better solution to Howie’s problem.

2.10 Solving LP Problems:  
A Graphical Approach
The constraints of an LP model define the set of feasible solutions—or the  feasible 
region—for the problem. The difficulty in LP is determining which point or points 
in the feasible region correspond to the best possible value of the objective function. 
For simple problems with only two decision variables, it is fairly easy to sketch the 
feasible region for the LP model and locate the optimal feasible point graphically. 
Because the graphical approach can be used only if there are two decision variables, 
it has limited practical use. However, it is an extremely good way to develop a 
basic understanding of the strategy involved in solving LP problems. Therefore, 
we will use the graphical approach to solve the simple problem faced by Blue 
Ridge Hot Tubs. Chapter 3 shows how to solve this and other LP problems using a 
spreadsheet.

To solve an LP problem graphically, you first must plot the constraints for the prob-
lem and identify its feasible region. This is done by plotting the boundary lines of the 
constraints and identifying the points that will satisfy all the constraints. So, how do we 
do this for our example problem (repeated here)?

MAX: 350X1 1 300X2 2.20
Subject to: 1X1 1 1X2 # 200 2.21
 9X1 1 6X2 # 1,566 2.22
 12X1 1 16X2 # 2,880 2.23
 1X1   $ 0 2.24
   1X2 $ 0 2.25
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26 Chapter 2 Introduction to Optimization and Linear Programming

2.10.1 PLOttIng thE FIRst cOnstRaInt
The boundary of the first constraint in our model, which specifies that no more than 
200 pumps can be used, is represented by the straight line defined by the equation:

X1 1 X2 5 200  2.26

If we can find any two points on this line, the entire line can be plotted easily by 
drawing a straight line through these points. If X2 5 0, we can see from equation 2.26 
that X1 5 200. Thus, the point 1X1, X2 2 5 1200, 0 2  must fall on this line. If we let X1 5 0,
from equation 2.26, it is easy to see that X2 5 200. So, the point  1X1, X2 2 5 10, 200 2  must 
also fall on this line. These two points are plotted on the graph in Figure 2.1 and con-
nected to form the straight line representing equation 2.26.

Note that the graph of the line associated with equation 2.26 actually extends beyond 
the X1 and X2 axes shown in Figure 2.1. However, we can disregard the points beyond 
these axes because the values assumed by X1 and X2 cannot be negative (because we 
also have the constraints given by X1 $ 0 and X2 $ 0).

The line connecting the points (0, 200) and (200, 0) in Figure 2.1 identifies the points 
1X1, X2 2  that satisfy the equality X1 1 X2 5 200. But recall that the first  constraint in the 
LP model is the inequality X1 1 X2 # 200. Thus, after plotting the boundary line of a 
constraint, we must determine which area on the graph corresponds to feasible solu-
tions for the original constraint. This can be done easily by picking an arbitrary point 
on either side of the boundary line and checking whether it satisfies the original con-
straint. For example, if we test the point 1X1, X2 2 5 10, 0 2 , we see that this point satisfies 
the first constraint. Therefore, the area of the graph on the same side of the boundary 
line as the point (0, 0) corresponds to the feasible solutions of our first constraint. This 
area of feasible solutions is shaded in Figure 2.1.
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Solving LP Problems: A Graphical Approach  27

2.10.2 PLOttIng thE sEcOnD cOnstRaInt
Some of the feasible solutions to one constraint in an LP model usually will not sat-
isfy one or more of the other constraints in the model. For example, the point 
1X1, X2 2 5 1200, 0 2  satisfies the first constraint in our model, but it does not satisfy the 
second constraint, which requires that no more than 1,566 labor hours be used (because 
9 3 200 1 6 3 0 5 1,800). So, what values for X1 and X2 will simultaneously satisfy 
both of these constraints? To answer this question, we need to plot the  second con-
straint on the graph as well. This is done in the same manner as before—by locating 
two points on the boundary line of the constraint and connecting these points with a 
straight line.

The boundary line for the second constraint in our model is given by:

 9X1 1 6X2 5 1,566 2.27

If X1 5 0 in equation 2.27, then X2 5 1,566/6 5 261. So, the point (0, 261) must 
fall on the line defined by equation 2.27. Similarly, if X2 5 0 in equation 2.27, then 
X1 5 1,566/9 5 174. So, the point (174, 0) must also fall on this line. These two points 
are plotted on the graph and connected with a straight line representing equation 2.27, 
as shown in Figure 2.2.

The line drawn in Figure 2.2 representing equation 2.27 is the boundary line for our 
second constraint. To determine the area on the graph that corresponds to feasible solu-
tions to the second constraint, we again need to test a point on either side of this line to 
see if it is feasible. The point 1X1, X2 2 5 10, 0 2  satisfies 9X1 1 6X2 # 1,566. Therefore, all 
points on the same side of the boundary line satisfy this constraint.
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28 Chapter 2 Introduction to Optimization and Linear Programming

2.10.3 PLOttIng thE thIRD cOnstRaInt
To find the set of values for X1 and X2 that satisfies all the constraints in the model, we 
need to plot the third constraint. This constraint requires that no more than 2,880 feet of 
tubing be used in producing the hot tubs. Again, we will find two points on the graph 
that fall on the boundary line for this constraint and connect them with a straight line.

The boundary line for the third constraint in our model is:

 12X1 1 16X2 5 2,880 2.28

If X1 5 0 in equation 2.28, then X2 5 2,880/16 5 180. So, the point (0, 180) must 
fall on the line defined by equation 2.28. Similarly, if X2 5 0 in equation 2.28, then 
X1 5 2,880/12 5 240. So, the point (240, 0) must also fall on this line. These two points 
are plotted on the graph and connected with a straight line representing equation 2.28, 
as shown in Figure 2.3.

Again, the line drawn in Figure 2.3 representing equation 2.28 is the boundary line 
for our third constraint. To determine the area on the graph that corresponds to feasible 
solutions to this constraint, we need to test a point on either side of this line to see if it is 
feasible. The point 1X1, X2 2 5 10, 0 2  satisfies 12X1 1 16X2 # 2,880. Therefore, all points 
on the same side of the boundary line satisfy this constraint.

2.10.4 thE FEasIbLE REgIOn
It is now easy to see which points satisfy all the constraints in our model. These 
points correspond to the shaded area in Figure 2.3, labeled “Feasible Region.” The 
feasible region is the set of points or values that the decision variables can assume 
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Solving LP Problems: A Graphical Approach  29

and simultaneously satisfy all the constraints in the problem. Take a moment now to 
carefully compare the graphs in Figures 2.1, 2.2, and 2.3. In particular, notice that when 
we added the second constraint in Figure 2.2, some of the feasible solutions associated 
with the first constraint were eliminated because these solutions did not satisfy the sec-
ond constraint. Similarly, when we added the third constraint in Figure 2.3, another 
portion of the feasible solutions for the first constraint was eliminated.

2.10.5 PLOttIng thE ObjEctIvE FunctIOn
Now that we have isolated the set of feasible solutions to our LP problem, we need 
to determine which of these solutions is best. That is, we must determine which 
point in the feasible region will maximize the value of the objective function in our 
model. At first glance, it might seem that trying to locate this point is like searching 
for a needle in a haystack. After all, as shown by the shaded region in Figure 2.3, 
there are an infinite number of feasible solutions to this problem. Fortunately, we can 
easily eliminate most of the feasible solutions in an LP problem from consideration. 
It can be shown that if an LP problem has an optimal solution with a finite objective 
function value, this solution will always occur at a point in the feasible region 
where two or more of the boundary lines of the constraints intersect. These points 
of intersection are sometimes called  corner points or extreme points of the feasible 
region.

To see why the finite optimal solution to an LP problem occurs at an extreme point 
of the feasible region, consider the relationship between the objective function and the 
feasible region of our example LP model. Suppose we are interested in finding the val-
ues of X1 and X2 associated with a given level of profit, such as $35,000. Then, math-
ematically, we are interested in finding the points 1X1, X2 2  for which our objective 
function equals $35,000, or where:

 $350X1 1 $300X2 5 $35,000 2.29

This equation defines a straight line, which we can plot on our graph. Specifically, if 
X1 5 0 then, from equation 2.29, X2 5 116.67. Similarly, if X2 5 0 in equation 2.29, then 
X1 5 100. So, the points 1X1, X2 2 5 10, 116.67 2  and 1X1, X2 2 5 1100, 0 2  both fall on the 
line defining a profit level of $35,000. (Note that all the points on this line produce a 
profit level of $35,000.) This line is shown in Figure 2.4.

Now, suppose we are interested in finding the values of X1 and X2 that produce 
some higher level of profit, such as $52,500. Then, mathematically, we are interested 
in finding the points (X1, X2) for which our objective function equals $52,500, or where:

 $350X1 1 $300X2 5 $52,500 2.30

This equation also defines a straight line, which we could plot on our graph. If we do 
this, we’ll find that the points 1X1, X2 2 5 10, 175 2  and 1X1, X2 2 5 1150, 0 2  both fall on 
this line, as shown in Figure 2.5.

2.10.6 FInDIng thE OPtIMaL sOLutIOn  
usIng LEvEL cuRvEs
The lines in Figure 2.5 representing the two objective function values are sometimes 
referred to as level curves because they represent different levels or values of the objec-
tive. Note that the two level curves in Figure 2.5 are parallel to one another. If we repeat 
this process of drawing lines associated with larger and larger values of our objective 
function, we will continue to observe a series of parallel lines shifting away from the 
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30 Chapter 2 Introduction to Optimization and Linear Programming
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Solving LP Problems: A Graphical Approach  31

origin—that is, away from the point (0, 0). The very last level curve we can draw that 
still intersects the feasible region will determine the maximum profit we can achieve. 
This point of intersection, shown in Figure 2.6, represents the optimal feasible solution 
to the problem.

As shown in Figure 2.6, the optimal solution to our example problem occurs at the 
point where the largest possible level curve intersects the feasible region at a single 
point. This is the feasible point that produces the largest profit for Blue Ridge Hot Tubs. 
But how do we figure out exactly what point this is and how much profit it provides?

If you compare Figure 2.6 to Figure 2.3, you see that the optimal solution occurs 
where the boundary lines of the pump and labor constraints intersect (or are equal). 
Thus, the optimal solution is defined by the point 1X1, X2 2  that simultaneously satisfies 
equations 2.26 and 2.27, which are repeated here:

  X1 1 X2 5 200
  9X1 1 6X2 5 1,566

 From the first equation, we easily conclude that X2 5 200 2 X1. If we substitute this 
definition of X2 into the second equation we obtain:

 9X1 1 6 1200 2 X1 2 5 1,566

Using simple algebra, we can solve this equation to find that X1 5 122. And because 
X2 5 200 2 X1, we can conclude that X2 5 78. Therefore, we have determined that 
the optimal solution to our example problem occurs at the point 1X1, X2 2 5 1122, 78 2 . 
This point satisfies all the constraints in our model and corresponds to the point in  
Figure 2.6 identified as the optimal solution.
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32 Chapter 2 Introduction to Optimization and Linear Programming

The total profit associated with this solution is found by substituting the optimal 
values of X1 5 122 and X2 5 78 into the objective function. Thus, Blue Ridge Hot 
Tubs can realize a profit of $66,100 if it produces 122 Aqua-Spas and 78 Hydro-Luxes 
1$350 3 122 1 $300 3 78 5 $66,100 2 . Any other production plan results in a lower 
total profit. In particular, note that the solution we found earlier using the intuitive 
approach (which produced a total profit of $60,900) is inferior to the optimal solution 
identified here.

2.10.7 FInDIng thE OPtIMaL sOLutIOn  
by EnuMERatIng thE cORnER POInts
Earlier, we indicated that if an LP problem has a finite optimal solution, this solution 
will always occur at some corner point of the feasible region. So, another way of solv-
ing an LP problem is to identify all the corner points, or extreme points, of the fea-
sible region and calculate the value of the objective function at each of these points. 
The corner point with the largest objective function value is the optimal solution to the 
problem.

This approach is illustrated in Figure 2.7, where the X1 and X2 coordinates for each 
of the extreme points are identified along with the associated objective function values. 
As expected, this analysis also indicates that the point 1X1, X2 2 5 1122, 78 2  is optimal.

Enumerating the corner points to identify the optimal solution is often more difficult 
than the level curve approach because it requires that you identify the coordinates for 
all the extreme points of the feasible region. If there are many intersecting constraints, 
the number of extreme points can become rather large, making this procedure very 
tedious. Also, a special condition exists for which this procedure will not work. This 
condition, known as an unbounded solution, is described shortly.
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Solving LP Problems: A Graphical Approach  33

2.10.8 suMMaRy OF gRaPhIcaL sOLutIOn tO LP PRObLEMs
To summarize this section, a two-variable LP problem is solved graphically by per-
forming these steps:

1. Plot the boundary line of each constraint in the model.
2. Identify the feasible region, that is, the set of points on the graph that simultaneously 

satisfies all the constraints.
3. Locate the optimal solution by one of the following methods:

a. Plot one or more level curves for the objective function and determine the 
direction in which parallel shifts in this line produce improved objective 
function values. Shift the level curve in a parallel manner in the improving 
direction until it intersects the feasible region at a single point. Then find the 
coordinates for this point. This is the optimal solution.

b. Identify the coordinates of all the extreme points of the feasible region and 
calculate the objective function values associated with each point. If the feasible 
region is bounded, the point with the best objective function value is the optimal 
solution.

2.10.9 unDERstanDIng hOw thIngs changE
It is important to realize that if changes occur in any of the coefficients in the objective 
function or constraints of this problem, then the level curve, feasible region, and opti-
mal solution to this problem might also change. To be an effective LP modeler, it is 
important for you to develop some intuition about how changes in various coefficients 
in the model will impact the solution to the problem. We will study this in greater detail 
in Chapter 4 when discussing sensitivity analysis. However, the spreadsheet shown 
in Figure 2.8 (and the file named Fig2-8.xlsm that accompanies this book) allows you 

Figure 2.8

Interactive 
spreadsheet for the 
Blue Ridge Hot 
Tubs LP problem 

47412_ch02_ptg01_017-045.indd   33 11/08/16   10:23 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



34 Chapter 2 Introduction to Optimization and Linear Programming

to change any of the coefficients in this problem and instantly see its effect. You are 
encouraged to experiment with this file to make sure you understand the relationships 
between various model coefficients and their impact on this LP problem. (Case 2.1 at 
the end of this chapter asks some specific questions that can be answered using the 
spreadsheet shown in Figure 2.8.)

2.11 Special Conditions in LP Models
Several special conditions can arise in LP modeling: alternate optimal solutions, redundant 
constraints, unbounded solutions, and infeasibility. The first two conditions do not prevent 
you from solving an LP model and are not really problems—just anomalies that some-
times occur. On the other hand, the last two conditions represent real problems that 
prevent us from solving an LP model.

2.11.1 aLtERnatE OPtIMaL sOLutIOns
Some LP models can actually have more than one optimal solution, or alternate 
optimal solutions. That is, there can be more than one feasible point that maximizes (or 
minimizes) the value of the objective function.

For example, suppose Howie can increase the price of Aqua-Spas to the point at 
which each unit sold generates a profit of $450 rather than $350. The revised LP model 
for this problem is:

MAX: 450X1 1 300X2

Subject to: 1X1 1 1X2 # 200
 9X1 1 6X2 # 1,566
 12X1 1 16X2 # 2,880
 1X1   $ 0
   1X2 $ 0

Because none of the constraints changed, the feasible region for this model is the 
same as for the earlier example. The only difference in this model is the objective 
function. Therefore, the level curves for the objective function are different from what 
we observed earlier. Several level curves for this model are plotted with its feasible 
region in Figure 2.9.

Notice that the final level curve in Figure 2.9 intersects the feasible region along an 
edge of the feasible region rather than at a single point. All the points on the line seg-
ment joining the corner point at (122, 78) to the corner point at (174, 0) produce the 
same optimal objective function value of $78,300 for this problem. Thus, all these points 
are alternate optimal solutions to the problem. If we used a computer to solve this prob-
lem, it would identify only one of the corner points of this edge as the optimal solution.

The fact that alternate optimal solutions sometimes occur is really not a problem 
because this anomaly does not prevent us from finding an optimal solution to the prob-
lem. In fact, in Chapter 7, “Goal Programming and Multiple Objective Optimization,” 
you will see that alternate optimal solutions are sometimes very desirable.

2.11.2 REDunDant cOnstRaInts
Redundant constraints present another special condition that sometimes occurs in an 
LP model. A redundant constraint is a constraint that plays no role in determining the 
feasible region of the problem. For example, in the hot tub example, suppose that 225 
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Special Conditions in LP Models 35

hot tub pumps are available instead of 200. The earlier LP model can be modified as 
follows to reflect this change:

MAX: 350X1 1 300X2

Subject to: 1X1 1 1X2 # 225
 9X1 1 6X2 # 1,566
 12X1 1 16X2 # 2,880
 1X1   $ 0
   1X2 $ 0

This model is identical to the original model we formulated for this problem except for 
the new upper limit on the first constraint (representing the number of pumps that can be 
used). The constraints and feasible region for this revised model are shown in Figure 2.10.

Notice that the pump constraint in this model no longer plays any role in defining the 
feasible region of the problem. That is, as long as the tubing constraint and labor constraints 
are satisfied (which is always the case for any feasible solution), then the pump constraint 
will also be satisfied. Therefore, we can remove the pump constraint from the model with-
out changing the feasible region of the problem—the constraint is simply redundant.

The fact that the pump constraint does not play a role in defining the feasible region 
in Figure 2.10 implies that there will always be an excess number of pumps available. 
Because none of the feasible solutions identified in Figure 2.10 fall on the boundary 
line of the pump constraint, this constraint will always be satisfied as a strict inequality 
11X1 1 1X2 , 225 2  and never as a strict equality 11X1 1 1X2 5 225 2 .

Again, redundant constraints are not really a problem. They do not prevent us (or 
the computer) from finding the optimal solution to an LP problem. However, they 
do represent “excess baggage” for the computer; so if you know that a constraint is 
redundant, eliminating it saves the computer this excess work. On the other hand, if 
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36 Chapter 2 Introduction to Optimization and Linear Programming

the model you are working with will be modified and used repeatedly, it might be best 
to leave any redundant constraints in the model because they might not be redundant 
in the future. For example, from Figure 2.3, we know that if the availability of pumps is 
returned to 200, then the pump constraint again plays an important role in defining the 
feasible region (and optimal solution) of the problem.

2.11.3 unbOunDED sOLutIOns
When attempting to solve some LP problems, you might encounter situations in which 
the objective function can be made infinitely large (in the case of a maximization prob-
lem) or infinitely small (in the case of a minimization problem). As an example, con-
sider this LP problem:

MAX: X1 1 X2

Subject to: X1 1 X2 $ 400
 2X1 1 2X2 # 400
 X1   $ 0

  X2 $ 0

The feasible region and some level curves for this problem are shown in Figure 2.11. 
From this graph, you can see that as the level curves shift farther and farther away from 
the origin, the objective function increases. Because the feasible region is not bounded 
in this direction, you can continue shifting the level curve by an infinite amount and 
make the objective function infinitely large.

Although it is not unusual to encounter an unbounded solution when solv-
ing an LP model, such a solution indicates that there is something wrong with the 
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formulation—for example, one or more constraints were omitted from the formulation, 
or a less than constraint was erroneously entered as a greater than constraint. 

While describing how to find the optimal solution to an LP model by enumerating 
corner points, we noted that this procedure will not always work if the feasible region 
for the problem is unbounded. Figure 2.11 provides an example of such a situation. The 
only extreme points for the feasible region in Figure 2.11 occur at the points (400, 0) and 
(133.3, 266.6). The objective function value at both of these points (and at any point on 
the line segment joining them) is 400. By enumerating the extreme points for this prob-
lem, we might erroneously conclude that alternate optimal solutions to this problem 
exist that produce an optimal objective function value of 400. This is true if the problem 
involved minimizing the objective function. However, the goal here is to maximize the 
objective function value, which, as we have seen, can be done without limit. So, when 
trying to solve an LP problem by enumerating the extreme points of an unbounded fea-
sible region, you must also check whether or not the objective function is unbounded.

2.11.4 InFEasIbILIty
An LP problem is infeasible if there is no way to satisfy all the constraints in the prob-
lem simultaneously. As an example, consider the LP model:

MAX:  X1 1 X2 
Subject to: X1 1 X2 # 150

X1 1 X2 $ 200
X1   $ 0

   X2 $ 0
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38 Chapter 2 Introduction to Optimization and Linear Programming

The feasible solutions for the first two constraints in this model are shown in 
Figure 2.12. Notice that the feasible solutions to the first constraint fall on the left side 
of its boundary line, whereas the feasible solutions to the second constraint fall on the 
right side of its boundary line. Therefore, no possible values for X1 and X2 exist that 
simultaneously satisfy both constraints in the model. In such a case, there are no feasi-
ble solutions to the problem.

Infeasibility can occur in LP problems, perhaps due to an error in the formulation of 
the model—such as unintentionally making a less than or equal to constraint a greater 
than or equal to constraint. Or there just might not be a way to satisfy all the constraints 
in the model. In this case, constraints will have to be eliminated or loosened in order to 
obtain a feasible region (and feasible solution) for the problem.

Loosening constraints involves increasing the upper limits (or reducing the lower 
limits) to expand the range of feasible solutions. For example, if we loosen the first 
constraint in the previous model by changing the upper limit from 150 to 250, there is 
a feasible region for the problem. Of course, loosening constraints should not be done 
arbitrarily. In a real model, the value 150 would represent some actual characteristic of 
the decision problem (such as the number of pumps available to make hot tubs). We 
obviously cannot change this value to 250 unless it is appropriate to do so—that is, 
unless we know another 100 pumps can be obtained.

2.12 Summary
This chapter provided an introduction to an area of business analytics known as 
mathematical programming (MP), or optimization. Optimization covers a broad 
range of problems that share a common goal—determining the values for the decision 
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variables in a problem that will maximize (or minimize) some objective function while 
satisfying various constraints. Constraints impose restrictions on the values that can be 
assumed by the decision variables and define the set of feasible options (or the feasible 
region) for the problem.

Linear programming (LP) problems represent a special category of MP problems in 
which the objective function and all the constraints can be expressed as linear com-
binations of the decision variables. Simple, two-variable LP problems can be solved 
graphically by identifying the feasible region and plotting level curves for the objective 
function. An optimal solution to an LP problem always occurs at a corner point of its 
feasible region (unless the objective function is unbounded).

Some anomalies can occur in optimization problems including alternate optimal 
solutions, redundant constraints, unbounded solutions, and infeasibility.
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Questions and Problems
1. An LP model can have more than one optimal solution. Is it possible for an LP 

model to have exactly two optimal solutions? Why or why not?
2. In the solution to the Blue Ridge Hot Tubs problem, the optimal values for X1 and 

X2 turned out to be integers (whole numbers). Is this a general property of the solu-
tions to LP problems? In other words, will the solution to an LP problem always 
consist of integers? Why or why not?

3. To determine the feasible region associated with less than or equal to constraints or 
greater than or equal to constraints, we graphed these constraints as if they were 
equal to constraints. Why is this possible?

4. Are the following objective functions for an LP model equivalent? That is, if they 
are both used, one at a time, to solve a problem with exactly the same constraints, 
will the optimal values for X1 and X2 be the same in both cases? Why or why not?

MAX: 2X1 1 3X2

MIN: – 2X1 2 3X2

5. Which of the following constraints are not linear or cannot be included as a con-
straint in a linear programming problem?

a. 2X1 1 X2 2 3X3 $ 50

b. 2X1 1 "X2 $ 60

c. 4X1 2
1
3

X2 5 75

d. 
3X1 1 2X2 2 3X3

X1 1 X2 1 X3
# 0.9

e. 3X2
1 1 7X2 # 45
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40 Chapter 2 Introduction to Optimization and Linear Programming

6. Solve the following LP problem graphically by enumerating the corner points.

MAX: 3X1 1 4X2

Subject to: X1  # 12
   X2 # 10
 4X1 1 6X2 # 72
   X1, X2 $ 0

 7. Solve the following LP problem graphically using level curves.

MAX: 2X1 1 5X2

Subject to: 6X1 1 5X2 # 60
 2X1 1 3X2 # 24
 3X1 1 6X2 # 48
   X1, X2 $ 0

 8. Solve the following LP problem graphically by enumerating the corner points.

MIN: 5X1 1 20X2

Subject to:  X1 1 X2 $ 12
 2X1 1 5X2 $ 40
 X1 1 X2 # 15
   X1, X2 $ 0

 9. Consider the following LP problem.

MAX: 3X1 1 2X2

Subject to: 3X1 1 3X2 # 300
 6X1 1 3X2 # 480
 3X1 1 3X2 # 480
   X1, X2 $ 0

a. Sketch the feasible region for this model.
b. What is the optimal solution?
c. Identify any redundant constraints in this model.

 10. Solve the following LP problem graphically using level curves.

MIN: 2X1 1 3X2

Subject to: 2X1 1 1X2 $ 3
 4X1 1 5X2 $ 20
 2X1 1 8X2 $ 16
 5X1 1 6X2 # 60
   X1, X2 $ 0

 11. Solve the following LP problem using level curves.

MAX: 4X1 1 5X2

Subject to: 2X1 1 3X2 # 120
 4X1 1 3X2 # 140
 X1 1 X2 $ 80
   X1, X2 $ 0
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12. Solve the following LP problem graphically by enumerating the corner points.

MAX: 10X1 1 12X2

Subject to: 8X1 1 6X2 # 98
 6X1 1 8X2 # 98
 X1 1 X2 $ 14
   X1, X2 $ 0

 13. Bibbins Manufacturing produces softball and baseballs for youth recreation leagues. 
Each softball costs $11 to produce and sells for $17 while each baseball costs $10.50 
and sells for $15. The material and labor required to produce each item is listed here 
along with the availability of each resource.

Amount required Per Amount

resource Softball Baseball Available

Leather 5 oz 4 oz 6,000 oz
Nylon 6 yds 3 yds 5,400 yds
Core 4 oz 2 oz 4,000 oz
Labor 2.5 min 2 min 3,500 min
Stitching 1 min 1 min 1,500 min

a. Formulate an LP model for this problem.
b. Sketch the feasible region.
c. What is the optimal solution?

 14. Oakton Manufacturing makes two types of rocking chairs specifically designed for 
men and women known as the His and Hers models. Each chair requires four legs 
and two rockers but differing numbers of wooden dowels. Each His chair requires 
four short dowels and eight long dowels while each Hers chair requires eight short 
dowels and four long dowels. Each His chair contributes $10 in profit while each 
Hers chair contributes $12. The company has 900 legs, 400 rockers, 1200 short dow-
els, and 1056 long dowels available. The company wants to maximize its profit 
while also ensuring that it makes at least half as many His chairs as Hers chairs.
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this problem.
c. Find the optimal solution.

 15. The Gourmet Grill Company manufactures and sells two different types of grills: 
propane and electric. Each propane grill sells for $320 and costs $220 to manufac-
ture. Each electric grill sells for $260 and costs $180 to manufacture. Each grill goes 
through four operations in the manufacturing process. The hours required by each 
type of grill in each of these manufacturing processes is summarized as follows:

Hours required per unit

Manufacturing Process Propane electric

Machine Press 2 1
Fabrication 4 5
Assembly 2 3
Testing 1 1

  In the next production cycle there are 2,400 hours of machine press time avail-
able, 6,000 hours of fabrication, 3,300 hours of assembly, and 1,500 hours of testing 

   Questions and Problems 41
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42 Chapter 2 Introduction to Optimization and Linear Programming

capacity. Assume Gourmet Grill can sell everything they make and would like to 
determine the production plan that would maximize profit.
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this problem.
c. Determine the optimal solution to this problem using level curves.

16. The Electrotech Corporation manufactures two industrial-sized electrical devices: 
generators and alternators. Both of these products require wiring and testing during 
the assembly process. Each generator requires 2 hours of wiring and 1 hour of test-
ing and can be sold for a $250 profit. Each alternator requires 3 hours of wiring and 
2 hours of testing and can be sold for a $150 profit. There are 260 hours of wiring 
time and 140 hours of testing time available in the next production period and Elec-
trotech wants to maximize profit.
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this problem.
c. Determine the optimal solution to this problem using level curves.

17. Refer to the previous question. Suppose that Electrotech’s management decides that 
they need to make at least 20 generators and at least 20 alternators.
a. Reformulate your LP model to account for this change.
b. Sketch the feasible region for this problem.
c. Determine the optimal solution to this problem by enumerating the corner points.
d. Suppose that Electrotech can acquire additional wiring time at a very favorable 

cost. Should it do so? Why or why not?
18. Bill’s Grill is a popular college restaurant that is famous for its hamburgers. The 

owner of the restaurant, Bill, mixes fresh ground beef and pork with a secret ingre-
dient to make delicious quarter-pound hamburgers that are advertised as having 
no more than 25% fat. Bill can buy beef containing 80% meat and 20% fat at $0.85 
per pound. He can buy pork containing 70% meat and 30% fat at $0.65 per pound. 
Bill wants to determine the minimum cost way to blend the beef and pork to make 
hamburgers that have no more than 25% fat.
a. Formulate an LP model for this problem. (Hint: The decision variables for this 

problem represent the percentage of beef and the percentage of pork to combine.)
b. Sketch the feasible region for this problem.
c. Determine the optimal solution to this problem by enumerating the corner 

points.
19. American Auto is evaluating their marketing plan for the sedans, SUVs, and trucks 

they produce. A TV ad featuring this SUV has been developed. The company 
estimates each showing of this commercial will cost $500,000 and increase sales of 
SUVs by 3% but reduce sales of trucks by 1% and have no effect of the sales of 
sedans. The company also has a print ad campaign developed that it can run in 
various nationally distributed magazines at a cost of $750,000 per title. It is esti-
mated that each magazine title the ad runs in will increase the sales of sedans, 
SUVs, and trucks by 2%, 1%, and 4%, respectively. The company desires to increase 
sales of sedans, SUVs, and trucks by at least 3%, 14%, and 4%, respectively, in the 
least costly manner. 
a. Formulate an LP model for this problem
b. Sketch the feasible region.
c. What is the optimal solution?

20. The marketing manager for Mountain Mist soda needs to decide how many TV 
spots and magazine ads to run during the next quarter. Each TV spot costs $5,000 
and is expected to increase sales by 300,000 cans. Each magazine ad costs $2,000 
and is expected to increase sales by 500,000 cans. A total of $100,000 may be spent 

47412_ch02_ptg01_017-045.indd   42 11/08/16   10:23 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



on TV and magazine ads; however, Mountain Mist wants to spend no more than 
$70,000 on TV spots and no more than $50,000 on magazine ads. Mountain Mist 
earns a profit of $0.05 on each can it sells.
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this model.
c. Find the optimal solution to the problem using level curves.

21. Blacktop Refining extracts minerals from ore mined at two different sites in  Montana. 
Each ton of ore type 1 contains 20% copper, 20% zinc, and 15%  magnesium. Each 
ton of ore type 2 contains 30% copper, 25% zinc, and 10% magnesium. Ore type 1 
costs $90 per ton while ore type 2 costs $120 per ton. Blacktop would like to buy 
enough ore to extract at least 8 tons of copper, 6 tons of zinc, and 5 tons of magne-
sium in the least costly manner.
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this problem.
c. Find the optimal solution.

22. Zippy motorcycle manufacturing produces two popular pocket bikes (miniature 
motorcycles with 49cc engines): the Razor and the Zoomer. In the coming week the 
manufacturer wants to produce up to 700 bikes and wants to ensure the number of 
Razors produced does not exceed the number of Zoomer by more than 300. Each 
Razor produced and sold results in a profit of $70 while each Zoomer results in a 
profit of $40. The bikes are identical mechanically and only differ in the appear-
ance of the polymer-based trim around the fuel tank and seat. Each Razor’s trim 
requires 2 pounds of polymer and 3 hours of production time while each Zoomer 
requires 1 pound of polymer and 4 hours of production time. Assume that 900 
pounds of polymer and 2,400 labor hours are available for production of these items 
in the coming week.
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this problem.
c. What is the optimal solution?

23. The Quality Desk Company makes two types of computer desks from laminated 
particle board. The Presidential model requires 30 square feet of particle board, 1 
keyboard sliding mechanism, 5 hours of labor to fabricate, and sells for $149. The 
Senator model requires 24 square feet of particle board, 1 keyboard sliding mecha-
nism, 3 hours of labor to fabricate, and sells for $135. In the coming week the com-
pany can buy up to 15,000 square feet of particle board at a price of $1.35 per square 
foot and up to 600 keyboard sliding mechanisms at a cost of $4.75 each. The com-
pany view manufacturing labor as a fixed cost and has 3,000 labor hours available 
in the coming week for the fabrication of these desks. 
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this problem.
c. What is the optimal solution?

24. A farmer in Georgia has a 100-acre farm on which to plant watermelons and can-
taloupes. Every acre planted with watermelons requires 50 gallons of water per 
day and must be prepared for planting with 20 pounds of fertilizer. Every acre 
planted with cantaloupes requires 75 gallons of water per day and must be pre-
pared for planting with 15 pounds of fertilizer. The farmer estimates that it will take 
2 hours of labor to harvest each acre planted with watermelons and 2.5 hours to 
harvest each acre planted with cantaloupes. He believes that watermelons will sell 
for about $3 each, and cantaloupes will sell for about $1 each. Every acre planted 
with watermelons is expected to yield 90 salable units. Every acre planted with can-
taloupes is expected to yield 300 salable units. The farmer can pump about 6,000 
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44 Chapter 2 Introduction to Optimization and Linear Programming

gallons of water per day for irrigation purposes from a shallow well. He can buy as 
much fertilizer as he needs at a cost of $10 per 50-pound bag. Finally, the farmer can 
hire laborers to harvest the fields at a rate of $5 per hour. If the farmer sells all the 
watermelons and cantaloupes he produces, how many acres of each crop should 
the farmer plant in order to maximize profits?
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this model.
c. Find the optimal solution to the problem using level curves.

25. Sanderson Manufacturing produces ornate, decorative wood frame doors and win-
dows. Each item produced goes through three manufacturing processes: cutting, 
sanding, and finishing. Each door produced requires 1 hour in cutting, 30 minutes 
in sanding, and 30 minutes in finishing. Each window requires 30 minutes in cut-
ting, 45 minutes in sanding, and 1 hour in finishing. In the coming week Sander-
son has 40 hours of cutting capacity available, 40 hours of sanding capacity, and 60 
hours of finishing capacity. Assume all doors produced can be sold for a profit of 
$500 and all windows can be sold for a profit of $400.
a. Formulate an LP model for this problem
b. Sketch the feasible region.
c. What is the optimal solution?

26. PC-Express is a computer retail store that sells desktops and laptops. The company 
earns $600 on each desktop computer it sells and $900 on each laptop. The comput-
ers PC-Express sells are actually manufactured by another company. This manufac-
turer has a special order to fill for another customer and cannot ship more than 80 
desktops and 75 laptops to PC-Express next month. The employees at PC-Express 
must spend about 2 hours installing software and checking each desktop computer 
they sell. They spend roughly 3 hours to complete this process for laptop comput-
ers. They expect to have about 300 hours available for this purpose during the next 
month. The store’s management is fairly certain that they can sell all the computers 
they order, but are unsure how many desktops and laptops they should order to 
maximize profits.
a. Formulate an LP model for this problem.
b. Sketch the feasible region for this model.
c. Find the optimal solution to the problem by enumerating the corner points.

For The Lines They Are A-Changin’  
(with apologies to Bob Dylan)
The owner of Blue Ridge Hot Tubs, Howie Jones, has asked for your assistance analyz-
ing how the feasible region and solution to his production problem might change in 
response to changes in various parameters in the LP model. He is hoping this might 
further his understanding of LP and how the constraints, objective function and opti-
mal solution interrelate. To assist in this process, he asked a consulting firm to develop 
the spreadsheet shown earlier in Figure 2.8 (and the file Fig2-8.xlsm that accompanies 
this book) that dynamically updates the feasible region and optimal solution as the 
various parameters in the model change. Unfortunately, Howie has not had much time 
to play around with this spreadsheet, so he has left it in your hands and asked you 
to use it to answer the following questions. Click the Reset button in file Fig2-8.xlsm 
before answering each of the following questions.

CASe 2.1
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Case 2.1 45

1. In the optimal solution to this problem, how many pumps, hours of labor, and feet 
of tubing are being used?

2. If the company could increase the number of pumps available, should they? Why or 
why not? And if so, what is the maximum number of additional pumps they should 
consider acquiring and by how much would this increase profit?

3. If the company could acquire more labor hours, should they? Why or why not? If 
so, how much additional labor should they consider acquiring and by how much 
would this increase profit?

4. If the company could acquire more tubing, should they? Why or why not? If so, 
how much additional tubing should they consider acquiring and how much would 
this increase profit?

5. By how much would profit increase if the company could reduce the labor required 
to produce Aqua-Spas from 9 to 8 hours? From 8 to 7 hours? From 7 to 6 hours? 

6. By how much would profit increase if the company could reduce the labor required 
to produce Hydro-Luxes from 6 to 5 hours? From 5 to 4 hours? From 4 to 3 hours? 

7. How much would the optimal profit change if the company increased the amount 
of tubing required to produce Aqua- Spas from 12 to 13 feet? From 13 to 14 feet? 
From 14 to 15 feet? 

8. How much would the optimal profit change if the company increased the amount 
of tubing required to produce Hydro- Luxes from 16 to 17 feet? From 17 to 18 feet? 
From 18 to 19 feet? 

9. By how much would the unit profit on Aqua-Spas have to change before the opti-
mal product mix changes?

10. By how much would the unit profit on Hydro-Luxes have to change before the opti-
mal product mix changes?

I m p o r t a n t  s o f t w a r e  n o t e
The file Fig2-8.xlsm contains a macro that must be enabled for the workbook 
to operate correctly. To allow this (and other) macros to run in Excel click: File, 
Options, Trust Center, Trust Center Settings, Macro Settings, select “Disbable all 
macros with notification”, and click OK twice. Now when Excel opens a work-
book containing macros it should display a security message indicating some 
active content has been disabled and will give you the opportunity to enable this 
content, which you should do for the Excel files accompanying this book.
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Chapter 3
Modeling and Solving LP  
Problems in a Spreadsheet

3.0 Introduction
Chapter 2 discussed how to formulate linear programming (LP) problems and how to 
solve simple, two-variable LP problems graphically. As you might expect, very few 
real-world LP problems involve only two decision variables. So, the graphical solution 
approach is of limited value in solving LP problems. However, the discussion of two-
variable problems provides a basis for understanding the issues involved in all LP 
problems and the general strategies for solving them.

For example, every solvable LP problem has a feasible region, and an optimal 
solution to the problem can be found at some extreme point of this region (assuming 
the problem is not unbounded). This is true of all LP problems regardless of the number 
of decision variables. Although it is fairly easy to graph the feasible region for a two-
variable LP problem, it is difficult to visualize or graph the feasible region of an LP 
problem with three variables because such a graph is three-dimensional. If there are 
more than three variables, it is virtually impossible to visualize or graph the feasible 
region for an LP problem because such a graph involves more than three dimensions.

Fortunately, several mathematical techniques exist to solve LP problems involving 
almost any number of variables without visualizing or graphing their feasible regions. 
These techniques are now built into spreadsheet packages in a way that makes solving 
LP problems a fairly simple task. So, using the appropriate computer software, you 
can solve almost any LP problem easily. The main challenge is ensuring that you 
formulate the LP problem correctly and communicate this formulation to the computer 
accurately. This chapter shows you how to do this using spreadsheets.

3.1 Spreadsheet Solvers
The importance of LP (and optimization in general) is underscored by the fact that all 
major spreadsheet packages come with built-in spreadsheet optimization tools called 
solvers. This book uses Excel to illustrate how spreadsheet solvers can solve optimization 
problems. However, the same concepts and techniques presented here apply to other 
spreadsheet packages, although certain details of implementation may differ.

You can also solve optimization problems without using a spreadsheet by using 
a specialized mathematical programming package. A partial list of these packages 
includes: LINDO, CPLEX, GUROBI Optimizer, and Xpress-MP. Typically, researchers 
and businesses use these packages to solve extremely large problems that do not fit 
conveniently in a spreadsheet.
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The Steps in Implementing an LP Model in a Spreadsheet 47

3.2 Solving LP Problems  
in a Spreadsheet
We will demonstrate the mechanics of using Solver in Excel by solving the problem 
faced by Howie Jones, described in chapter 2. Recall that Howie owns and operates 
Blue Ridge Hot Tubs, a company that sells two models of hot tubs: the Aqua-Spa and 
the Hydro-Lux. Howie purchases prefabricated fiberglass hot tub shells and installs a 
common water pump and the appropriate amount of tubing into each hot tub. Every 
Aqua-Spa requires 9 hours of labor and 12 feet of tubing; every Hydro-Lux requires 
6 hours of labor and 16 feet of tubing. Demand for these products is such that each 
Aqua-Spa produced can be sold to generate a profit of $350, and each Hydro-Lux 
produced can be sold to generate a profit of $300. The company expects to have 
200 pumps, 1,566 hours of labor, and 2,880 feet of tubing available during the next 
production cycle. The problem is to determine the optimal number of Aqua-Spas and 
Hydro-Luxes to produce in order to maximize profits.

Chapter 2 developed the following LP formulation for the problem Howie faces. In 
this model, X1 represents the number of Aqua-Spas to be produced, and X2 represents 
the number of Hydro-Luxes to be produced.

MAX:  350X1 1 300X2 } pro�t
Subject to:  1X1 1 1X2 # 200 } pump constraint
 9X1 1 6X2 # 1,566 } labor constraint
 12X1 1 16X2 # 2,880 } tubing constraint

1X1 $ 0 } simple lower bound
1X2 $ 0 } simple lower bound

So, how do you solve this problem in a spreadsheet? First, you must implement, or 
build, this model in the spreadsheet.

3.3 The Steps in Implementing an LP 
Model in a Spreadsheet
The following four steps summarize what must be done to implement any LP problem 
in a spreadsheet. 

1. Organize the data for the model on the spreadsheet. The data for the model 
consist of the coefficients in the objective function, the various coefficients in the 

T h e  S p r e a d s h e e t  S o l v e r  C o m p a n y
Frontline Systems, Inc. created the solvers in Microsoft Excel, Lotus 1-2-3, and 
Corel Quattro Pro. Frontline markets enhanced versions of these solvers and other 
analytical tools for spreadsheets, including the Analytic Solver Platform product 
that will be featured throughout this book. You can find out more about Frontline 
Systems and their products by visiting their website at http://www.solver.com.
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48 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

constraints, and the right-hand-side (RHS) values for the constraints. There is usu-
ally more than one way to organize the data for a particular problem on a spread-
sheet, but you should keep in mind some general guidelines. First, the goal is to 
organize the data so their purpose and meaning are as clear as possible. Think of 
your spreadsheet as a management report that needs to communicate clearly the 
important factors of the problem being solved. To this end, you should spend some 
time organizing the data for the problem in your mind’s eye—visualizing how the 
data can be laid out logically—before you start typing values in the spreadsheet. 
Descriptive labels should be placed in the spreadsheet to clearly identify the vari-
ous data elements. Often, row and column structures of the data in the model can 
be used in the spreadsheet to facilitate model implementation. (Note that some or 
all of the coefficients and values for an LP model might be calculated from other 
data, often referred to as the primary data. It is best to maintain primary data in the 
spreadsheet and use appropriate formulas to calculate the coefficients and values 
that are needed for the LP formulation. Then, if the primary data change, appropri-
ate changes will be made automatically in the coefficients for the LP model.)

2. Reserve separate cells in the spreadsheet to represent each decision variable in 
the algebraic model. Although you can use any empty cells in a spreadsheet to rep-
resent the decision variables, it is usually best to arrange the cells representing the 
decision variables in a way that parallels the structure of the data. This is often help-
ful in setting up formulas for the objective function and constraints. When possible, 
it is also a good idea to keep the cells representing decision variables in the same 
area of the spreadsheet. In addition, you should use descriptive labels to clearly 
identify the meaning of these cells. 

3. Create a formula in a cell in the spreadsheet that corresponds to the objective 
function in the algebraic model. The spreadsheet formula corresponding to the 
objective function is created by referring to the data cells where the objective func-
tion coefficients have been entered (or calculated) and to the corresponding cells 
representing the decision variables. 

4. For each constraint, create a formula in a separate cell in the spreadsheet that 
corresponds to the left-hand-side (LHS) of the constraint. The formula corre-
sponding to the LHS of each constraint is created by referring to the data cells 
where the coefficients for these constraints have been entered (or calculated) and 
to the appropriate decision variable cells. Many of the constraint formulas have a 
similar structure. Thus, when possible, you should create constraint formulas that 
can be copied to implement other  constraint formulas. This not only reduces the 
effort required to implement a model, but also helps avoid hard-to-detect typing 
errors.

Although each of the previous steps must be performed to implement an LP model 
in a spreadsheet, they do not have to be performed in the order indicated. It is usually 
wise to perform step 1 first, followed by step 2. But the order in which steps 3 and 4 are 
performed often varies from problem to problem. 

Also, it is often wise to use shading, background colors, and/or borders to identify 
the cells representing decision variables, constraints, and the objective function in 
a model. This allows the user of a spreadsheet to more readily distinguish between 
cells representing raw data (that can be changed) and other elements of the model. We 
have more to say about how to design and implement effective spreadsheet models 
for LP problems. But first, let’s see how the previous steps can be used to implement a 
spreadsheet model using our example problem.
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A Spreadsheet Model for the Blue Ridge Hot Tubs Problem  49

3.4 A Spreadsheet Model for  
the Blue Ridge Hot Tubs Problem
One possible spreadsheet representation for our example problem is given in Figure 3.1 
(and in the file named Fig3-1.xlsm that accompanies this book). Let’s walk through 
the creation of this model step-by-step so you can see how it relates to the algebraic 
formulation of the model.

X1

X2

LHS of 1st Constraint 5
B9 3 B5 1 C9 3 C5

LHS of 2nd Constraint 5
B10 3 B5 1 C10 3 C5

LHS of 3rd Constraint 5
B11 3 B5 1 C11 3 C5

Objective Function 5
B6 3 B5 1 C6 3 C5

Figure 3.1 A spreadsheet model for the Blue Ridge Hot Tub production problem

A  N o t e  a b o u t  M a c r o s
In most of the spreadsheet examples accompanying this book, you can click the 
blue title bars at the top of the spreadsheet to toggle on and off a note that provides 
additional documentation about the spreadsheet model. This documentation 
feature is enabled through the use of macros. To enable this (and other) macros 
to run in Excel click: File, Options, Trust Center, Trust Center Settings, Macro 
Settings; select “Disable all macros with notification”; click OK; and then click 
OK again. If you then open a file containing macros, Excel displays a security 
warning indicating some active content has been disabled and should give you 
the opportunity to enable this content, which you should do to make use of the 
macro features in the spreadsheet files accompanying this book.
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3.4.1 OrgANiziNg The DATA
One of the first steps in building any spreadsheet model for an LP problem is to organize 
the data for the model on the spreadsheet. In Figure 3.1, we enter the data for the unit 
profits for Aqua-Spas and Hydro-Luxes in cells B6 and C6, respectively. Next, the 
numbers of pumps, labor hours, and feet of tubing required to  produce each type of hot 
tub are entered in cells B9 through C11. The values in cells B9 and C9 indicate that one 
pump is required to produce each type of hot tub. The values in cells B10 and C10 show 
that each Aqua-Spa produced requires 9 hours of labor, and each Hydro-Lux requires 
6 hours. Cells B11 and C11 indicate that each Aqua-Spa produced requires 12 feet of 
tubing, and each Hydro-Lux requires 16 feet. The available number of pumps, labor 
hours, and feet of tubing are entered in cells E9 through E11. Notice that appropriate 
labels are also entered to identify all the data elements for the problem.

3.4.2 repreSeNTiNg The DeCiSiON VAriAbleS
As indicated in Figure 3.1, cells B5 and C5 represent the decision variables X1 and X2

in our algebraic model. These cells are shaded and outlined with dashed borders to 
distinguish them visually from other elements of the model. Values of zero were placed 
in cells B5 and C5 because we do not know how many Aqua-Spas and Hydro-Luxes 
should be produced. Shortly, we will use Solver to determine the optimal values for 
these cells. Figure 3.2 summarizes the relationship between the decision variables in 
the algebraic model and the corresponding cells in the spreadsheet.

3.4.3 repreSeNTiNg The ObjeCTiVe FuNCTiON
The next step in implementing our LP problem is to create a formula in a cell of the 
spreadsheet to represent the objective function. We can accomplish this in many ways. 
Because the objective function is 350X1 1 300X2, you might be tempted to enter the 
formula 5 350*B5 1 300*C5 in the spreadsheet. However, if you wanted to change the 
coefficients in the objective function, you would have to go back and edit this formula 
to reflect the changes. Because the objective function coefficients are entered in cells B6 
and C6, a better way of implementing the objective function is to refer to the values in 
cells B6 and C6 rather than entering numeric constants in the formula. The formula for 
the objective function is entered in cell D6 as:

 Formula for cell D6:           5B6*B5 1 C6*C5

As shown previously in Figure 3.1, cell D6 initially returns the value 0 because cells 
B5 and C5 both contain zeros. Figure 3.3 summarizes the relationship between the 
algebraic objective function and the formula entered in cell D6. By implementing the 
objective function in this manner, if the profits earned on the hot tubs ever change, the 
spreadsheet model can be changed easily and the problem can be re-solved to determine 
the impact of this change on the optimal solution. Note that cell D6 has been shaded 
and outlined with a double border to distinguish it from other elements of the model.

Decision variables: X1 X2

Spreadsheet cells: B5 C5

Figure 3.2

Summary of 
the relationship 
between the 
decision variables 
and corresponding 
spreadsheet cells
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A Spreadsheet Model for the Blue Ridge Hot Tubs Problem  51

3.4.4 repreSeNTiNg The CONSTrAiNTS 
The next step in building the spreadsheet model involves implementing the constraints 
of the LP model. Earlier we said that for each constraint in the algebraic model, you 
must create a formula in a cell of the spreadsheet that corresponds to the LHS of the 
constraint. The LHS of each constraint in our model is:

# 200

# 1,566

# 2,880

LHS of the pump constraint

 1X1 1 1X2 

LHS of the labor constraint

 9X1 1 6X2 

LHS of the tubing constraint

 12X1 1 16X2

We need to set up three cells in the spreadsheet to represent the LHS formulas of 
the three constraints. Again, this is done by referring to the data cells containing the 
coefficients for these constraints and to the cells representing the decision variables. 
The LHS of the first constraint is entered in cell D9 as:

Formula for cell D9:      5B9*B5 1 C9*C5

Similarly, the LHS of the second and third constraints are entered in cells D10 and 
D11 as:

Formula for cell D10:  5B10*B5 1 C10*C5
Formula for cell D11:  5B11*B5 1 C11*C5

These formulas calculate the number of pumps, hours of labor, and feet of tubing 
required to manufacture the number of hot tubs represented in cells B5 and C5. Note 
that cells D9 through D11 were shaded and outlined with solid borders to distinguish 
them from the other elements of the model. 

Figure 3.4 summarizes the relationship between the LHS formulas of the constraints 
in the algebraic formulation of our model and their spreadsheet representations.

We know that Blue Ridge Hot Tubs has 200 pumps, 1,566 labor hours, and 2,880 feet 
of tubing available during its next production run. In our algebraic  formulation of the 
LP model, these values represent the RHS values for the three constraints. Therefore, 
we entered the available number of pumps, hours of labor, and feet of tubing in cells 
E9, E10, and E11, respectively. These terms indicate the upper limits on the values cells 
D9, D10, and D11 can assume. 

3.4.5 repreSeNTiNg The bOuNDS ON The DeCiSiON VAriAbleS
Now, what about the simple lower bounds on our decision variables represented by 
X1 $ 0 and X2 $ 0? These conditions are quite common in LP problems and are referred 

Algebraic objective: 350 X1 1 300 X2

Formula in cell D6: 5 B6*B5 1 C6*C5

Figure 3.3

Summary of 
the relationship 
between the 
decision variables 
and corresponding 
spreadsheet cells
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to as nonnegativity conditions because they indicate that the decision variables can 
assume only nonnegative values. These conditions might seem like constraints and 
can, in fact, be implemented like the other constraints. However, Solver allows you to 
specify simple upper and lower bounds for the decision variables by referring directly 
to the cells representing the decision variables. Thus, at this point, we have taken no 
specific action to implement these bounds in our spreadsheet.

3.5 How Solver Views the Model
After implementing our model in the spreadsheet, we can use Solver to find the optimal 
solution to the problem. But first, we need to define the following three components of 
our spreadsheet model for Solver:

1. Objective cell. The cell in the spreadsheet that represents the objective function in the 
model (and whether its value should be maximized or minimized).

2. Variable cells. The cells in the spreadsheet that represent the decision variables in the 
model (and any upper and lower bounds that apply to these cells).

3. Constraint cells. The cells in the spreadsheet that represent the LHS formulas of the con-
straints in the model (and any upper and lower bounds that apply to these formulas).

These components correspond directly to the cells in the spreadsheet we established 
when implementing the LP model. For example, in the spreadsheet for our example 
problem, the objective cell is represented by cell D6, the variable cells are represented 
by cells B5 and C5, and the constraint cells are represented by cells D9, D10, and D11. 
Figure 3.5 shows these relationships. Figure 3.5 also shows a cell note documenting the 
purpose of cell D6. Cell notes can be a very effective way of describing details about the 
purpose or meaning of various cells in a model.

By comparing Figure 3.1 with Figure 3.5, you can see the direct connection between 
the way we formulate LP models algebraically and how Solver views the spreadsheet 
implementation of the model. The decision variables in the algebraic model correspond 
to the variable cells for Solver. The LHS formulas for the different constraints in the 
algebraic model correspond to the constraint cells for Solver. Finally, the objective 
function in the algebraic model corresponds to the objective cell for Solver. Figure 3.6 
summarizes the relationships between our algebraic model and how Solver views the 
spreadsheet implementation of this model.

LHS formula for the pump constraint: 1    X1  1   1     X2

Formula in cell D9: 5 B9*B5  1  C9*C5

LHS formula for the labor constraint: 9    X1  1  6    X2

Formula in cell D10: 5 B10*B5 1 C10*C5

LHS formula for the tubing constraint: 12   X1  1 16    X2

Formula in cell D11: 5 B11*B5 1 C11*C5

Figure 3.4

Summary of 
the relationship 
between the LHS 
formulas of the 
constraints and 
their spreadsheet 
representations
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Variable Cells

Objective Cell

Constraint Cells

Figure 3.5 Summary of Solver’s view of the model

Figure 3.6

Summary of Solver 
terminology

Terms used to describe  
LP models algebraically

Corresponding terms used by Solver  
to describe spreadsheet LP models

objective function objective cell
decision variables variable (or changing) cells
LHS formulas of constraints constraint cells

A  N o t e  a b o u t  C r e a t i n g  

C e l l  C o m m e n t s …
It is easy to create cell comments like the one shown for cell D6 in Figure 3.5. To 
create a comment for a cell:

1. Click the cell to select it.
2. Choose Review, New Comment (or press Shift 1 F2).
3. Type the comment for the cell, and then select another cell.

The display of cell comments can be turned on or off as follows:

1. Select a cell containing a comment.
2. Choose Review.
3. Select the Show/Hide icon in the Comments section.

To copy a cell comment from one cell to a series of other cells:

1. Click the cell containing the comment you want to copy.
2. Select Home, Clipboard, Copy on the ribbon (or press Ctrl 1 C).
3. Select the cells you want to copy the comment to.
4. Select Home, Paste, Paste Special on the ribbon (or right-click and select  

Paste Special).
5. Select the Comments option button.
6. Click the OK button.
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i n s t a l l i n g  A n a l y t i c  S o l v e r  

p l a t f o r m  f o r  e d u c a t i o n
This book uses Analytic Solver Platform for Education—a greatly enhanced 
version of the standard Solver that ships with Excel. If you have not already done 
so, go to http://www.solver.com/student/ and follow the instructions given for 
downloading and installing a copy of the Analytic Solver Platform for Education 
software. (If you are running Excel in a networked environment, consult with your 
network administrator.) Although many of the examples in this book also work with 
the standard Solver that comes with Excel, Analytic Solver Platform for Education 
includes many additional capabilities that are featured throughout this book.

3.6 Using Analytic Solver Platform
After implementing an LP model in a spreadsheet, we still need to solve the problem 
being modeled. To do this, we must first indicate to Solver which cells in the spreadsheet 
represent the objective function, the decision variables, and the constraints. To invoke 
Solver, choose the Analytic Solver Platform tab on the ribbon, as shown in Figure 3.7, to 
display the Analytic Solver task pane. 

Toggles Task Pane ON/OFF

Figure 3.7 Analytic Solver Platform’s task pane
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Using Analytic Solver Platform 55

Analytic Solver Platform offers a number of analytical tools (e.g., Sensitivity 
analysis, Optimization, Simulation, Discriminant Analysis, Decision Trees) that we will 
discuss throughout this book. Currently we are interested in Analytic Solver Platform’s 
optimization tool, so that feature has been expanded in Figure 3.7 by double-clicking 
the Optimization option in Analytic Solver’s task pane. 

S o f t w a r e  N o t e
The Analytic Solver task pane shown in Figure 3.7 can be toggled on and off by 
clicking the Model icon in the Analytic Solver Platform tab on the ribbon.

3.6.1 DeFiNiNg The ObjeCTiVe Cell
Figure 3.8 shows how to define the Objective cell for our model. To do this, 

1. Select cell D6 (where we implemented the formula representing the objective func-
tion for our model).

2. Click the “Add Objective” option from the list that appears when you click the 
drop-down arrow next to the green plus sign in Analytic Solver’s task pane.

2: Click here

1: Select D6

3: Click Add Objective

Figure 3.8 Specifying the objective cell
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Figure 3.9 shows the result of these actions. In Analytic Solver’s task pane, note that 
cell D6 is now listed as the objective for the problem and by default, Solver assumes we 
want to maximize its value. That is the correct assumption for this problem. However, 
as you will see, in other situations you might want to minimize the value of the 
objective function. In Figure 3.9 note that if you select (click) the objective cell (“$D$6”) 
in Analytic Solver’s task pane, more detailed information about that selection appears 
at the bottom of the pane. In particular, the objective cell has a “Sense” property that 
you can change to indicate whether you want to maximize or minimize the value of the 
objective. (Alternatively, double-clicking the objective cell (“$D$6”) in Analytic Solver’s 
task pane launches a dialog box that you can use to change the desired direction of 
optimization and other information about the objective.) 

3.6.2 DeFiNiNg The VAriAble CellS
To solve our LP problem, we also need to indicate which cells represent the decision 
variables in the model. Figure 3.10 shows how to define the variable cells for our model. 
To do this, follow these steps:

1. Select cells B5 and C5.
2. Click the “Add Variable” option from the list that appears when you click the drop-

down arrow next to the green plus sign in Analytic Solver’s task pane.

1: Click here

2: Select Maximize

Figure 3.9 Specifying the direction of optimization
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Cells B5 and C5 now represent the decision variables for the model. Solver will 
determine the optimal values for these cells later. If all the decision variables are not 
in one contiguous range, you can select all the variable cells (while pressing the Ctrl 
key on your keyboard) and click the Add Variable command. Alternatively, you can 
repeatedly go through the process of selecting individual groups of decision variable 
cells and clicking the Add Variable command. Whenever possible, it is best to use 
contiguous cells to represent the decision variables.

3.6.3 DeFiNiNg The CONSTrAiNT CellS
Next, we must define the constraint cells in the spreadsheet and the restrictions that 
apply to these cells. As mentioned earlier, the constraint cells are the cells in which 
we implemented the LHS formulas for each constraint in our model. Figure 3.11 
shows how to define the constraint cells for our model. To do this, follow these 
steps:

1. Select cells D9 through D11.
2. Click the “Add Constraint” option from the list that appears when you click the 

drop-down arrow next to the green plus sign in Analytic Solver’s task pane.

2: Click here

3: Select Add Variable

1: Select B5:C5

Figure 3.10 Specifying the variable cells
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The resulting dialog box is displayed in Figure 3.12. We fill out this dialog box as 
shown to indicate that cells D9 through D11 represent constraint cells whose values 
must be less than or equal to the values in cells E9 through E11, respectively. If the 
constraint cells were not in contiguous cells in the spreadsheet, we would have to 
define the constraint cells repeatedly. As with the variable cells, it is usually best to 
choose contiguous cells in your spreadsheet to implement the LHS formulas of the 
constraints in a model.

If you want to define more than one constraint at the same time, as in Figure 3.12, all 
the constraint cells you select must be the same type (i.e., they must all be #, $, or 5 ). 
Therefore, where possible, it is a good idea to keep constraints of a given type grouped 
in contiguous cells so you can select them at the same time. For example, in our case, the 
three constraint cells we selected are all less than or equal to 1# 2  constraints. However, 
this consideration should not take precedence over setting up the spreadsheet in the 
way that communicates its purpose most clearly.

1: Select D9:D11

2: Click here

3: Select Add Constraint

Figure 3.11 Specifying the constraint cells
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1: Select E9:E11
2: Click Add

Figure 3.12 De�ning the constraints

S o f t w a r e  N o t e
Another way to add an objective, variables, or constraints for an optimization 
model using the Analytic Solver task pane is to click the relevant cell(s), click the 
appropriate Objective, Variables, or Constraints folder icon in the Analytic Solver 
task pane, and then click the green plus sign icon. Equivalent operations can 
also be carried out using icons on the Analytic Solver Platform ribbon tab in the 
Optimization Model group. Alternatively, right-clicking any cell in the worksheet 
displays a pop-up menu that provides convenient access to the same Analytic 
Solver Platform commands found on the ribbon. As you use Analytic Solver 
Platform you should explore these different alternatives for defining and solving 
optimization problems to decide which interface features you prefer. 
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3.6.4 DeFiNiNg The NONNegATiViTy CONDiTiONS
One final specification we need to make for our model is that the decision variables 
must be greater than or equal to zero. As mentioned earlier, we can impose these 
conditions as constraints by placing appropriate restrictions on the values that can 
be assigned to the cells representing the decision variables (in this case, cells B5 and 
C5). To do this, we simply add another set of constraints to the model, as shown in 
Figure 3.13.

Figure 3.13 indicates that cells B5 and C5, which represent the decision variables 
in our model, must be greater than or equal to zero. Notice that the RHS value of this 
constraint is a numeric constant that is entered manually. The same type of constraints 
can also be used if we placed some strictly positive lower bounds on these variables 
(e.g., if we wanted to produce at least 10 Aqua-Spas and at least 10 Hydro-Luxes). 
However, in that case, it would probably be best to place the minimum required 
production amounts on the spreadsheet so that these restrictions are clearly displayed. 
We can then refer to those cells in the spreadsheet when specifying the RHS values for 
these constraints.

Figure 3.13 De�ning the nonnegativity conditions
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3.6.5 reViewiNg The MODel
After specifying all the elements of our model, Figure 3.14 shows the final optimization 
settings for our problem. It is always a good idea to review this information before 
solving the problem to make sure you entered all the parameters accurately and to 
correct any errors before proceeding. Additionally, clicking the “Analyze without 
Solving” icon causes Solver to evaluate your model and summarize its findings and 
conclusions. For instance, in this case Solver determined that our model is a convex 
LP problem with two variables, four functions, eight dependencies (arising from two 

S o f t w a r e  N o t e
There are other ways to specify nonnegativity conditions for the decision variables. 
On the Engine tab in Analytic Solver’s task pane (see Figure 3.15), setting the 
value of Assume Non-Negative property to True tells Solver to assume that all the 
variables (or variable cells) in your model that have not been assigned explicit lower 
bounds should have lower bounds of zero. Additionally, on the Platform tab you 
can set default values for the lower or upper bounds of the decision variables.

Figure 3.14 Summary of how Solver views the model
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decision variables being involved in the objective function and three constraints), and 
two bounds. (Convexity is an important aspect of optimization problems that will be 
discussed in greater detail in chapter 8. All LP problems are convex by definition.) 

3.6.6 OTher OpTiONS
As shown in Figure 3.15, the Engine tab in the Solver Options and Model Specification 
pane provides access to a number of settings for solving optimization problems. The 
drop-down list at the top of this pane allows you to select from a number of engines (or 
algorithms) for solving optimization problems. If the problem you are trying to solve is 
an LP problem (i.e., an optimization problem with a linear objective function and linear 
constraints), Solver can use a special algorithm known as the simplex method to solve 
the problem. The simplex method provides an efficient way of solving LP problems 
and, therefore, requires less solution time. Using the simplex method also allows for 
expanded sensitivity information about the solution obtained. (Chapter 4 discusses this 
in detail.) When using Solver to solve an LP problem, it is best to select the Standard 
LP/Quadratic Engine as indicated in Figure 3.15.

The Engine tab also provides a number of options that affect how Solver solves a 
problem. We will discuss the use of several of these options as we proceed. You can 

Figure 3.15

The Engine tab
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also find out more about these options by clicking the Help icon on the Analytic Solver 
Platform ribbon tab.

3.6.7 SOlViNg The prObleM
After entering all the appropriate parameters and choosing any necessary options 
for our model, the next step is to solve the problem. Click the Solve icon in Analytic 
Solver’s task pane to solve the problem. (Alternatively, click the Optimize icon on the 
Analytic Solver Platform ribbon tab.) The Output tab in the Analytic Solver task pane 
is activated when Solver solves the problem, providing a description of the various 
events occurring during the solution process. When Solver finishes, it displays a 
message at the bottom of Analytic Solver’s task pane indicating, in this case, that it 
found a solution and all constraints and optimality conditions are satisfied. If Solver 
ever encounters a problem while performing an optimization, it will display a relevant 
message in this location. 

As shown in Figure 3.16, Solver determined that the optimal value for cell B5 is 122 
and the optimal value for cell C5 is 78. These values correspond to the optimal values 
for X1 and X2 that we determined graphically in chapter 2. The value of the objective 
cell (D6) now indicates that if Blue Ridge Hot Tubs produces and sells 122 Aqua-Spas 
and 78 Hydro-Luxes, the company will earn a profit of $66,100. Cells D9, D10, and D11 
indicate that this solution uses all the 200 available pumps, all the 1,566 available labor 
hours, and 2,712 of the 2,880 feet of available tubing.

Click Solve

Figure 3.16 Solving the Blue Ridge Hot Tubs problem
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3.7 Using Excel’s Built-in Solver
As mentioned earlier, the company that makes Analytic Solver Platform (Frontline 
Systems, Inc.) also makes the Solver that comes with Excel. Excel’s built-in Solver is 
easy to use and is capable of solving most of the optimization problems discussed 
in this book. However, it lacks a number of powerful and useful features offered by 
Analytic Solver Platform. 

Figure 3.17 shows the interface of Excel’s built-in Solver (accessible from the Solver 
command on the Data tab on the ribbon) and the settings required to use it to solve 

g u i d e d  M o d e
Analytic Solver Platform includes a valuable feature called Guided Mode that 
provides descriptions of what Analytic Solver Platform is doing when it analyzes 
and solves models. This feature may be turned on or off by selecting the desired 
option in the Help, Operating Mode command in the Analytic Solver Platform 
tab on the ribbon. This book does not show any of the dialog boxes displayed 
by the Guided Mode feature. However, you are encouraged to use Guided Mode 
while you are learning about Analytic Solver Platform as it provides a wealth of 
information and instruction about the issues associated with modeling and solving 
the type of decision problems covered in this book. 

Figure 3.17 Excel’s built-in Solver
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the Blue Ridge Hot Tubs problem. To use the built-in Solver, you must identify the 
objective cell (and the desired direction of optimization), the variables cells, and any 
constraints—just as we did earlier when using Analytic Solver Platform. The Solver 
dialog box in Figure 3.17 also allows you to select a solving method (analogous to 
selections available on the “Engine” tab in Analytic Solver’s task pane). You then click 
the Solve button to solve the problem. 

For each of the standard optimization problems in this book we will identify the 
objective cell (and whether it should be maximized or minimized), the variable cells, 
and the constraints. Using that information, you can use either Excel’s built-in Solver or 
Analytic Solver Platform to solve the problems.

3.8 Goals and Guidelines  
for Spreadsheet Design
Now that you have a basic idea of how Solver works and how to set up an LP model 
in a spreadsheet, we’ll walk through several more examples of formulating LP models 
and solving them with Solver. These problems highlight the wide variety of business 
problems in which LP can be applied and will also show you some “tricks of the trade” 
that should help you solve the problems at the end of this chapter. When you work 
through the end-of-the-chapter problems, you will better appreciate how much thought 
is required to find a good way to implement a given model.

As we proceed, keep in mind that you can set up these problems more than one way. 
Creating spreadsheet models that effectively communicate their purpose is very much 
an art—or at least an acquired skill. Spreadsheets are inherently free-form and impose 
no particular structure on the way we model problems. As a result, there is no one 
“right” way to model a problem in a spreadsheet; however, some ways are certainly 
better (or more logical) than others. To achieve the end result of a logical spreadsheet 
design, your modeling efforts should be directed toward the following goals:

•	 Communication. A spreadsheet’s primary business purpose is communicating 
information to managers. As such, the primary design objective in most spreadsheet 
modeling tasks is to communicate the relevant aspects of the problem at hand in as 
clear and intuitively appealing a manner as possible. 

•	 Reliability. The output a spreadsheet generates should be correct and consistent. 
This has an obvious impact on the degree of confidence a manager places in the 
results of the modeling effort.

•	 Auditability. A manager should be able to retrace the steps followed to generate 
the different outputs from the model in order to understand the model and verify 
results. Models that are set up in an intuitively appealing, logical layout tend to be 
the most auditable. 

•	 Modifiability. The data and assumptions upon which we build spreadsheet mod-
els can change frequently. A well-designed spreadsheet should be easy to change or 
enhance in order to meet dynamic user requirements.

In most cases, the spreadsheet design that most clearly communicates its purpose 
will also be the most reliable, auditable, and modifiable design. As you consider 
different ways of implementing a spreadsheet model for a particular problem, consider 
how well the modeling alternatives compare in terms of these goals. Some practical 
suggestions and guidelines for creating effective spreadsheet models are given in 
Figure 3.18.
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SpreADSheeT DeSigN guiDeliNeS
● Organize the data, then build the model around the data. After the data is 

arranged in a visually appealing manner, logical locations for decision  vari ables, 
constraints, and the objective function tend to naturally suggest themselves. This 
also tends to enhance the reliability, auditability, and  main tainability of the model.

● Do not embed numeric constants in formulas. Numeric constants should be 
placed in individual cells and labeled appropriately. This enhances the reliability 
and modi�ability of the model.

● Things which are logically related (e.g., LHS and RHS of constraints) should 
be arranged in close physical proximity to one another and in the same  columnar 
or row orientation. This enhances reliability and auditability of the model.

● A design that results in formulas that can be copied is probably better than one 
that does not. A model with formulas that can be copied to complete a series of 
calculations in a range is less prone to error (more reliable) and tends to be more 
understandable (auditable). Once users understand the �rst formula in a range, 
they understand all the formulas in a range.

● Column or row totals should be in close proximity to the columns or rows 
being totaled. Spreadsheet users often expect numbers at the end of a column 
or row to represent a total or some other summary measure involving the data in 
the column or row. Numbers at the ends of columns or rows that do not  represent 
totals can be misinterpreted easily (reducing auditability).

● The English-reading human eye scans left to right, top to bottom. This fact 
should be considered and re°ected in the spreadsheet design to enhance the au-
ditability of the model.

● Use color, shading, borders, and protection to distinguish changeable para-
meters from other elements of the model. This enhances the reliability and mod-
i�ability of the model.

● Use text boxes and cell comments to document various elements of the model. 
These devices can be used to provide greater detail about a model or particular 
cells in a model than labels on a spreadsheet might allow.

Figure 3.18 

Guidelines for 
effective spreadsheet 
design

S p r e a d s h e e t - b a s e d  l p  
S o l v e r s  C r e a t e  N e w  A p p l i c a t i o n s  

f o r  l i n e a r  p r o g r a m m i n g
In 1987, The Wall Street Journal reported on a then new and exciting trend in 
business—the availability of solvers for PCs that allowed many businesses to 
transfer LP models from mainframe computers. Newfoundland Energy Ltd., for 
example, evaluated its mix of crude oils to purchase with LP on a mainframe 
for 25 years. After it began using a PC for this application, the company saved 
thousands of dollars per year in mainframe access time charges.

The expansion of access to LP also spawned new applications. Therese 
Fitzpatrick, a nursing administrator at Grant Hospital in Chicago, used spreadsheet 
optimization to create a staff scheduling model that was projected to save the 

(Continued)
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3.9 Make vs. Buy Decisions
As mentioned at the beginning of chapter 2, LP is particularly well-suited to  problems 
where scarce or limited resources must be allocated or used in an optimal manner. 
Numerous examples of these types of problems occur in manufacturing organizations. 
For example, LP might be used to determine how the various components of a job should 
be assigned to multipurpose machines in order to  minimize the time it takes to complete 
the job. As another example, a company might receive an order for several items that it 
cannot fill entirely with its own production capacity. In such a case, the company must 
determine which items to produce and which items to subcontract (or buy) from an 
outside supplier. The following is an example of this type of make vs. buy decision.

The Electro-Poly Corporation is the world’s leading manufacturer of slip rings. A 
slip ring is an electrical coupling device that allows current to pass through a spin-
ning or rotating connection—such as a gun turret on a ship, aircraft, or tank. The 
company recently received a $750,000 order for various quantities of three types of 
slip rings. Each slip ring requires a certain amount of time to wire and harness. The 
following table summarizes the requirements for the three models of slip rings.

Model 1 Model 2 Model 3

Number Ordered 3,000 2,000 900
Hours of Wiring Required per Unit 2 1.5 3
Hours of Harnessing Required per Unit 1 2 1

Unfortunately, Electro-Poly does not have enough wiring and harnessing capac-
ity to fill the order by its due date. The company has only 10,000 hours of wiring 
capacity and 5,000 hours of harnessing capacity available to devote to this order. 
However, the company can subcontract any portion of this order to one of its com-
petitors. The unit costs of producing each model in-house and buying the finished 
products from a competitor are summarized below.

Model 1 Model 2 Model 3

Cost to Make $50 $83 $130
Cost to Buy $61 $97 $145

Electro-Poly wants to determine the number of slip rings to make and the number 
to buy in order to fill the customer order at the least possible cost.

hospital $80,000 per month in overtime and temporary hiring costs. The task of 
scheduling 300 nurses so that those with appropriate skills were in the right place 
at the right time required 20 hours per month. The LP model enabled Therese to 
do the job in 4 hours, even with such complicating factors as leaves, vacations, and 
variations in staffing requirements at different times and days of the week.

Hawley Fuel Corp., a New York wholesaler of coal, found that it could 
minimize its cost of purchases while still meeting customers’ requirements for 
sulfur and ash content by optimizing a spreadsheet LP model. Charles Howard of 
Victoria, British Columbia developed an LP model to increase electricity generation 
from a dam just by opening and closing the outlet valves at the right time. 
Source: Bulkely, William M. “The Right Mix: New Software Makes the Choice Much Easier.” The Wall 
Street Journal, March 27, 1987, 17.
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3.9.1 DeFiNiNg The DeCiSiON VAriAbleS
To solve the Electro-Poly problem, we need six decision variables to represent the 
alternatives under consideration:

M1 5 number of model 1 slip rings to make in-house
M2 5 number of model 2 slip rings to make in-house
M3 5 number of model 3 slip rings to make in-house
B1 5 number of model 1 slip rings to buy from competitor
B2 5 number of model 2 slip rings to buy from competitor
B3 5 number of model 3 slip rings to buy from competitor

As mentioned in chapter 2, we do not have to use the symbols X1, X2,  . . . , Xn for 
the decision variables. If other symbols better clarify the model, you are certainly free 
to use them. In this case, the symbols Mi and Bi help distinguish the Make in-house 
variables from the Buy from competitor variables.

3.9.2 DeFiNiNg The ObjeCTiVe FuNCTiON
The objective in this problem is to minimize the total cost of filling the order. Recall that 
each model 1 slip ring made in-house (each unit of M1) costs $50; each model 2 slip ring 
made in-house (each unit of M2) costs $83; and each model 3 slip ring (each unit of M3) 
costs $130. Each model 1 slip ring bought from the competitor (each unit of B1) costs 
$61; each model 2 slip ring bought from the competitor (each unit of B2) costs $97; and 
each model 3 slip ring bought from the competitor (each unit of B3) costs $145. Thus, 
the objective is stated mathe matically as:

 MIN: 50M1 1 83M2 1 130M3 1 61B1 1 97B2 1 145B3

3.9.3 DeFiNiNg The CONSTrAiNTS
Several constraints affect this problem. Two constraints are needed to ensure that the 
number of slip rings made in-house does not exceed the available capacity for wiring 
and harnessing. These constraints are stated as:

2M1 1 1.5M2 1 3M3 # 10,000      } wiring constraint
1M1 1    2M2 1 1M3 #   5,000      } harnessing constraint

Three additional constraints ensure that 3,000 model 1 slip rings, 2,000 model 2 slip 
rings, and 900 model 3 slip rings are available to fill the order. These constraints are 
stated as:

M1 1 B1 5 3,000 } demand for model 1 
M2 1 B2 5 2,000 } demand for model 2
M3 1 B3 5    900 } demand for model 3

Finally, because none of the variables in the model can assume a value of less than 
zero, we also need the following nonnegativity condition:

 M1, M2, M3, B1, B2, B3 $ 0
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3.9.4 iMpleMeNTiNg The MODel
The LP model for Electro-Poly’s make vs. buy problem is summarized as:

MIN:            50M1 1 83M2 1 130M3 1 61B1 1 97B2 1 145B3   } total cost
Subject to: M1 1 B1   5 3,000 } demand for model 1

 M2 1 B2   5 2,000 } demand for model 2
 M3 1 B3   5 900 } demand for model 3
 2M1 1 1.5M2 1 3M3 # 10,000 } wiring constraint
 1M1 1 2M2 1 1M3 # 5,000 } harnessing constraint

 M1, M2, M3, B1, B2, B3 $ 0 } nonnegativity conditions

The data for this model are implemented in the spreadsheet shown in Figure 3.19 
(and in the file Fig3-19.xlsm that accompanies this book). The coefficients that appear in 
the objective function are entered in the range B10 through D11. The coefficients for the 
LHS formulas for the wiring and harnessing constraints are entered in cells B17 through 
D18, and the corresponding RHS values are entered in cells F17 and F18. Because 
the LHS formulas for the demand constraints involve simply  summing the decision 
variables, we do not need to list the coefficients for these constraints in the spreadsheet. 
The RHS values for the demand constraints are entered in cells B14 through D14.

E18

Key Cell Formulas

Cell Formula Copied to

B13 5B61B7 C13:D13
E11 5SUMPRODUCT(B10:D11,B6:D7) --
E17 5SUMPRODUCT(B17:D17,$B$6:$D$6)

Objective Cell

Constraint Cells

Variable Cells

Figure 3.19 Spreadsheet model for Electro-Poly’s make vs. buy problem
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Cells B6 through D7 are reserved to  represent the six variables in our algebraic 
model. So, the objective function could be entered in cell E11 as:

Formula for cell E11: 5 B10*B6 1 C10*C6 1 D10*D6 1 B11*B7 1 C11*C7 1 D11*D7

In this formula, the values in the range B6 through D7 are multiplied by the 
corresponding values in the range B10 through D11; these individual products are then 
added together. Therefore, the formula is simply the sum of a collection of  products—
or a sum of products. It turns out that this formula can be implemented in an equivalent 
(and easier) way as:

Equivalent formula for cell E11: 5 SUMPRODUCT 1B10:D11,B6:D7 2
The preceding formula takes the values in the range B10 through D11, multiplies 

them by the corresponding values in the range B6 through D7, and adds (or sums) 
these products. The SUMPRODUCT( ) function greatly simplifies the implementation 
of many formulas required in optimization problems and will be used extensively 
throughout this book.

Because the LHS of the demand constraint for model 1 slip rings involves adding 
variables M1 and B1, this constraint is implemented in cell B13 by adding the two cells 
in the spreadsheet that correspond to these variables—cells B6 and B7:

Formula for cell B13:       5B61B7
(Copy to C13 through D13.)

The formula in cell B13 is then copied to cells C13 and D13 to implement the LHS 
formulas for the constraints for model 2 and model 3 slip rings.

The coefficients for the wiring and harnessing constraints are entered in cells B17 
through D18. The LHS formula for the wiring constraint is implemented in cell E17 as:

Formula for cell E17: 5SUMPRODUCT(B17:D17,$B$6:$D$6)
(Copy to cell E18.)

This formula is then copied to cell E18 to implement the LHS formula for the 
harnessing constraint. (In the preceding formula, the dollar signs denote absolute cell 
references. An absolute cell reference will not change if the formula containing the 
reference is copied to another location.)

3.9.5 SOlViNg The prObleM
To solve this problem, we need to specify the objective cell, variable cells, and constraint 
cells identified in Figure 3.19, just as we did earlier in the Blue Ridge Hot Tubs example. 
Figure 3.20 summarizes the Solver parameters required to solve Electro-Poly’s make 
vs. buy problem. The optimal solution found by Solver is shown in Figure 3.21.

Solver Settings:

Objective: E11 (Min)
Variable cells: B6:D7
Constraints: 
 B13:D13 5 B14:D14
 E17:E18 ,5 F17:F18
 B6:D7 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.20

Solver settings 
for the make vs. 
buy problem
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3.9.6 ANAlyziNg The SOluTiON
The optimal solution shown in Figure 3.21 indicates that Electro-Poly should make 
(in-house) 3,000 model 1 slip rings, 550 model 2 slip rings, and 900 model 3 slip rings 
(i.e., M1 5 3,000, M2 5 550, M3 5 900). Additionally, it should buy 1,450 model 2 slip 
rings from its competitor (i.e., B1 5 0, B2 5 1,450, B3 5 0). This solution allows Electro-
Poly to fill the customer order at a minimum cost of $453,300. This solution uses 9,525 
of the 10,000 hours of available wiring capacity and all 5,000 hours of the harnessing 
capacity.

At first glance, this solution might seem a bit surprising. Electro-Poly has to pay 
$97 for each model 2 slip ring it purchases from its competitor. This represents a $14 
premium over its in-house cost of $83. On the other hand, Electro-Poly has to pay a 
premium of $11 over its in-house cost to purchase model 1 slip rings from its competitor. 
It seems as if the optimal solution would be to purchase model 1 slip rings from its 
competitor rather than model 2 slip rings because the additional cost premium for 
model 1 slip rings is smaller. However, this argument fails to consider the fact that each 
model 2 slip ring produced in-house uses twice as much of the company’s harnessing 
capacity as does each model 1 slip ring. Making more model 2 slip rings in-house 
would deplete the company’s harnessing capacity more quickly, and would require 
buying an excessive number of model 1 slip rings from the competitor. Fortunately, 
the LP technique automatically considers such trade-offs in determining the optimal 
solution to the problem.

Figure 3.21 Optimal solution to Electro-Poly’s make vs. buy problem
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3.10 An Investment Problem
There are numerous problems in the area of finance for which various optimization 
techniques can be applied. These problems often involve attempting to maximize 
the return on an investment while meeting certain cash flow requirements and risk 
constraints. Alternatively, we may want to minimize the risk on an investment while 
maintaining a certain level of return. We’ll consider one such problem here and discuss 
several other financial engineering problems throughout this text.

Brian Givens is a financial analyst for Retirement Planning Services, Inc. who 
specializes in designing retirement income portfolios for retirees using corporate 
bonds. He has just completed a consultation with a client who expects to have 
$750,000 in liquid assets to invest when she retires next month. Brian and his client 
agreed to consider upcoming bond issues from the following six companies:

Company return Years to Maturity rating

Acme Chemical 8.65% 11 1-Excellent
DynaStar 9.50% 10 3-Good
Eagle Vision 10.00% 6 4-Fair
MicroModeling 8.75% 10 1-Excellent
OptiPro 9.25% 7 3-Good
Sabre Systems 9.00% 13 2-Very Good

The column labeled “Return” in this table represents the expected annual yield 
on each bond, the column labeled “Years to Maturity” indicates the length of time 
over which the bonds will be payable, and the column labeled “Rating” indicates 
an independent underwriter’s assessment of the quality or risk associated with 
each issue.

Brian believes that all of the companies are relatively safe investments. However, 
to protect his client’s income, Brian and his client agreed that no more than 25% of 
her money should be invested in any one investment and at least half of her money 
should be invested in long-term bonds that mature in 10 or more years. Also, even 
though DynaStar, Eagle Vision, and OptiPro offer the highest returns, it was agreed 
that no more than 35% of the money should be invested in these bonds because 
they also represent the highest risks (i.e., they were rated lower than “very good”). 

Brian needs to determine how to allocate his client’s investments to maximize 
her income while meeting their agreed upon investment restrictions. 

3.10.1 DeFiNiNg The DeCiSiON VAriAbleS
In this problem, Brian must decide how much money to invest in each type of bond. 
Because there are six different investment alternatives, we need the following six 
decision variables:

X1 5 amount of money to invest in Acme Chemical
  X2 5 amount of money to invest in DynaStar
  X3 5 amount of money to invest in Eagle Vision
  X4 5 amount of money to invest in MicroModeling
  X5 5 amount of money to invest in OptiPro
  X6 5 amount of money to invest in Sabre Systems
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3.10.2 DeFiNiNg The ObjeCTiVe FuNCTiON
The objective in this problem is to maximize the investment income for Brian’s 

client. Because each dollar invested in Acme Chemical 1X1 2  earns 8.65% annually, each 
dollar invested in DynaStar 1X2 2  earns 9.50%, and so on, the objective function for the 
problem is expressed as:

 MAX: .0865X1 1 .095X2 1 .10X3 1 .0875X4 1 .0925X5 1 .09X6 } total annual return

3.10.3 DeFiNiNg The CONSTrAiNTS
Again, there are several constraints that apply to this problem. First, we must ensure 
that exactly $750,000 is invested. This is accomplished by the following constraint:

X1 1 X2 1 X3 1 X4 1 X5 1 X6 5 750,000

Next, we must ensure that no more than 25% of the total be invested in any one 
investment. Twenty-five percent of $750,000 is $187,500. Therefore, Brian can put no 
more than $187,500 in any one investment. The following constraints enforce this 
restriction:

X1 # 187,500
X2 # 187,500
X3 # 187,500
X4 # 187,500
X5 # 187,500
X6 # 187,500

Because the bonds for Eagle Vision 1X3 2  and OptiPro 1X5 2  are the only ones that 
mature in fewer than 10 years, the following constraint ensures that at least half the 
money ($375,000) is placed in investments maturing in 10 or more years:

X1 1 X2 1 X4 1 X6 $ 375,000

Similarly, the following constraint ensures that no more than 35% of the money 
($262,500) is placed in the bonds for DynaStar 1X2 2 , Eagle Vision 1X3 2 , and OptiPro 1X5 2 :

X2 1 X3 1 X5 # 262,500

Finally, because none of the variables in the model can assume a value of less than 
zero, we also need the following nonnegativity condition:

X1, X2, X3, X4, X5, X6 $ 0

3.10.4 iMpleMeNTiNg The MODel
The LP model for the Retirement Planning Services, Inc. investment problem is 
summarized as:

MAX: .0865X1 1 .095X2 1 .10X3 1 .0875X4 1 .0925X5 1 .09X6 } total annual return

Subject to: 

X1 # 187,500  } 25% restriction per investment
X2 # 187,500 } 25% restriction per investment
X3 # 187,500  } 25% restriction per investment
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X4 # 187,500 } 25% restriction per investment
X5 # 187,500 } 25% restriction per investment
X6 # 187,500 } 25% restriction per investment
X1 1 X2 1 X3 1 X4 1 X5 1 X6 5 750,000 } total amount invested
X1 1 X2 1 X4 1 X6 $ 375,000 } long-term investment
X2 1 X3 1 X5 # 262,500 } higher-risk investment
X1, X2, X3, X4, X5, X6 $ 0 } nonnegativity conditions

A convenient way of implementing this model is shown in Figure 3.22 (and in the 
file Fig3-22.xlsm that accompanies this book). Each row in this spreadsheet corresponds 
to one of the investment alternatives. Cells C6 through C11 correspond to the decision 
variables for the problem 1X1,  . . ., X6 2 . The maximum value that each of these cells can 
take on is listed in cells D6 through D11. These values correspond to the RHS values 
for the first six constraints. The sum of cells C6 through C11 is computed in cell C12 as 
follows and will be restricted to equal the value shown in cell C13:

Formula for cell C12: 5 SUM 1C6:C11 2
The annual returns for each investment are listed in cells E6 through E11. The 

objective function is then implemented conveniently in cell E12 as follows:

Formula for cell E12: 5SUMPRODUCT(E6:E11,$C$6:$C$11) 

Key Cell Formulas

Cell Formula Copied to

C12 5SUM(C6:C11) --
E12 5SUMPRODUCT(E6:E11,$C$6:$C$11) G12 and I12

Objective Cell

Constraint Cells

Variable Cells

Figure 3.22 Spreadsheet model for Retirement Planning Services, Inc. bond selection problem
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The values in cells G6 through G11 indicate which of these rows correspond to 
“long-term” investments. Note that the use of ones and zeros in this column makes it 
convenient to compute the sum of the cells C6, C7, C9, and C11 (representing X1, X2, X4,
and X6) representing the LHS of the “long-term” investment constraint. This is done in 
cell G12 as follows:

 Formula for cell G12: 5SUMPRODUCT(G6:G11,$C$6:$C$11) 

Similarly, the zeros and ones in cells I6 through I11 indicate the higher-risk 
investments and allow us to implement the LHS of the “higher-risk investment” 
constraint as follows:

 Formula for cell I12: 5SUMPRODUCT(I6:I11,$C$6:$C$11) 

Note that the use of zeros and ones in columns G and I to compute the sums of 
selected decision variables is a very useful modeling technique that makes it easy for 
the user to change the variables being included in the sums. Also note that the formula 
for the objective in cell E12 could be copied to cells G12 and I12 to implement LHS 
formulas for these constraint cells.

3.10.5 SOlViNg The prObleM
To solve this problem, we need to specify the objective cell, variable cells, and constraint 
cells identified in Figure 3.22. Figure 3.23 shows the Solver settings required to solve 
this problem. The optimal solution found by Solver is shown in Figure 3.24.

3.10.6 ANAlyziNg The SOluTiON
The solution shown in Figure 3.24 indicates that the optimal investment plan places 
$112,500 in Acme Chemical 1X1 2 , $75,000 in DynaStar 1X2 2 , $187,500 in Eagle Vision 
1X3 2 , $187,500 in MicroModeling 1X4 2 , $0 in OptiPro 1X5 2 , and $187,500 in Sabre Systems 
1X6 2 . It is interesting to note that more money is being invested in Acme Chemical 
than DynaStar and OptiPro even though the return on Acme Chemical is lower than 
on the returns for DynaStar and OptiPro. This is because DynaStar and OptiPro are 
both “higher-risk” investments and the 35% limit on “higher-risk” investments is 
a binding constraint (or is met as a strict equality in the optimal solution). Thus, the 
optimal solution could be improved if we could put more than 35% of the money into 
the higher-risk investments. 

Solver Settings:

Objective: E12 (Max)
Variable cells: C6:C11
Constraints: 
 C6:C11 ,5 D6:D11
 C6:C11 .5 0
 C12 5 C13
 G12 .5 G13
 I12 ,5 I13

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.23

Solver settings for 
the bond selection 
problem
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3.11 A Transportation Problem
Many transportation and logistics problems businesses face fall into a category known 
as network flow problems. We will consider one such example here and study this area 
in more detail in chapter 5.

Tropicsun is a leading grower and distributor of fresh citrus products with three 
large citrus groves scattered around central Florida in the cities of Mt. Dora, Eustis, 
and Clermont. Tropicsun currently has 275,000 bushels of citrus at the grove in Mt. 
Dora, 400,000 bushels at the grove in Eustis, and 300,000 bushels at the grove in 
Clermont. Tropicsun has citrus processing plants in Ocala, Orlando, and Leesburg 
with processing capacities to handle 200,000, 600,000, and 225,000 bushels, respec-
tively. Tropicsun contracts with a local trucking company to transport its fruit from 
the groves to the processing plants. The trucking company charges a flat rate for 
every mile that each bushel of fruit must be transported. Each mile a bushel of fruit 
travels is known as a bushel-mile. The following table summarizes the distances (in 
miles) between the groves and processing plants:

Distances (in miles) Between
groves and Plants

grove Ocala Orlando Leesburg

Mt. Dora 21 50 40
Eustis 35 30 22
Clermont 55 20 25

Tropicsun wants to determine how many bushels to ship from each grove to 
each processing plant in order to process all the fruit while minimizing the total 
number of bushel-miles the fruit must be shipped.

Figure 3.24 Optimal solution to the bond selection problem
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3.11.1 DeFiNiNg The DeCiSiON VAriAbleS
In this situation, the problem is to determine how many bushels of fruit should be 
shipped from each grove to each processing plant. The problem is summarized 
graphically in Figure 3.25.

The circles (or nodes) in Figure 3.25 correspond to the different groves and processing 
plants in the problem. Note that a number has been assigned to each node. The arrows 
(or arcs) connecting the various groves and processing plants represent different 
shipping routes. The decision problem faced by Tropicsun is to determine how many 
bushels of fruit to ship on each of these routes. Thus, one decision variable is associated 
with each of the arcs in Figure 3.25. We can define these variables in general as:

Xij 5 number of bushels to ship from node i to node j

Specifically, the nine decision variables are:

X14 5 number of bushels to ship from Mt. Dora (node 1) to Ocala (node 4)
X15 5 number of bushels to ship from Mt. Dora (node 1) to Orlando (node 5)
X16 5 number of bushels to ship from Mt. Dora (node 1) to Leesburg (node 6)
X24 5 number of bushels to ship from Eustis (node 2) to Ocala (node 4)
X25 5 number of bushels to ship from Eustis (node 2) to Orlando (node 5)
X26 5 number of bushels to ship from Eustis (node 2) to Leesburg (node 6)
X34 5 number of bushels to ship from Clermont (node 3) to Ocala (node 4)
X35 5 number of bushels to ship from Clermont (node 3) to Orlando (node 5)
X36 5 number of bushels to ship from Clermont (node 3) to Leesburg (node 6)

Eustis
2

275,000

400,000

300,000

200,000

600,000

225,000

Supply Groves Distances
Processing

plants Capacity

21

50

40

35
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Ocala
4

Orlando
5

Leesburg
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Mt. Dora
1
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Figure 3.25

Diagram for 
the Tropicsun 
transportation 
problem
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3.11.2 DeFiNiNg The ObjeCTiVe FuNCTiON
The goal in this problem is to determine how many bushels to ship from each grove to 
each processing plant while minimizing the total distance (or total number of bushel-
miles) the fruit must travel. The objective function for this problem is represented by:

MIN: 21X14 1 50X15 1 40X16 1 35X24 1 30X25 1 22X26 1 55X34 1 20X35 1 25X36

The term 21X14 in this function reflects the fact that each bushel shipped from Mt. 
Dora (node 1) to Ocala (node 4) must travel 21 miles. The remaining terms in the 
function express similar relationships for the other shipping routes.

3.11.3 DeFiNiNg The CONSTrAiNTS
Two physical constraints apply to this problem. First, there is a limit on the amount of 
fruit that can be shipped to each processing plant. Tropicsun can ship no more than 
200,000, 600,000, and 225,000 bushels to Ocala, Orlando, and Leesburg, respectively. 
These restrictions are reflected by the following constraints:

X14 1 X24 1 X34 # 200,000 } capacity restriction for Ocala
X15 1 X25 1 X35 # 600,000 } capacity restriction for Orlando
X16 1 X26 1 X36 # 225,000 } capacity restriction for Leesburg

The first constraint indicates that the total bushels shipped to Ocala (node 4) 
from Mt. Dora (node 1), Eustis (node 2), and Clermont (node 3) must be less than or 
equal to Ocala’s capacity of 200,000 bushels. The other two constraints have similar 
interpretations for Orlando and Leesburg. Notice that the total  processing capacity at 
the plants (1,025,000 bushels) exceeds the total supply of fruit at the groves (975,000 
bushels). Therefore, these constraints are less than or equal to constraints because not 
all the available capacity will be used.

The second set of constraints ensures that the supply of fruit at each grove is 
shipped to a processing plant. That is, all of the 275,000, 400,000, and 300,000 bushels 
at Mt. Dora, Eustis, and Clermont, respectively, must be processed somewhere. This is 
accomplished by the following constraints:

X14 1 X15 1 X16 5 275,000 } supply available at Mt. Dora
X24 1 X25 1 X26 5 400,000 } supply available at Eustis
X34 1 X35 1 X36 5 300,000 } supply available at Clermont

The first constraint indicates that the total amount shipped from Mt. Dora (node 1) 
to the plants in Ocala (node 4), Orlando (node 5), and Leesburg (node 6) must equal the 
total amount available at Mt. Dora. This constraint indicates that all the fruit available 
at Mt. Dora must be shipped somewhere. The other two constraints play similar roles 
for Eustis and Clermont.

3.11.4 iMpleMeNTiNg The MODel
The LP model for Tropicsun’s fruit transportation problem is summarized as:

MIN: 21X14 1 50X15 1 40X16 1
 35X24 1 30X25 1 22X26 1 6   total distance fruit is shipped 

55X34 1 20X35 1 25X36        
(in bushel-miles)
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A Transportation Problem 79

Subject to: X14 1 X24 1 X34 # 200,000 } capacity restriction for Ocala
 X15 1 X25 1 X35 # 600,000 } capacity restriction for Orlando
 X16 1 X26 1 X36 # 225,000 } capacity restriction for Leesburg
 X14 1 X15 1 X16 5 275,000 } supply available at Mt. Dora
 X24 1 X25 1 X26 5 400,000 } supply available at Eustis
 X34 1 X35 1 X36 5 300,000 } supply available at Clermont
 Xij $ 0, for all i and j } nonnegativity conditions

The last constraint, as in previous models, indicates that all the decision variables 
must be nonnegative.

A convenient way to implement this model is shown in Figure 3.26 (and in file 
 Fig3-26.xlsm that accompanies this book). In this spreadsheet, the distances between 
each grove and plant are summarized in a tabular format in cells C7 through E9. Cells 
C14 through E16 are reserved for representing the number of bushels of fruit to ship 
from each grove to each processing plant. Notice that these nine cells correspond 
directly to the nine decision variables in the algebraic formulation of the model.

The LHS formulas for the three capacity constraints in the model are implemented in 
cells C17, D17, and E17 in the spreadsheet. To do this, the following formula is entered 
in cell C17 and copied to cells D17 and E17:

--

Key Cell Formulas

Cell Formula Copied to

C17 5SUM(C14:C16) D17:E17
F14 5SUM(C14:E14) F15:F16
E20 5SUMPRODUCT(C7:E9,C14:E16)

Objective Cell

Variable Cells

Constraint Cells

Figure 3.26 Spreadsheet model for Tropicsun’s transportation problem
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Formula for cell C17: 5SUM(C14:C16)
(Copy to D17 and E17.)

These cells represent the total bushels of fruit being shipped to the plants in Ocala, 
Orlando, and Leesburg, respectively. Cells C18 through E18 contain the RHS values for 
these constraint cells.

The LHS formulas for the three supply constraints in the model are implemented in 
cells F14, F15, and F16 as:

Formula for cell F14: 5SUM(C14:E14)
(Copy to F15 and F16.)

These cells represent the total bushels of fruit being shipped from the groves at 
Mt. Dora, Eustis, and Clermont, respectively. Cells G14 through G16 contain the RHS 
values for these constraint cells.

Finally, the objective function for this model is entered in cell E20 as:

Formula for cell E20: 5SUMPRODUCT(C7:E9,C14:E16)

The SUMPRODUCT( ) function multiplies each element in the range C7 through 
E9 by the corresponding element in the range C14 through E16 and then sums the 
individual products.

3.11.5 heuriSTiC SOluTiON FOr The MODel
To appreciate what Solver is accomplishing, let’s consider how we might try to solve 
this problem manually using a heuristic. A heuristic is a rule-of-thumb for making 
decisions that might work well in some instances, but is not guaranteed to produce 
optimal solutions or decisions. One heuristic we can apply to solve Tropicsun’s 
problem is always to ship as much as possible along the next available path with the 
shortest distance (or least cost). Using this heuristic, we solve the problem as follows:

1. Because the shortest available path between any grove and processing plant is 
between Clermont and Orlando (20 miles), we first ship as much as possible 
through this route. The maximum we can ship through this route is the smaller of 
the supply at Clermont (300,000 bushels) or the capacity at Orlando (600,000 bush-
els). So we would ship 300,000 bushels from Clermont to Orlando. This depletes the 
supply at Clermont.

2. The next shortest available route occurs between Mt. Dora and Ocala (21 miles). 
The maximum we can ship through this route is the smaller of the supply at Mt. 
Dora (275,000 bushels) or the capacity at Ocala (200,000 bushels). So we would ship 
200,000 bushels from Mt. Dora to Ocala. This depletes the capacity at Ocala.

3. The next shortest available route occurs between Eustis and Leesburg (22 miles). 
The maximum we can ship through this route is the smaller of the supply at Eustis 
(400,000 bushels) or the capacity at Leesburg (225,000 bushels). So we would ship 
225,000 bushels from Eustis to Leesburg. This depletes the capacity at Leesburg.

4. The next shortest available route occurs between Eustis and Orlando (30 miles). The 
maximum we can ship through this route is the smaller of the remaining supply at 
Eustis (175,000 bushels) or the remaining capacity at Orlando (300,000 bushels). So 
we would ship 175,000 bushels from Eustis to Orlando. This depletes the supply at 
Eustis.

5. The only remaining route occurs between Mt. Dora and Orlando (because the 
processing capacities at Ocala and Leesburg have both been depleted). This dis-
tance is 50 miles. The maximum we can ship through this route is the smaller of 
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the remaining supply at Mt. Dora (75,000 bushels) and the remaining capacity at 
Orlando (125,000 bushels). So we would ship the final 75,000 bushels at Mt. Dora to 
Orlando. This depletes the supply at Mt. Dora.

As shown in Figure 3.27, the solution identified with this heuristic involves shipping 
the fruit a total of 24,150,000 bushel-miles. All the bushels available at each grove have 
been shipped to the processing plants and none of the capacities at the processing plants 
have been exceeded. Therefore, this is a feasible solution to the problem. And the logic 
used to find this solution might lead us to believe it is a reasonably good solution—but 
is it the optimal solution? Is there no other feasible solution to this problem that can 
make the total distance the fruit has to travel less than 24,150,000 bushel-miles?

3.11.6 SOlViNg The prObleM
To find the optimal solution to this model, we must indicate to Solver the objective cell, 
variable cells, and constraint cells identified in Figure 3.26. Figure 3.28 shows the Solver 
settings required to solve this problem. The optimal solution is shown in Figure 3.29.

Solver Settings:

Objective: E20 (Min)
Variable cells: C14:E16
Constraints: 
 F14:F16 5 G14:G16
 C17:E17 ,5 C18:E18
 C14:E16 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.27

A heuristic 
solution to the 
transportation 
problem

Figure 3.28

Solver parameters 
for the 
transportation 
problem
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3.11.7 ANAlyziNg The SOluTiON
The optimal solution in Figure 3.29 indicates that 200,000 bushels should be shipped 
from Mt. Dora to Ocala 1X14 5 200,000 2  and 75,000 bushels should be shipped from 
Mt. Dora to Leesburg 1X16 5 75,000 2 . Of the 400,000 bushels available at the grove in 
Eustis, 250,000 bushels should be shipped to Orlando for processing 1X25 5 250,000 2
and 150,000 bushels should be shipped to Leesburg 1X26 5 150,000 2 . Finally, all 300,000 
bushels available in Clermont should be shipped to Orlando 1X35 5 300,000 2 . None of 
the other possible shipping routes will be used.

The solution shown in Figure 3.29 satisfies all the constraints in the model and 
results in a minimum shipping distance of 24,000,000 bushel-miles, which is better than 
the heuristic solution identified earlier. Therefore, simple heuristics can sometimes 
solve LP problems, but as this example illustrates, there is no guarantee that a heuristic 
solution is the best possible solution.

3.12 A Blending Problem
Many business problems involve determining an optimal mix of ingredients. For 
example, major oil companies must determine the least costly mix of different crude 
oils and other chemicals to blend together to produce a certain grade of gasoline. Lawn 
care companies must determine the least costly mix of chemicals and other products to 
blend together to produce different types of fertilizer. The following is another example 
of a common blending problem faced in the U.S. agricultural industry, which annually 
produces goods valued at approximately $200 billion. 

Figure 3.29 Optimal solution to Tropicsun’s transportation problem
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A Blending Problem 83

Agri-Pro is a company that sells agricultural products to farmers in a number of 
states. One service it provides to customers is custom feed mixing, whereby a 
farmer can order a specific amount of livestock feed and specify the amount of corn, 
grain, and minerals the feed should contain. This is an important service because 
the proper feed for various farm animals changes regularly depending on the 
weather, pasture conditions, and so on. 

Agri-Pro stocks bulk amounts of four types of feeds that it can mix to meet a 
given customer’s specifications. The following table summarizes the four feeds, 
their composition of corn, grain, and minerals, and the cost per pound for each type.

Percent of Nutrient in

Nutrient Feed 1 Feed 2 Feed 3 Feed 4

Corn 30% 5% 20% 10%
Grain 10% 30% 15% 10%
Minerals 20% 20% 20% 30%
Cost per Pound $0.25 $0.30 $0.32 $0.15

On average, U.S. citizens consume almost 70 pounds of poultry per year. To 
remain competitive, chicken growers must ensure that they feed the required nutri-
ents to their flocks in the most cost-effective manner. Agri-Pro has just received an 
order from a local chicken farmer for 8,000 pounds of feed. The farmer wants this 
feed to contain at least 20% corn, 15% grain, and 15% minerals. What should Agri-
Pro do to fill this order at minimum cost?

3.12.1 DeFiNiNg The DeCiSiON VAriAbleS
In this problem, Agri-Pro must determine how much of the various feeds to blend 
together in order to meet the customer’s requirements at minimum cost. An algebraic 
formulation of this problem might use the following four decision variables:

X1 5 pounds of feed 1 to use in the mix
X2 5 pounds of feed 2 to use in the mix
X3 5 pounds of feed 3 to use in the mix
X4 5 pounds of feed 4 to use in the mix

3.12.2 DeFiNiNg The ObjeCTiVe FuNCTiON 
The objective in this problem is to fill the customer’s order at the lowest possible cost. 
Because each pound of feed 1, 2, 3, and 4 costs $0.25, $0.30, $0.32, and $0.15, respectively, 
the objective function is represented by:

 MIN: .25X1 1 .30X2 1 .32X3 1 .15X4

3.12.3 DeFiNiNg The CONSTrAiNTS
Four constraints must be met to fulfill the customer’s requirements. First, the customer 
wants a total of 8,000 pounds of feed. This is expressed by the constraint:

 X1 1 X2 1 X3 1 X4 5 8,000
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84 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

The customer also wants the order to consist of at least 20% corn. Because each 
pound of feed 1, 2, 3, and 4 consists of 30%, 5%, 20%, and 10% corn, respectively, the 
total amount of corn in the mix is represented by:

.30X1 1 .05X2 1 .20X3 1 .10X4

To ensure that corn constitutes at least 20% of the 8,000 pounds of feed, we set up the 
following constraint:

.30X1 1 .05X2 1 .20X3 1 .10X4

8,000
$ .20

Similarly, to ensure that grain constitutes at least 15% of the 8,000 pounds of feed, we 
use the constraint:

.10X1 1 .30X2 1 .15X3 1 .10X4

8,000
$ .15

Finally, to ensure that minerals constitute at least 15% of the 8,000 pounds of feed, we 
use the constraint:

.20X1 1 .20X2 1 .20X3 1 .30X4

8,000
$ .15

3.12.4 SOMe ObSerVATiONS AbOuT CONSTrAiNTS, 
repOrTiNg, AND SCAliNg
We need to make some important observations about the constraints for this model. 
First, these constraints look somewhat different from the usual linear sum of products. 
However, these constraints are equivalent to a sum of products. For example, the 
constraint for the required percentage of corn can be expressed as:

.30X1 1 .05X2 1 .20X3 1 .10X4

8,000
$ .20

or as:

.30X1

8,000
1

.05X2

8,000
1

.20X3

8,000
1

.10X4

8,000
$ .20

or, if you multiply both sides of the inequality by 8,000, as:

.30X1 1 .05X2 1 .20X3 1 .10X4 $ 1,600

All these constraints define exactly the same set of feasible values for X1,  . . ., X4.
Theoretically, we should be able to implement and use any of these constraints to solve 
the problem. However, we need to consider a number of practical issues in determining 
which form of the constraint to implement.

Notice that the LHS formulas for the first and second versions of the constraint 
represent the proportion of corn in the 8,000 pound order, whereas the LHS in the 
third  version of the constraint represents the total pounds of corn in the 8,000 pound 
order. Because we must implement the LHS formula of one of these constraints in 
the spreadsheet, we need to decide which number to display in the spreadsheet—the 
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A Blending Problem 85

proportion (or percentage) of corn in the order, or the total pounds of corn in the order. 
If we know one of these values, we can easily set up a formula to calculate the other 
value. But, when more than one way to implement a constraint exists (as is usually the 
case), we need to consider what the value of the LHS portion of the constraint means to 
the user of the spreadsheet so that the results of the model can be reported as clearly as 
possible.

Another issue to consider involves scaling the model so that it can be solved 
accurately. For example, suppose we decide to implement the LHS formula for the first 
or second version of the corn constraint given earlier so that the proportion of corn in the 
8,000 pound feed order appears in the spreadsheet. The coefficients for the variables in 
these constraints are very small values. In either case, the coefficient for X2 is 0.05/8,000 
or 0.000006250.

As Solver tries to solve an LP problem, it must perform intermediate calculations 
that make the various coefficients in the model larger or smaller. As numbers become 
extremely large or small, computers often run into storage or represen tation problems 
that force them to use approximations of the actual numbers. This opens the door for 
problems to occur in the accuracy of the results and, in some cases, can prevent the 
computer from solving the problem at all. So, if some   coefficients in the initial model 
are extremely large or extremely small, it is a good idea to rescale the problem so that 
all the coefficients are of similar magnitudes.

3.12.5 re-SCAliNg The MODel
To illustrate how a problem is rescaled, consider the following equivalent formulation 
of the Agri-Pro problem:

X1 5 amount of feed 1 in thousands of pounds to use in the mix
X2 5 amount of feed 2 in thousands of pounds to use in the mix
X3 5 amount of feed 3 in thousands of pounds to use in the mix
X4 5 amount of feed 4 in thousands of pounds to use in the mix

The objective function and constraints are represented by:

MIN: 250X1 1 300X2 1 320X3 1 150X4 } total cost
Subject to: X1 1 X2 1 X3 1 X4 5      8 } pounds of feed required

 
.30X1 1 .05X2 1 .20X3 1 .10X4

8
$ 0.20 } min % of corn required

 
.10X1 1 .30X2 1 .15X3 1 .10X4

8
$ 0.15 } min % of grain required

 
.20X1 1 .20X2 1 .20X3 1 .30X4

8
$ 0.15 } min % of minerals required

 X1, X2, X3, X4 $ 0 } nonnegativity conditions

Each unit of X1, X2, X3, and X4 now represents 1,000 pounds of feed 1, 2, 3, and 4, 
respectively. So the objective now reflects the fact that each unit (or each 1,000 pounds) 
of X1, X2, X3, and X4 costs $250, $300, $320, and $150, respectively. The constraints have 
also been adjusted to reflect that the variables now represent thousands of pounds of 
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the different feeds. Notice that the smallest coefficient in the constraints is now 0.05/8 = 
0.00625 and the largest coefficient is 8 (i.e., the RHS value for the first constraint). In our 
original formulation, the smallest coefficient was 0.00000625 and the largest coefficient 
was 8,000. By rescaling the  problem, we dramatically reduced the range between the 
smallest and largest coefficients in the model.

u s i n g  A u t o m a t i c  S c a l i n g
The Engine tab in the Analytic Solver task pane offers a “Use Automatic Scaling” 
option. If you use this option, Solver attempts to rescale the data in your model 
before solving the problem. Although this option is very effective, you should not 
rely solely on it to solve all scaling problems that might occur in your model.

S c a l i n g  a n d  l i n e a r  M o d e l s
When using Solver ’s LP optimizers, several internal tests are automatically 
performed to verify that the model is truly linear in the objective and constraints. 
If Solver’s tests indicate that a model is not linear, a message appears indicating 
that the conditions for linearity are not satisfied. The internal tests Solver applies 
are nearly 100% accurate but sometimes indicate that a model is not linear when, 
in fact, it is. This is most likely to occur when a model is poorly scaled. If you 
encounter this message and you are certain that your model is linear, re-solving 
the problem might result in Solver identifying the optimal solution. If this does 
not work, try reformulating your model so that it is more evenly scaled.

3.12.6 iMpleMeNTiNg The MODel
One way to implement this model in a spreadsheet is shown in Figure 3.30 (and in 
file Fig3-30.xlsm that accompanies this book). In this spreadsheet, cells B5 through E5 
contain the costs of the different types of feeds. The percentage of the different nutrients 
found in each type of feed is listed in cells B10 through E12.

Cell G6 contains the total amount of feed (in 1,000s of pounds) required for the 
order, and the minimum percentage of the three types of nutrients required by the 
customer order are entered in cells G10 through G12. Notice that the  values in column 
G correspond to the RHS values for the various constraints in the model.

In this spreadsheet, cells B6, C6, D6, and E6 are reserved to represent the decision 
variables X1, X2, X3, and X4. These cells will ultimately indicate how much of each type 
of feed should be mixed together to fill the order. The objective function for the problem 
is implemented in cell F5 using the  formula:

Formula for cell F5:          =SUMPRODUCT(B5:E5,B6:E6)

The LHS formula for the first constraint involves calculating the sum of the decision 
variables. This relationship is implemented in cell F6 as:

Formula for cell F6:          =SUM(B6:E6)

The RHS for this constraint is in cell G6. The LHS formulas for the other three 
constraints are implemented in cells F10, F11, and F12. Specifically, the LHS formula for 
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the second constraint (representing the proportion of corn in the mix) is implemented 
in cell F10 as:

Formula for cell F10:           5SUMPRODUCT(B10:E10,$B$6:$E$6)/$G$6
(Copy to F11 through F12.)

This formula is then copied to cells F11 and F12 to implement the LHS formulas for 
the remaining two constraints. Again, cells G10 through G12 contain the RHS values 
for these constraints.

Notice that this model is implemented in a user-friendly way. Each constraint cell has 
a logical interpretation that communicates important information. For any given values 
for the variable cells (B6 through E6) totaling 8 (in thousands), the constraint cells (F10 
through F12) indicate the actual percentage of corn, grain, and minerals in the mix.

3.12.7 SOlViNg The prObleM
Figure 3.31 shows the Solver parameters required to solve this problem. The optimal 
solution is shown in Figure 3.32.

3.12.8 ANAlyziNg The SOluTiON
The optimal solution shown in Figure 3.32 indicates that the 8,000 pound feed order is 
produced at the lowest possible cost by mixing 4,500 pounds of feed 1 1X1 5 4.5 2  with 
2,000 pounds of feed 2 1X2 5 2 2  and 1,500 pounds of feed 4 1X4 5 1.5 2 . Cell F6 indicates 
this produces exactly 8,000 pounds of feed. Furthermore, cells F10 through F12 indicate 
this mix contains 20% corn, 15% grain, and 21.88% minerals. The total cost of producing 
this mix is $1,950, as indicated by cell F5.

Key Cell Formulas

Cell Formula Copied to

F5 5SUMPRODUCT(B5:E5,B6:E6) --
F6 5SUM(B6:E6) --
F10 5SUMPRODUCT(B10:E10,$B$6:$E$6)/$G$6 F11:F12

Variable Cells

Objective Cell

Constraint Cells

Figure 3.30 Spreadsheet model for Agri-Pro’s blending problem
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Solver Settings:

Objective: F5 (Min)
Variable cells: B6:E6
Constraints: 
 F10:F12 .5 G10:G12
 F6 5 G6
 B6:E6 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.31

Solver settings 
for the blending 
problem

Figure 3.32 Optimal solution to Agri-Pro’s blending problem

h a v e  y o u  S e e n  l p  a t  y o u r  

g r o c e r y  S t o r e ?
The next time you are at your local grocery store, make a special trip down the 
aisle where the pet food is located. On the back of just about any bag of dog or cat 
food, you should see the following sort of label (taken directly from the author’s 
dog’s favorite brand of food):

This product contains:

•	 At least 21% crude protein
•	 At least 8% crude fat
•	 At most 4.5% crude fiber
•	 At most 12% moisture

(Continued)
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A Production and Inventory Planning Problem  89

3.13 A Production and Inventory  
Planning Problem
One of the most fundamental problems facing manufacturing companies is that of 
planning their production and inventory levels. This process considers demand forecasts 
and resource constraints for the next several time periods and determines production 
and inventory levels for each of these time periods to meet the anticipated demand in 
the most economical way. As the following example illustrates, the multiperiod nature 
of these problems can be handled very conveniently in a spreadsheet to greatly simplify 
the production planning process.

The Upton Corporation manufactures heavy duty air compressors for the home 
and light industrial markets. Upton is presently trying to plan its production and 
inventory levels for the next 6 months. Because of seasonal fluctuations in utility 
and raw material costs, the per unit cost of producing air compressors varies from 
month to month—as does the demand for air compressors. Production capacity 
also varies from month to month due to differences in the number of working days, 
vacations, and scheduled maintenance and training. The following table summa-
rizes the monthly production costs, demands, and production capacity that Upton’s 
management expects to face over the next 6 months.

Month

1 2 3 4 5 6

Unit Production Cost $240 $250 $265 $285 $280 $260
Units Demanded 1,000 4,500 6,000 5,500 3,500 4,000
Maximum Production 4,000 3,500 4,000 4,500 4,000 3,500

Given the size of Upton’s warehouse, a maximum of 6,000 units can be held in 
inventory at the end of any month. The owner of the company likes to keep at least 
1,500 units in inventory as safety stock to meet unexpected demand contingencies. 
To maintain a stable workforce, the company wants to produce no less than one 
half of its maximum production capacity each month. Upton’s controller estimates 
that the cost of carrying a unit in any given month is approximately equal to 1.5% 
of the unit production cost in the same month. Upton estimates the number of units 
carried in inventory each month by averaging the beginning and ending inventory 
for each month.

There are 2,750 units currently in inventory. Upton wants to identify the produc-
tion and inventory plan for the next 6 months that will meet the expected demand 
each month while minimizing production and inventory costs.

In making such statements, the manufacturer guarantees that these nutritional 
requirements are met by the product. Various ingredients (such as corn, soybeans, 
meat and bone meal, animal fat, wheat, and rice) are blended to make the product. 
Most companies are interested in determining the blend of ingredients that satisfies 
these requirements in the least costly way. Not surprisingly, almost all of the major 
pet food manufacturing companies use LP extensively in their production process 
to solve this type of blending problem.

47412_ch03_ptg01_046-140.indd   89 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



90 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

3.13.1 DeFiNiNg The DeCiSiON VAriAbleS
The basic decision Upton’s management team faces is how many units to manufacture 
in each of the next 6 months. We will represent these decision variables as follows:

P1 5 number of units to produce in month 1
P2 5 number of units to produce in month 2
P3 5 number of units to produce in month 3
P4 5 number of units to produce in month 4
P5 5 number of units to produce in month 5
P6 5 number of units to produce in month 6

3.13.2 DeFiNiNg The ObjeCTiVe FuNCTiON
The objective in this problem is to minimize the total production and inventory costs. 
The total production cost is computed easily as:

Production Cost 5 240P1 1 250P2 1 265P3 1 285P4 1 280P5 1 260P6

The inventory cost is a bit trickier to compute. The cost of holding a unit in inventory 
each month is 1.5% of the production cost in the same month. So, the unit inventory cost 
is $3.60 in month 1 (i.e., 1.5% 3 $240 5 $3.60), $3.75 in month 2 (i.e., 1.5% 3 $250 5 $3.75), 
and so on. The number of units held each month is to be computed as the average of the 
beginning and ending inventory for the month. Of course, the beginning inventory in 
any given month is equal to the ending inventory from the previous month. So if we let Bi

represent the beginning inventory for month i, the total inventory cost is given by:

Inventory Cost 5 3.6(B1 1 B2)/2 1 3.75(B2 1 B3)/2 1 3.98(B3 1 B4)/2
 1 4.28(B4 1 B5)/2 1 4.20(B5 1 B6)/2 1 3.9(B6 1 B7)/2

Note that the first term in the previous formula computes the inventory cost for 
month 1 using B1 as the beginning inventory for month 1 and B2 as the ending inventory 
for month 1. Thus, the objective function for this problem is given as:

MIN:                240P11 250P2 1 265P3 1 285P4 1 280P5 1 260P6

1 3.6(B1 1 B2)/2 1 3.75(B2 1 B3)/2 1 3.98(B3 1 B4)/2    6   total cost
1 4.28(B4 1 B5)/2 1 4.20(B5 1 B6)/2 1 3.9(B6 1 B7)/2

3.13.3 DeFiNiNg The CONSTrAiNTS
There are two sets of constraints that apply to this problem. First, the number of units 
produced each month cannot exceed the maximum production levels stated in the 
problem. However, we must also make sure that the number of units produced each 
month is no less than one half of the maximum production capacity for the month. 
These conditions can be expressed concisely as follows:

 2,000 # P1 # 4,000 } production level for month 1
 1,750 # P2 # 3,500 } production level for month 2
 2,000 # P3 # 4,000 } production level for month 3
 2,250 # P4 # 4,500 } production level for month 4
 2,000 # P5 # 4,000 } production level for month 5
 1,750 # P6 # 3,500 } production level for month 6
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A Production and Inventory Planning Problem  91

These restrictions simply place the appropriate lower and upper limits on the values 
each of the decision variables may assume. Similarly, we must ensure that the ending 
inventory each month falls between the minimum and maximum allowable inventory 
levels of 1,500 and 6,000, respectively. In general, the ending inventory for any month 
is computed as:

Ending Inventory 5 Beginning Inventory 1 Units Produced 2 Units Sold

Thus, the following restrictions indicate that the ending inventory in each of the next 
6 months (after meeting the demand for the month) must fall between 1,500 and 6,000.

1,500 # B1 1 P1 2 1,000 # 6,000 } ending inventory for month 1
1,500 # B2 1 P2 2 4,500 # 6,000 } ending inventory for month 2
1,500 # B3 1 P3 2 6,000 # 6,000 } ending inventory for month 3
1,500 # B4 1 P4 2 5,500 # 6,000 } ending inventory for month 4
1,500 # B5 1 P5 2 3,500 # 6,000 } ending inventory for month 5
1,500 # B6 1 P6 2 4,000 # 6,000 } ending inventory for month 6

Finally, to ensure that the beginning balance in 1 month equals the ending balance 
from the previous month, we have the following additional restrictions:

B2 5 B1 1 P1 2 1,000
B3 5 B2 1 P2 2 4,500
B4 5 B3 1 P3 2 6,000
B5 5 B4 1 P4 2 5,500
B6 5 B5 1 P5 2 3,500
B7 5 B6 1 P6 2 4,000

3.13.4 iMpleMeNTiNg The MODel
The LP formulation for Upton’s production and inventory planning problem may be 
summarized as:

MIN: 240P1 1 250P2 1 265P3 1 285P4 1 280P5 1 260P6 

13.6 1B1 1 B2 2/2 1 3.75 1B2 1 B3 2/2 1 3.98 1B3 1 B4 2/2 

14.28 1B4 1 B5 2/2 1 4.20 1B5 1 B6 2/2 1 3.9 1B6 1 B7 2/2      

total cost

Subject to: 2,000 # P1 # 4,000         } production level for month 1
  1,750 # P2 # 3,500          } production level for month 2
  2,000 # P3 # 4,000          } production level for month 3
  2,250 # P4 # 4,500          } production level for month 4
  2,000 # P5 # 4,000          } production level for month 5
  1,750 # P6 # 3,500          } production level for month 6
  1,500 # B1 1 P1 2 1,000 # 6,000 } ending inventory for month 1
  1,500 # B2 1 P2 2 4,500 # 6,000 } ending inventory for month 2
  1,500 # B3 1 P3 2 6,000 # 6,000 } ending inventory for month 3
  1,500 # B4 1 P4 2 5,500 # 6,000 } ending inventory for month 4
  1,500 # B5 1 P5 2 3,500 # 6,000 } ending inventory for month 5
  1,500 # B6 1 P6 2 4,000 # 6,000 } ending inventory for month 6

6
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92 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

where:
B2 5 B1 1 P1 2 1,000
B3 5 B2 1 P2 2 4,500
B4 5 B3 1 P3 2 6,000
B5 5 B4 1 P4 2 5,500
B6 5 B5 1 P5 2 3,500
B7 5 B6 1 P6 2 4,000

A convenient way of implementing this model is shown in Figure 3.33 (and in file 
Fig3-33.xlsm that accompanies this book). Cells C7 through H7 in this spreadsheet 
represent the number of air compressors to produce in each month and therefore 
correspond to the decision variables (P1 through P6) in our model. We will place 
appropriate upper and lower bounds on these cells to enforce the restrictions 
represented by the first six constraints in our model. The estimated demands for each 
time period are listed just below the decision variables in cells C8 through H8.

Key Cell Formulas

Cell Formula Copied to

C9 5C61C72C8 D9:H9
D6 5C9 E6:H6
C18 5$B$18*C17 D18:H18
C20 5C17*C7 D20:H20
C21 5C18*(C61C9)/2 D21:H21
H23 5SUM(C20:H21) --

Objective Cell

Variable Cells

Constraint Cells

Figure 3.33 Spreadsheet model for Upton’s production problem
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With the beginning inventory level of 2,750 entered in cell C6, the ending inventory 
for month 1 is computed in cell C9 as follows:

Formula for cell C9:             5C61C72C8
(Copy to cells D9 through H9.)

This formula can be copied to cells D9 through H9 to compute the ending inventory 
levels for each of the remaining months. We will place appropriate lower and upper 
limits on these cells to enforce the restrictions indicated by the second set of six 
constraints in our model.

To ensure that the beginning inventory in month 2 equals the ending inventory from 
month 1, we place the following formula in cell D6:

Formula for cell D6:             5C9
(Copy to cells E6 through H6.)

This formula can be copied to cells E6 through H6 to ensure that the beginning inventory 
levels in each month equal the ending inventory levels from the previous month. It is 
important to note that because the beginning inventory levels can be calculated directly 
from the ending inventory levels, there is no need to specify these cells as constraint 
cells to Solver.

With the monthly unit production costs entered in cell C17 through H17, the monthly 
unit carrying costs are computed in cells C18 through H18 as follows:

Formula for cell C18:           5$B$18*C17
(Copy to cells D18 through H18.)

The total monthly production and inventory costs are then computed in rows 20 and 
21 as follows:

Formula for cell C20:           5C17*C7
(Copy to cells D20 through H20.)

Formula for cell C21:           5C18*(C61C9)/2
(Copy to cells D21 through H21.)

Finally, the objective function representing the total production and inventory costs 
for the problem is implemented in cell H23 as follows:

Formula for cell H23:           5SUM(C20:H21)

3.13.5 SOlViNg The prObleM
Figure 3.34 shows the Solver settings required to solve this problem. The optimal 
solution is shown in Figure 3.35.

Solver Settings:

Objective: H23 (Min)
Variable cells: C7:H7
Constraints: 
 C9:H9 ,5 C15:H15
 C9:H9 .5 C14:H14
 C7:H7 ,5 C12:H12
 C7:H7 .5 C11:H11

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.34

Solver settings 
for the production 
problem
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94 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

3.13.6 ANAlyziNg The SOluTiON
The optimal solution shown in Figure 3.35 indicates Upton should produce 4,000 units 
in period 1, 3,500 units in period 2, 4,000 units in period 3, 4,250 units in period 4, 4,000 
units in period 5, and 3,500 units in period 6. Although the demand for air compressors 
in month 1 can be met by the beginning inventory, production in month 1 is required to 
build inventory for future months in which demand exceeds the available production 
capacity. Notice that this production schedule calls for the company to operate at full 
production capacity in all months except month 4. Month 4 is expected to have the 
highest per unit production cost. Therefore, it is more economical to produce extra 
units in prior months and hold them in inventory for sale in month 4.

It is important to note that although the solution to this problem provides a 
production plan for the next 6 months, it does not bind Upton’s management team to 
implement this particular solution throughout the next 6 months. At an operational 
level, the management team is most concerned with the decision that must be made 
now, namely, the number of units to schedule for production in month 1. At the 
end of month 1, Upton’s management should update the inventory, demand, and 
cost estimates, and re-solve the problem to identify the production plan for the next 
6 months (presently months 2 through 7). At the end of month 2, this process should 
be repeated again. Thus, multiperiod planning models such as this should be used 
repeatedly on a periodic basis as part of a rolling planning process. 

3.14 A Multiperiod Cash Flow Problem
Numerous business problems involve decisions that have a ripple effect on future 
decisions. In the previous example, we saw how the manufacturing plans for one 
time period can impact the amount of resources available and the inventory carried 

Figure 3.35 Optimal solution to Upton’s production problem

47412_ch03_ptg01_046-140.indd   94 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A Multiperiod Cash Flow Problem 95

in subsequent time periods. Similarly, many financial decisions involve multiple time 
periods because the amount of money invested or spent at one point in time directly 
affects the amount of money available in subsequent time periods. In these types of 
multi-period problems, it can be difficult to account for the consequences of a current 
decision on future time periods without an LP model. The formulation of such a model 
is illustrated next in an example from the world of finance.

Taco-Viva is a small but growing restaurant chain specializing in Mexican fast food. 
The management of the company has decided to build a new location in Wilming-
ton, North Carolina, and wants to establish a construction fund (or sinking fund) to 
pay for the new facility. Construction of the restaurant is expected to take 6 months 
and cost $800,000. Taco-Viva’s contract with the construction company requires it 
to make payments of $250,000 at the end of the second and fourth months, and a 
final payment of $300,000 at the end of the sixth month when the restaurant is com-
pleted. The company can use four investment opportunities to establish the con-
struction fund; these investments are summarized in the following table:

investment
Available  
in Month

Months to 
Maturity

Yield at 
Maturity

A 1, 2, 3, 4, 5, 6 1 1.8%
B 1, 3, 5 2 3.5%
C 1, 4 3 5.8%
D 1 6 11.0%

The table indicates that investment A will be available at the beginning of each 
of the next 6 months, and funds invested in this manner mature in 1 month with a 
yield of 1.8%. Funds can be placed in investment C only at the beginning of months 
1 and/or 4, and mature at the end of 3 months with a yield of 5.8%. 

The management of Taco-Viva needs to determine the investment plan that 
allows them to meet the required schedule of payments while placing the least 
amount of money in the construction fund.

This is a multi-period problem because a 6-month planning horizon must be 
considered. That is, Taco-Viva must plan which investment alternatives to use at 
various times during the next 6 months.

3.14.1 DeFiNiNg The DeCiSiON VAriAbleS
The basic decision faced by the management of Taco-Viva is how much money to place 
in each investment vehicle during each time period when the investment opportunities 
are available. To model this problem, we need different variables to represent each 
investment/time period combination. This can be done as:

A1, A2, A3, A4, A5, A6  5  the amount of money (in $1,000s) placed in investment A at 
the beginning of months 1, 2, 3, 4, 5, and 6, respectively

B1, B3, B5  5  the amount of money (in $1,000s) placed in investment B at 
the beginning of months 1, 3, and 5, respectively

 C1, C4  5  the amount of money (in $1,000s) placed in investment C at 
the beginning of months 1 and 4, respectively

 D1  5  the amount of money (in $1,000s) placed in investment D at 
the beginning of month 1

47412_ch03_ptg01_046-140.indd   95 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



96 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

Notice that all variables are expressed in units of thousands of dollars to maintain a 
reasonable scale for this problem. So, keep in mind that when referring to the amount 
of money represented by our variables, we mean the amount in thousands of dollars.

3.14.2 DeFiNiNg The ObjeCTiVe FuNCTiON
Taco-Viva’s management wants to minimize the amount of money it must initially 
place in the construction fund in order to cover the payments that will be due under 
the contract. At the beginning of month 1, the company wants to invest some amount 
of money that, along with its investment earnings, will cover the required payments 
without an additional infusion of cash from the company. Because A1, B1, C1, and 
D1 represent the initial amounts invested by the company in month 1, the objective 
function for the problem is:

 MIN: A1 1 B1 1 C1 1 D1  } total cash invested at the beginning of month 1

3.14.3 DeFiNiNg The CONSTrAiNTS
To formulate the cash-flow constraints for this problem, it is important to clearly 
identify: (1) when the different investments can be made, (2) when the different 
investments will mature, and (3) how much money will be available when each 
investment matures. Figure 3.36 summarizes this information.

The negative values, represented by –1 in Figure 3.36, indicate when dollars can flow 
into each investment. The positive values indicate how much these same dollars will 
be worth when the investment matures, or when dollars flow out of each investment. 
The double-headed arrow symbols indicate time periods in which funds remain in a 
particular investment. For example, the third row of the table in Figure 3.36 indicates 
that every dollar placed in investment C at the beginning of month 1 will be worth 
$1.058 when this investment matures 3 months later—at the beginning of month 4. (Note 
that the beginning of month 4 occurs at virtually the same instant as the end of month 3. 

Cash Inflow/Outflow at the Beginning of Month

Investment 1 2 3 4 5 76

A1

B1

C1

D1

A2

A3

B3

A4

C4

A5

B5

A6

21 1.018
21 1.035
21 1.058
21 1.11

21 1.018
21 1.018
21 1.035

21 1.018
21 1.058

21 1.018
21 1.035

21 1.018

Req’d Payments
(in $1,000s) $0 $0 $250 $0 $250 $0 $300

Figure 3.36

Cash-flow 
summary table 
for Taco-Viva’s 
investment  
opportunities
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A Multiperiod Cash Flow Problem 97

Thus, there is no practical difference between the beginning of one time period and the 
end of the previous time period.)

Assuming that the company invests the amounts represented by A1, B1, C1, and D1

at the beginning of month 1, how much money will be available to reinvest or make 
the required payments at the beginning of months 2, 3, 4, 5, 6, and 7? The answer to 
this question allows us to generate the set of cash-flow constraints needed for this 
problem.

As indicated by the second column of Figure 3.36, the only funds maturing at the 
beginning of month 2 are those placed in investment A at the beginning of month 
1 1A1 2 . The value of the funds maturing at the beginning of month 2 is $1.018A1.
Because no payments are required at the beginning of month 2, all the maturing 
funds must be reinvested. But the only new investment opportunity available at 
the beginning of month 2 is investment A 1A2 2 . Thus, the amount of money placed 
in investment A at the beginning of month 2 must be $1.018A1. This is expressed by 
the constraint:

1.018A1 5 A2 1 0   } cash flow for month 2

This constraint indicates that the total amount of money maturing at the beginning 
of month 2 11.018A1 2  must equal the amount of money reinvested at the beginning of 
month 2 1A2 2  plus any payment due in month 2 ($0).

Now, consider the cash flows that will occur during month 3. At the beginning 
of month 3, any funds that were placed in investment B at the beginning of month 
1 1B1 2  will mature and be worth a total of $1.035B1. Similarly, any funds placed in 
investment A at the beginning of month 2 1A2 2  will mature and be worth a total of 
$1.018A2

. Because a payment of $250,000 is due at the beginning of month 3, we must 
ensure that the funds maturing at the beginning of month 3 are sufficient to cover this 
payment, and that any remaining funds are placed in the investment opportunities 
available at the beginning of month 3 1A3 and B3 2 . This requirement can be stated 
algebraically as:

1.035B1 1 1.018A2 5 A3 1 B3 1 250  } cash flow for month 3

This constraint indicates that the total amount of money maturing at the beginning 
of month 3 11.035B1 1 1.018A2 2  must equal the amount of money reinvested at the 
beginning of month 3 1A3 1 B3 2  plus the payment due at the beginning of month 3 
($250,000).

The same logic we applied to generate the cash-flow constraints for months 2 and 3 
can also be used to generate cash-flow constraints for the remaining months. Doing so 
produces a cash-flow constraint for each month that takes on the general form:

1
Total $ amount 
maturing at the 

beginning of 
the month

2 5 1
Total $ amount 

reinvested at the 
beginning of 
 the month

2 1 1
Payment  
due at the 

beginning of 
the month

2
Using this general definition of the cash flow relationships, the constraints for the 

remaining months are represented by:

1.058C1 1 1.018A3 5 A4 1 C4 } cash flow for month 4
1.035B3 1 1.018A4 5 A5 1 B5 1 250 } cash flow for month 5
1.018A5 5 A6 } cash flow for month 6
1.11D1 1 1.058C4 1 1.035B5 1 1.018A6 5 300 } cash flow for month 7

47412_ch03_ptg01_046-140.indd   97 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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To implement these constraints in the spreadsheet, we must express them in a 
slightly different (but algebraically equivalent) manner. Specifically, to conform to our 
general definition of an equality constraint 1 f 1X1, X2,  . . ., Xn 2 5 b 2  we need to rewrite 
the cash-flow constraints so that all the variables in each constraint appear on the LHS of 
the equal sign, and a numeric constant appears on the RHS of the equal sign. This can 
be done as:

1.018A1 2 1A2 5 0 } cash flow for month 2
1.035B1 1 1.018A2 2 1A3 2 1B3 5 250 } cash flow for month 3
1.058C1 1 1.018A3 2 1A4 2 1C4 5 0 } cash flow for month 4
1.035B3 1 1.018A4 2 1A5 2 1B5 5 250 } cash flow for month 5
1.018A5 2 1A6 5 0 } cash flow for month 6
1.11D1 1 1.058C4 1 1.035B5 1 1.018A6 5 300 } cash flow for month 7

There are two important points to note about this alternate expression of the 
constraints. First, each constraint takes on the following general form, which is 
algebraically equivalent to our previous general definition for the cash-flow constraints:

1
Total $ amount 
maturing at the 

beginning of 
the month

2 2 1
Total $ amount 

reinvested at the 
beginning of 
 the month

2 5 1
Payment  
due at the  

beginning of 
the month

2
Although the constraints look slightly different in this form, they enforce the same 

relationships among the variables as expressed by the earlier constraints.
Second, the LHS coefficients in the alternate expression of the constraints correspond 

directly to the values listed in the cash-flow summary table in Figure 3.36. That is, the 
coefficients in the constraint for month 2 correspond to the values in the column for 
month 2 in Figure 3.36; the coefficients for month 3 correspond to the values in the 
column for month 3, and so on. This relationship is true for all the constraints and will 
be very helpful in implementing this model in the spreadsheet.

3.14.4 iMpleMeNTiNg The MODel
The LP model for Taco-Viva’s construction fund problem is summarized as:

MIN: A1 1 B1 1 C1 1 D1 } cash invested at beginning of month 1

Subject to:

1.018A1 2 1A2  5     0 } cash °ow for month 2
1.035B1 1 1.018A2 2 1A3 2 1B3  5 250 } cash °ow for month 3
1.058C1 1 1.018A3 2 1A4 2 1C4  5     0 } cash °ow for month 4
1.035B3 1 1.018A4 2 1A5 2 1B5   5 250 } cash °ow for month 5
1.018A5 2 1A6  5     0 } cash °ow for month 6
1.11D1 1 1.058C4 1 1.035B5 1 1.018A6 5 300 } cash °ow for month 7
Ai, Bi, Ci, Di, $ 0, for all i } nonnegativity conditions

One approach to implementing this model is shown in Figure 3.37 (and file  
Fig3-37.xlsm that accompanies this book). The first three columns of this spreadsheet 
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summarize the different investment options that are available and the months in which 
money may flow into and out of these investments. Cells D6 through D17 represent the 
decision variables in our model and indicate the amount of money (in $1,000s) to be 
placed in each of the possible investments.

The objective function for this problem requires that we compute the total amount of 
money being invested in month 1. This was done in cell D18 as follows:

Formula for cell D18:      =SUMIF(B6:B17,1,D6:D17) 

This SUMIF( ) function compares the values in cells B6 through B17 to the value 1 (its 
second argument). If any of the values in B6 through B17 equal 1, it sums the corresponding 
values in cells D6 through D17. In this case, the values in cells B6 through B9 all equal 1; 
therefore, the function returns the sum of the values in cells D6 through D9. Note that 
although we could have implemented the objective using the formula SUM(D6:D9), the 
previous SUMIF( ) formula makes for a more modifiable and reliable model. If any of the 
values in column B are changed to or from 1, the SUMIF( ) function continues to represent 
the appropriate objective function, whereas the SUM( ) function would not.

Our next job is to implement the cash inflow/outflow table described earlier in Figure 
3.36. Recall that each row in Figure 3.36 corresponds to the cash flows associated with 
a particular investment alternative. This table can be implemented in our spreadsheet 
using the following formula:

Formula for cell F6: 5IF($B65F$5,-1,IF($C65F$5,11$E6,IF(AND($B6<F$5,$C6>F$5),”<--->”,” “)))
(Copy to cells F6 through L17.)

H18:L18

Key Cell Formulas

Cell Formula Copied to

D18 5SUMIF(B6:B17,1,D6:D17) --
F6 5IF($B65F$5,21,IF($C6=F$5,11$E6,IF(AND($B6,F$5,$C6.F$5),",----.",""))) F6:L17
G18 5SUMPRODUCT(G6:G17,$D$6:$D$17)

Variable Cells

Objective Cell

Constraint Cells

Figure 3.37 Spreadsheet model for Taco-Viva’s construction fund problem
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100 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

This formula first checks to see if the “month of cash inflow” value in column B 
matches the month indicator value in row 5. If so, the formula returns the value -1. 
Otherwise, it goes on to check to see if the “month of cash outflow” value in column C 
matches the month indicator value in row 5. If so, the formula returns a value equal to 1 
plus the return for the investment (from column E). If neither of the first two conditions 
are met, the formula next checks whether the current month indicator in row 5 is larger 
than the “month of cash inflow” value (column B) and smaller than the “month of cash 
outflow” value (column C). If so, the formula returns the characters “<---->” to indicate 
periods in which funds neither flow into or out of a particular investment. Finally, if 
none of the previous three conditions are met, the formula simply returns an empty (or 
null) string “”. Although this formula looks a bit intimidating, it is simply a set of three 
nested IF functions. More importantly, it automatically updates the cash flow summary 
if any of the values in columns B, C, or E are changed, increasing the reliability and 
modifiability of the model.

Earlier, we noted that the values listed in columns 2 through 7 of the cash inflow/
outflow table correspond directly to the coefficients appearing in the various cash-
flow constraints. This property allows us to implement the cash-flow constraints in the 
spreadsheet conveniently. For example, the LHS formula for the cash-flow constraint 
for month 2 is implemented in cell G18 through the formula:

Formula in cell G18: 5SUMPRODUCT(G6:G17,$D$6:$D$17)
(Copy to H18 through L18.)

This formula multiplies each entry in the range G6 through G17 by the corresponding 
entry in the range D6 through D17 and then sums these individual products. This 
formula is copied to cells H18 through L18. (Notice that the SUMPRODUCT( ) formula 
treats cells containing labels and null strings as if they contained the value zero.) Take 
a moment now to verify that the formulas in cells G18 through L18 correspond to the 
LHS formulas of the cash-flow constraints in our model. Cells G19 through L19 list the 
RHS values for the cash-flow constraints.

3.14.5 SOlViNg The prObleM
To find the optimal solution to this model, we must indicate to Solver the objective 
cell, variable cells, and constraint cells identified in Figure 3.37. Figure 3.38 shows 
the Solver settings required to solve this problem. The optimal solution is shown in 
Figure 3.39.

Solver Settings:

Objective: D18 (Min)
Variable cells: D6:D17
Constraints: 
 G18:L18 5 G19:L19
 D6:D17 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.38

Solver settings for 
the construction 
fund problem
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A Multiperiod Cash Flow Problem 101

3.14.6 ANAlyziNg The SOluTiON
The value of the objective cell (D18) in Figure 3.39 indicates that a total of $741,363 
must be invested to meet the payments on Taco-Viva’s construction project. Cells D6 
and D8 indicate that approximately $241,237 should be placed in investment A at the 
beginning of month 1 1A1 5 241.237 2  and approximately $500,126 should be placed in 
investment C 1C1 5 500.126 2 .

At the beginning of month 2, the funds placed in investment A at the beginning of 
month 1 will mature and be worth $245,580 1241,237 3 1.018 5 245,580 2 . The value in 
cell D10 indicates these funds should be placed back into investment A at the beginning 
of month 2 1A2 5 245.580 2 .

At the beginning of month 3, the first $250,000 payment is due. At that time, the 
funds placed in investment A at the beginning of month 2 will mature and be worth 
$250,000 11.018 3 245,580 5 250,000 2—allowing us to make this payment. 

At the beginning of month 4, the funds placed in investment C at the beginning of 
month 1 will mature and be worth $529,134. Our solution indicates that $245,580 of 
this amount should be placed in investment A 1A4 5 245.580 2  and the rest should be 
reinvested in investment C 1C4 5 283.554 2 .

If you trace through the cash flows for the remaining months, you will discover that 
our model is doing exactly what it was designed to do. The amount of money scheduled 
to mature at the beginning of each month is exactly equal to the amount of money 
scheduled to be reinvested after required payments are made. Thus, out of an infinite 
number of possible investment schedules, our LP model found the one schedule that 
requires the least amount of money up front.

Figure 3.39 Optimal solution to Taco-Viva’s construction fund problem
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102 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

3.14.7 MODiFyiNg The TACO-ViVA  
prObleM TO ACCOuNT FOr riSk (OpTiONAl)
In investment problems like this, it is not uncommon for decision makers to place 
limits on the amount of risk they are willing to assume. For instance, suppose the chief 
financial officer (CFO) for Taco-Viva assigned the following risk ratings to each of the 
possible investments on a scale from 1 to 10 (where 1 represents the least risk and 10 
the greatest risk). We will also assume that the CFO wants to determine an investment 
plan where the weighted average risk level does not exceed 5. 

investment risk rating

A 1
B 3
C 8
D 6

We will need to formulate an additional constraint for each time period to ensure 
the weighted average risk level never exceeds 5. To see how this can be done, let’s start 
with month 1.

In month 1, funds can be invested in A1, B1, C1, and/or D1, and each investment is 
associated with a different degree of risk. To  calculate the weighted average risk during 
month 1, we must multiply the risk factors for each investment by the proportion of 
money in that investment. This is represented by:

Weighted average risk in month 1 5
1A1 1 3B1 1 8C1 1 6D1

A1 1 B1 1 C1 1 D1

We can ensure that the weighted average risk in month 1 does not exceed the value 5 
by including the following constraint in our LP model:

 
1A1 1 3B1 1 8C1 1 6D1

A1 1 B1 1 C1 1 D1
# 5         } risk constraint for month 1

Now, consider month 2. According to the column for month 2 in our cash inflow/
outflow table, the company can have funds invested in B1, C1, D1, and/or A2 during 
this month. Thus, the weighted average risk that occurs in month 2 is defined by:

Weighted average risk in month 2 5
3B1 1 8C1 1 6D1 1 1A2

B1 1 C1 1 D1 1 A2

Again, the following constraint ensures that this quantity never exceeds 5:

 
3B1 1 8C1 1 6D1 1 1A2

B1 1 C1 1 D1 1 A2
# 5         } risk constraint for month 2

The risk constraints for months 3 through 6 are generated in a similar manner, and 
appear as:

 
8C1 1 6D1 1 1A3 1 3B3

C1 1 D1 1 A3 1 B3
# 5         } risk constraint for month 3

 
6D1 1 3B3 1 1A4 1 8C4

D1 1 B3 1 A4 1 C4
# 5         } risk constraint for month 4
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A Multiperiod Cash Flow Problem 103

6D1 1 8C4 1 1A5 1 3B5

D1 1 C4 1 A5 1 B5
# 5         } risk constraint for month 5

 
6D1 1 8C4 1 3B5 1 1A6

D1 1 C4 1 B5 1 A6
# 5         } risk constraint for month 6

Although the risk constraints listed here have a very clear meaning, it is easier to 
implement these constraints in the spreadsheet if we state them in a different (but 
algebraically equivalent) manner. In particular, it is helpful to eliminate the fractions on 
the LHS of the inequalities by multiplying each constraint through by its denominator 
and re-collecting the variables on the LHS of the inequality. The following steps show 
how to rewrite the risk constraint for month 1:

1. Multiply both sides of the inequality by the denominator:

 1A1 1 B1 1 C1 1 D1 2  
1A1 1 3B1 1 8C1 1 6D1

A1 1 B1 1 C1 1 D1
# 1A1 1 B1 1 C1 1 D1 25

to obtain:

1A1 1 3B1 1 8C1 1 6D1 # 5A1 1 5B1 1 5C1 1 5D1

2. Re-collect the variables on the LHS of the inequality sign:

11 2 5 2A1 1 13 2 5 2B1 1 18 2 5 2C1 1 16 2 5 2D1 # 0

to obtain:

 24A1 2 2B1 1 3C1 1 1D1 # 0

Thus, the following two constraints are algebraically equivalent:

1A1 1 3B1 1 8C1 1 6D1

A1 1 B1 1 C1 1 D1
# 5         } risk constraint for month 1

 24A1 2 2B1 1 3C1 1 1D1 # 0         } risk constraint for month 1

The set of values for A1, B1, C1, and D1 that satisfies the first of these constraints 
also satisfies the second constraint (i.e., these constraints have exactly the same set of 
feasible values). So, it does not matter which of these constraints we use to find the 
optimal solution to the problem.

The remaining risk constraints are simplified in the same way, producing the 
following constraints:

22B1 1 3C1 1 1D1 2 4A2 # 0 } risk constraint for month 2
   3C1 1 1D1 2 4A3 2 2B3 # 0 } risk constraint for month 3
   1D1 2 2B3 2 4A4 1 3C4 # 0 } risk constraint for month 4
   1D1 1 3C4 2 4A5 2 2B5 # 0 } risk constraint for month 5
   1D1 1 3C4 2 2B5 2 4A6 # 0 } risk constraint for month 6

Notice that the coefficient for each variable in these constraints is simply the risk 
factor for the particular investment minus the maximum allowable weighted average 
risk value of 5. That is, all Ai variables have coefficients of 1 2 5 5 24; all Bi variables 
have coefficients of 3 2 5 5 22; all Ci variables have coefficients of 8 2 5 5 3; and all 
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104 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

Di variables have coefficients of 6 2 5 5 1. This observation will help us implement 
these constraints efficiently.

3.14.8 iMpleMeNTiNg The riSk CONSTrAiNTS
Figure 3.40 (and file Fig3-40.xlsm that accompanies this book) illustrates an easy way 
to implement the risk constraints for this model. Earlier we noted that the coefficient 
for each variable in each risk constraint is simply the risk factor for the particular 
investment minus the maximum allowable weighted average risk value. Thus, the 
strategy in Figure 3.40 is to generate these values in the appropriate columns and rows 
of the spreadsheet so that the SUMPRODUCT( ) function can implement the LHS 
formulas for the risk constraints.

Recall that the risk constraint for each month involves only the variables representing 
investments that actually held funds during that month. For any given month, the 
investments that actually held funds during that month have the value 21 or contain 
a text entry starting with the “<” symbol (the first character of the “<---->” entries) in 
the corresponding column of the cash inflow/outflow summary table. For example, 

H18:L18 and
N18:S18

Key Cell Formulas

Cell Formula Copied to

D18 5SUMIF(B6:B17,1,D6:D17) --
F6 5IF($B65F$5,21,IF($C65F$5,11$E6,IF(AND($B6,F$5,$C6>F$5),",----.",""))) F6:L17
G18 5SUMPRODUCT(G6:G17,$D$6:$D$17)

N6 5IF(OR(F6521,LEFT(F6)5","),$M62$Q$20,"") N6:S17

Variable Cells

Objective Cell

Constraint Cells

Figure 3.40 Spreadsheet model for Taco-Viva’s revised construction fund problem
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A Multiperiod Cash Flow Problem 105

during month 2, funds can be invested in B1, C1, D1, and/or A2. The corresponding 
cells for month 2 in Figure 3.40 (cells G7, G8, G9, and G10, respectively) each contain 
either the value -1 or a text entry starting with the “<” symbol. Therefore, to generate 
the appropriate coefficients for the risk constraints, we can instruct the spreadsheet to 
scan the cash inflow/outflow summary for cells containing the value -1 or text entries 
starting with the “<” symbol, and return the correct risk constraint coefficients in the 
appropriate cells. To do this we enter the following formula in cell N6:

 Formula in cell N6:          5IF(OR(F65-1,LEFT(F6)5”<”),$M6-$Q$20,” “)
(Copy to N6 through S17.)

To generate the appropriate value in cell N6, the previous formula checks if cell F6 
is equal to -1 or contains a text entry that starts with the “ <” symbol. If either of these 
conditions is true, the function takes the risk factor for the investment from cell M6 and 
subtracts the maximum allowable risk factor found in cell Q20; otherwise, the function 
returns a null string (with a value of zero). This formula is copied to the remaining cells 
in the range N6 through S17, as shown in Figure 3.40.

The values in cells N6 through S17 in Figure 3.40 correspond to the coefficients in the 
LHS formulas for each of the risk constraints formulated earlier. Thus, the LHS formula 
for the risk constraint for month 1 is implemented in cell N18 as:

Formula in cell N18:            5SUMPRODUCT(N6:N17,$D$6:$D$17)
(Copy to O18 through S18.)

The LHS formulas for the remaining risk constraints are implemented by copying 
this formula to cells O18 through S18. We will tell Solver that these constraint cells 
must be less than or equal to zero.

3.14.9 SOlViNg The prObleM
To find the optimal solution to this model, we must communicate the appropriate 
information about the new risk constraints to Solver. Figure 3.41 shows the 
Solver parameters required to solve this problem. The optimal solution is shown in 
Figure 3.42.

3.14.10 ANAlyziNg The SOluTiON
The optimal solution to the revised Taco-Viva problem with risk constraints is quite 
different from the solution obtained earlier. In particular, the new solution requires that 
funds be placed in investment A in every time period. This is not too surprising given 

Solver Settings:

Objective: D18 (Min)
Variable cells: D6:D17
Constraints: 
 G18:L18 5 G19:L19
 N18:S18 ,5 0
 D6:D17 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.41

Solver settings 
for the revised 
construction fund 
problem
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106 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

that investment A has the lowest risk rating. What may be somewhat surprising is that 
of the remaining investments, B and D are never used. Although these investments 
have lower risk ratings than investment C, the combination of funds placed in 
investment A and C allows for the least amount of money to be invested in month 1 
while meeting the scheduled payments and keeping the weighted average risk at or 
below the specified level. 

3.15 Data Envelopment Analysis
Managers are often interested in determining how efficiently various units within a 
company operate. Similarly, investment analysts may be interested in comparing the 
efficiency of several competing companies within an industry. Data Envelopment 
Analysis (DEA) is an LP-based methodology for performing this type of analysis. DEA 
determines how efficiently an operating unit (or company) converts inputs to outputs 
when compared with other units. We will consider how DEA may be applied via the 
following example.

Mike Lister is a district manager for the Steak & Burger fast-food restaurant chain. 
The region Mike manages contains 12 company-owned units. Mike is in the pro-
cess of evaluating the performance of these units during the past year to make rec-
ommendations on how much of an annual bonus to pay each unit’s manager. He 
wants to base this decision, in part, on how efficiently each unit has been operated. 
Mike has collected the data shown in the following table on each of the 12 units. 
The outputs he has chosen include each unit’s net profit (in $100,000s), average cus-
tomer satisfaction rating, and average monthly cleanliness score. The inputs include 
total labor hours (in 100,000s) and total operating costs (in $1,000,000s). He wants to 
apply DEA to this data to determine an efficiency score for each unit. 

Figure 3.42 Optimal solution to Taco-Viva’s revised construction fund problem
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Data Envelopment Analysis 107

Outputs inputs
unit Profit Satisfaction Cleanliness Labor Hours Operating Costs

1 5.98 7.7 92 4.74 6.75
 2 7.18 9.7 99 6.38 7.42
 3 4.97 9.3 98 5.04 6.35
 4 5.32 7.7 87 3.61 6.34
 5 3.39 7.8 94 3.45 4.43
 6 4.95 7.9 88 5.25 6.31
 7 2.89 8.6 90 2.36 3.23
 8 6.40 9.1 100 7.09 8.69
 9 6.01 7.3 89 6.49 7.28
10 6.94 8.8 89 7.36 9.07
11 5.86 8.2 93 5.46 6.69
12 8.35 9.6 97 6.58 8.75

3.15.1 DeFiNiNg The DeCiSiON VAriAbleS
Using DEA, the efficiency of an arbitrary unit i is defined as follows:

Efficiency of unit i 5  
Weighted sum of unit i’s outputs

Weighted sum of unit i’s inputs
5

anO

j51
Oijwj

anI

j51
Iijvj

Here, Oij represents the value of unit i on output j, Iij represents the value of unit i 
on input j, wj is a nonnegative weight assigned to output j, vj is a nonnegative weight 
assigned to input j, nO is the number of output variables, and nI is the number of input 
variables. The problem in DEA is to determine values for the weights wj and vj. Thus, 
wj and vj represent the decision variables in a DEA problem.

3.15.2 DeFiNiNg The ObjeCTiVe
A separate LP problem is solved for each unit in a DEA problem. However, for each 
unit the objective is the same: to maximize the weighted sum of that unit’s outputs. For 
an arbitrary unit i, the objective is stated as: 

MAX: anO

j51
Oijwj

Thus, as each LP problem is solved, the unit under investigation is given the 
opportunity to select the best possible weights for itself (or the weights that maximize 
the weighted sum of its output), subject to the following constraints.

3.15.3 DeFiNiNg The CONSTrAiNTS
It is impossible for any unit to be more than 100% efficient. So as each LP is solved, the unit 
under investigation cannot select weights for itself that would cause the efficiency for any 
unit (including itself) to be greater than 100%. Thus, for each individual unit, we require 
the weighted sum of the unit’s outputs to be less than or equal to the weighted sum of its 
inputs (so the ratio of weighted outputs to weighted inputs does not exceed 100%).
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anO

j51
Okjwj # anI

j51
Ikjvj,  for k 5 1 to the number of units

or equivalently,

 anO

j51
Okjwj 2  anI

j51
Ikjvj # 0,  for k 5 1 to the number of units

To prevent unbounded solutions, we also require the sum of the weighted inputs for 
the unit under investigation (unit i) to equal one. 

  anI

j51
Iijvj 5 1      

Because the sum of weighted inputs for the unit under investigation must equal one 
and its sum of the weighted outputs (being maximized) cannot exceed this value, the 
maximum efficiency score for the unit under investigation is also one (or 100%). Thus, 
units that are efficient will have a DEA efficiency score of 100%. 

i m p o r t a n t  p o i n t s
When applying DEA, it is assumed that for output variables “more is better” (e.g., 
profit) and for input variables “less is better” (e.g., costs). Any output or input 
variables that do not naturally conform to these rules should be transformed 
before applying DEA. For example, the percentage of defective products 
produced is not a good choice for an output because fewer defects is actually a 
good thing. However, the percentage of nondefective products produced would 
be an acceptable choice for an output because “more is better” in that case. 
Also, if there are nO output and nI input variables one would expect there to be 
approximately nO 3 nI efficient units. Thus, the total number of units in the data set 
should be substantially greater than nO 3 nI in order for there to be meaningful 
discrimination between the units.

3.15.4 iMpleMeNTiNg The MODel
To evaluate the efficiency of unit 1 in our example problem, we would solve the 
following LP problem,

MAX:  5.98w1 1 7.7w2 1 92w3 }  weighted output for unit 1

Subject to: 5.98w1 1 7.7w2 1 92w3 2 4.74v1 2 6.75v2 # 0 } ef�ciency constraint for unit 1
 7.18w1 1 9.7w2 1 99w3 2 6.38v1 2 7.42v2 # 0 } ef�ciency constraint for unit 2

 and so on to . . .

 8.35w1 1 9.6w2 1 97w3 2 6.58v1 2 8.75v2 # 0 } ef�ciency constraint for unit 12
 4.74v1 1 6.75v2 5 1 }  input constraint for unit 1
 w1, w2, w3, v1, v2 $ 0 }  nonnegativity conditions 

A convenient way to implement this model is shown in Figure 3.43 (and in file  
Fig3-43.xlsm that accompanies this book). 
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Data Envelopment Analysis 109

In Figure 3.43, cells B19 through F19 are reserved to represent the weights for each 
of the input and output variables. The weighted output for each unit is computed in 
column G as follows:

Formula for cell G6:         5SUMPRODUCT(B6:D6,$B$19:$D$19)
(Copy to G7 through G17.)

Similarly, the weighted input for each unit is computed in column H as:

Formula for cell H6:         5SUMPRODUCT(E6:F6,$E$19:$F$19)
(Copy to H7 through H17.)

The differences between the weighted outputs and weighted inputs are computed in 
column I. We will instruct Solver to constrain these values to be less than or equal to 0.

Formula for cell I6:         5G6-H6
(Copy to I7 through I17.)

The weighted output for unit 1 (computed in cell G6) implements the appropriate 
objective function and could be used as the objective cell for Solver in this problem. 

I7:I17

Key Cell Formulas

Cell Formula Copied to

G6 5SUMPRODUCT(B6:D6,$B$19:$D$19) G7:G17
H6 5SUMPRODUCT(E6:F6,$E$19:$F$19) H7:H17
I6 5G62H6

--B22 5INDEX(G6:G17,B21,1)
--B23 5INDEX(H6:H17,B21,1)

Variable Cells

Constraint Cells

Objective Cell

Figure 3.43 Spreadsheet model for the Steak & Burger DEA problem
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Similarly, the weighted input for unit 1 is computed in cell H6 and could be constrained 
to equal 1 (as specified by the input constraint for unit 1 shown earlier). However, 
because we need to solve a separate LP problem for each of the 12 units, it will be more 
convenient to handle the objective function and input constraint in a slightly different 
manner. To this end, we reserve cell B21 to indicate the unit number currently under 
investigation. Cell B22 contains a formula that returns the weighted output for this unit 
from the list of weighted outputs in column G.

Formula for cell B22:          =INDEX(G6:G17,B21,1)

In general, the function INDEX(range,row number,column number) returns the value 
in the specified row number and column number of the given range. Because cell B21 
contains the number 1, the previous formula returns the value in the first row and first 
column of the range G6:G17—or the value in cell G6. Thus, as long as the value of cell 
B21 represents a valid unit number from 1 to 12, the value in cell B22 will represent 
the appropriate objective function for the DEA model for that unit. Similarly, the input 
constraint requiring the weighted inputs for the unit in question to equal 1 can be 
implemented in cell B23 as follows:

Formula for cell B23:          =INDEX(H6:H17,B21,1)

So, for whatever unit number is listed in cell B21, cell B22 represents the appropriate 
objective function to be maximized and cell B23 represents the weighted input that 
must be constrained to equal 1. This arrangement greatly simplifies the process of 
solving the required series of DEA models. 

3.15.5 SOlViNg The prObleM
To solve this problem, we specify the objective cell, variable cells, and constraints 
specified in Figure 3.44. Note that exactly the same Solver settings would be used to 
find the optimal DEA weights for any other unit. The optimal solution for unit 1 is 
shown in Figure 3.45. Notice that unit 1 achieves an efficiency score of 0.9667 and is 
therefore slightly inefficient.

To complete the analysis for the remaining units, Mike could change the value in cell 
B21 manually to 2, 3, ..., 12 and use Solver to reoptimize the worksheet for each unit 
and record their efficiency scores in column J. However, if there were 120 units rather 
than 12, this manual approach would become quite cumbersome. Fortunately, Analytic 
Solver Platform provides a much easier way to automate this process.

Solver Settings:

Objective: B22 (Max)
Variable cells: B19:F19
Constraints: 
 I6:I17 ,5 0
 B23 5 1
 B19:F19 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

Figure 3.44

Solver settings for 
the DEA problem
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Data Envelopment Analysis 111

Figure 3.46 shows a slightly modified version of the spreadsheet for this problem 
where two key changes have been made. First, the following formula was inserted in 
cell B21:

Formula for cell B21:         =PsiCurrentOpt( )

The PsiCurrentOpt( ) function is not a built-in Excel function but, instead, is part of 
Analytic Solver Platform. As it turns out, we can instruct Analytic Solver to perform 
“multiple parameterized optimizations,” changing one or more parameters in each 
optimization run. (Though not used in this example, the PsiOptParam( ) function 
can be used to change the value of a parameter in a problem as each optimization 
run is performed.) In this case, the function PsiCurrentOpt( ) function entered in cell 
B21 returns the current optimization number as Analytic Solver performs several 
optimization runs. So if we instruct Analytic Solver to perform 12 optimization runs 
(one for each of the 12 units in our data set), the value in cell B21 will take on the values 
1, 2, 3, …, 12 as each of 12 separate optimization runs are carried out.

The second change to the model in Figure 3.46 is the addition of the following 
formula in column J:

 Formula for cell J6:    5PsiOptValue($B$22,A6)
(Copy to J7 through J17.)

PsiOptValue( ) is another custom function that comes with Analytic Solver Platform 
in support of multiple parameterized optimizations. When Analytic Solver Platform 
performs multiple parameterized optimizations it will compute and store in the 
computer’s memory an optimal solution associated with each of the runs. However, 
it can only display these solutions on the screen one at a time. The PsiOptValue( ) 
function allows you to gain access to the values associated with any of the solutions 
stored in the computer’s memory. So the function PsiOptValue($B$22, A6) returns 
the value associated with a particular cell (in this case, indicated by cell $B$22) for a 
particular optimization run (in this case indicated by the value in cell A6). Initially, 

Figure 3.45 Optimal DEA solution for unit 1
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112 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

the values of the PsiOptValue( ) function in column J return error values of “#N/A” 
because we have not yet asked Solver to perform the multiple optimization runs.

The Solver settings (i.e., objective cell, variables cells, and constraint cells) required 
for this problem are exactly the same as in Figures 3.44 and 3.45. However, in Figure 
3.46 note that on the Platform tab in the Analytic Solver task pane the value for the 
setting “Optimizations to Run” has been changed to 12. Now when Solver solves the 
problem it will run a total of 12 optimizations, changing the value in cell B21 from 
1 to 12 (via the PsiOptParam( ) function in cell B21), and the resulting optimal objective 
value for each run will be displayed in column J (via the PsiOptValue( ) functions in 
column J). Figure 3.47 shows the resulting display.

In Figure 3.47 note that 12 optimizations have been run and we can inspect any of 
the 12 solutions by choosing the optimization of interest using the displayed drop-
down list on the Analytic Solver Platform ribbon tab. Figure 3.47 currently displays 
the solution associated with optimization run 10. However, note that the values 
in column J correspond to the optimal objective values for each of the individual 
optimization runs.

Key Cell Formulas

Cell Formula Copied to

G6 5SUMPRODUCT(B6:D6,$B$19:$D$19) G7:G17
H6 5SUMPRODUCT(E6:F6,$E$19:$F$19) H7:H17
I6 5G6-H6 I7:I17
J6 5PsiOptValue($B$22,A6) J7:J17
B21 5PsiCurrentOpt( ) --
B22 5INDEX(G6:G17,B21,1) --
B23 5INDEX(H6:H17,B21,1) --

Optimizations to Run

Figure 3.46 Modifying the model for multiple optimization
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3.15.6 ANAlyziNg The SOluTiON
The solution shown in Figure 3.47 indicates that units 2, 4, 7, and 12 are operating 
at 100% efficiency (in the DEA sense), while the remaining units are operating less 
efficiently. Note that an efficiency rating of 100% does not necessarily mean that a unit 
is operating in the best possible way. It simply means that no linear combination of 
the other units in the study results in a composite unit that produces at least as much 
output using the same or less input. On the other hand, for units that are DEA inefficient, 
there is a linear combination of efficient units that results in a composite unit that 
produces at least as much output using the same or less input than the inefficient unit. 
The idea in DEA is that an inefficient unit should be able to operate as efficiently as this 
hypothetical composite unit formed from a linear combination of the efficient units.

For instance, unit 1 has an efficiency score of 96.67% and is, therefore, somewhat 
inefficient. Figure 3.48 (and file Fig3-48.xlsm that accompanies this book) shows that 
a weighted average of 26.38% of unit 4, plus 28.15% of unit 7, plus 45.07% of unit 12 

Figure 3.47 DEA efficiency scores for all the units

 S o f t w a r e  N o t e
By default, when running multiple parameterized optimizations Analytic Solver 
keeps track of (or monitors) the optimal values of the objective function, decision 
variables, and any cells referenced by a PsiOptValue( ) function. On the Model 
tab in the Analytic Solver task pane you will see a “Monitor Value” property for 
various model elements. If this property is set to True, Analytic Solver will track (or 
monitor) the resulting values in the associated cells across multiple optimizations. 
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produces a hypothetical composite unit with outputs greater than or equal to those of 
unit 1 and requiring less input than unit 1. The assumption in DEA is that unit 1 should 
have been able to achieve this same level of performance. 

For any inefficient unit, you can determine the linear combination of efficient units 
that results in a more efficient composite unit as follows:

1) Solve the DEA problem for the unit in question.
2) On the Analytic Solver Platform ribbon tab select Reports, Optimization, Sensitivity.

In the resulting sensitivity report, the absolute value of the Shadow Prices for the 
“Difference” constraints are the weights that should create a composite unit that is 
more efficient than the unit in question. The sensitivity report for unit 1 is shown in 
Figure 3.49. (All the information given on the sensitivity report is covered in detail in 
chapter 4.)

3.16 Summary
This chapter described how to formulate an LP problem algebraically, implement 
it in a spreadsheet, and solve it using Solver. The decision variables in the algebraic 
formulation of a model correspond to the variable cells in the spreadsheet. The LHS 
formulas for each constraint in an LP model must be implemented in different cells in 
the spreadsheet. Also, a cell in the spreadsheet must represent the objective function in 
the LP model. Thus, there is a direct relationship between the various components of an 
algebraic formulation of an LP problem and its implementation in a spreadsheet.

Key Cell Formulas

Cell Formula Copied to

B19 5SUMPRODUCT(B6:B17,$G$6:$G$17) C19:F19

Figure 3.48

Example of a 
composite unit that 
is more efficient 
than unit 1
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There are many ways a given LP problem can be implemented in a spreadsheet. 
The process of building spreadsheet models is more an art than a science. A good 
spreadsheet implementation represents the problem in a way that clearly communicates 
its purpose and is reliable, auditable, and modifiable.
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Sensitivity report 
for unit 1
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The wOrlD OF buSiNeSS ANAlyTiCS

Optimizing Production, Inventory, and Distribution  
at Kellogg

The Kellogg Company (http://www.Kellogs.com) is the largest cereal 
producer in the world and a leading producer of convenience foods. In 1999, 
Kellogg’s worldwide sales totaled nearly $7 billion. Kellogg operates five 
plants in the United States and Canada and has seven core distribution centers 
and roughly fifteen co-packers that contract to produce or pack some of 
Kellogg’s products. In the cereal business alone, Kellogg must coordinate the 
production of 80 products while inventorying and distributing more than 600 
stock keeping units with roughly 90 production lines and 180 packaging lines. 
Optimizing this many decision variables is obviously a daunting challenge. 

Since 1990, Kellogg has been using a large-scale, multiperiod linear program, 
called the Kellogg Planning System (KPS), to guide production and distribution 
decisions. Most large companies like Kellogg employ some sort of enterprise 
resource planning (ERP). Kellogg’s ERP system is a largely custom, home-grown 
product, and KPS is custom developed tool to complement the ERP system.

An operational-level version of KPS is used at a weekly level of detail to 
help determine where products are produced and how finished products 
and in-process products are shipped between plants and distribution centers. 
A tactical-level version of KPS is used at a monthly level of detail to help 
establish plant budgets and make capacity and consolidation decisions. Kellogg 
attributes annual savings of $40–$45 million to the use of the KPS system.

Source: Brown, G., J. Keegan, B. Vigus, and K. Wood. “The Kellogg Company Optimizes 
Production, Inventory, and Distribution.” Interfaces, vol. 35, no. 6, 2001.

Questions and Problems
1. In creating the spreadsheet models for the problems in this chapter, cells in the 

spreadsheets had to be reserved to represent each of the decision variables in the 
algebraic models. We reserved these cells in the spreadsheets by entering values 
of zero in them. Why didn’t we place some other value or formula in these cells? 
Would doing so have made any difference?

2. Four goals should be considered when trying to design an effective spreadsheet 
model: communication, reliability, auditability, and maintainability. We also noted 
that a spreadsheet design that results in formulas that can be copied is usually more 
effective than other designs. Briefly describe how using formulas that can be copied 
supports the four spreadsheet modeling goals.

3. Refer to question 13 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

4. Refer to question 14 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

5. Refer to question 16 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.
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6. Refer to question 15 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

7. Refer to question 19 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

8. Refer to question 22 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

9. Refer to question 23 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

10. Refer to question 24 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

11. Refer to question 25 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

12. Refer to question 26 at the end of Chapter 2. Implement a spreadsheet model for 
this problem and solve it using Solver.

13. The Weedwacker Company manufactures two types of lawn trimmers: an electric 
model and a gas model. The company has contracted to supply a national discount 
retail chain with a total of 30,000 electric trimmers and 15,000 gas trimmers. 
However, Weedwacker’s production capability is limited in three departments: 
production, assembly, and packaging. The following table summarizes the hours of 
processing time available and the processing time required by each department, for 
both types of trimmers:

Hours required per Trimmer

electric gas Hours Available

Production 0.20 0.40 10,000
Assembly 0.30 0.50 15,000
Packaging 0.10 0.10 5,000

  The company makes its electric trimmer in-house for $55 and its gas trimmer for 
$85. Alternatively, it can buy electric and gas trimmers from another source for $67 
and $95, respectively. How many gas and electric trimmers should Weedwacker 
make and how many should it buy from its competitor in order to fulfill its contract 
in the least costly manner?
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

14. A furniture manufacturer produces two types of tables (country and contemporary) 
using three types of machines. The time required to produce the tables on each 
machine is given in the following table.

Machine Country Contemporary
Total Machine Time

Available per Week

Router 1.5 2.0 1,000
Sander 3.0 4.5 2,000
Polisher 2.5 1.5 1,500

  Country tables sell for $350 and contemporary tables sell for $450. Management 
has determined that at least 20% of the tables made should be country and at least 
30% should be contemporary. How many of each type of table should the company 
produce if it wants to maximize its revenue?
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a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?
d. How will your spreadsheet model differ if there are 25 types of tables and 

15 machine processes involved in manufacturing them?
15. Bearland Manufacturing produces 4 different types of wood paneling. Each type of 

paneling is made by gluing and pressing together a different mixture of pine and 
oak chips. The following table summarizes the required amount of gluing, pressing, 
and mixture of wood chips required to produce a pallet of 50 units of each type of 
paneling:

 resources required per Pallet of Paneling Type

Paneling Type Tahoe Pacific Savannah Aspen

Glue (quarts) 50 50 100 50
Pressing (hours) 50 150 100 50
Pine chips (pounds) 500 400 300 200
Oak chips (pounds) 500 750 250 500

  Assume the company has 6,000 quarts of glue; 7,500 hours of pressing capacity; 
30,000 pounds of pine chips; and 62,500 pounds of oak chips available in the next 
production cycle. Further assume that each pallet of Tahoe, Pacific, Savannah, and 
Aspen panels can be sold for profits of $450, $1,150, $800, and $400, respectively. 
Finally, for marketing purposes, the company wants to produce at least 4 pallets of 
each type of paneling. 
a. Formulate an LP model for this problem.
b. Create a spreadsheet mode for this problem, and solve it using Solver.
c. What is the optimal solution?

 16. The Beef-Up Ranch feeds cattle for mid-western farmers and delivers them 
to processing plants in Topeka, Kansas and Tulsa, Oklahoma. The ranch must 
determine the amounts of cattle feed to buy so that various nutritional requirements 
are met while minimizing total feed costs. The mixture fed to the cows must contain 
different levels of four key nutrients and can be made by blending three different 
feeds. The amount of each nutrient (in ounces) found in each pound of feed is 
summarized as follows:

Nutrient (in ounces) per Pound of Feed

Nutrient Feed 1 Feed 2 Feed 3

A 3 2 4
B 3 1 3
C 1 0 2
D 6 8 4

The cost per pound of feeds 1, 2, and 3 are $2.00, $2.50, and $3.00, respectively. The 
minimum requirement per cow each month is 4 pounds of nutrient A, 5 pounds 
of nutrient B, 1 pound of nutrient C, and 8 pounds of nutrient D. However, cows 
should not be fed more than twice the minimum requirement for any nutrient each 
month. (Note that there are 16 ounces in a pound.) Additionally, the ranch can only 
obtain 1500 pounds of each type of feed each month. Because there are usually 
100 cows at the Beef-Up Ranch at any given time, this means that no more than 15 
pounds of each type of feed can be used per cow each month.
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a. Formulate a linear programming problem to determine how much of each type 
of feed a cow should be fed each month.

b. Create a spreadsheet model for this problem, and solve it using Solver
c. What is the optimal solution?

17. Incline Electronics produces three different products in a plant that is open 40 hours 
per week. Each product requires the following processing times (in hours) on each 
of three machines.

Product 1 Product 2 Product 3

Machine 1 2 2 1
Machine 2 3 4 6
Machine 3 4 6 5

Each machine must be run by one of 19 cross-trained workers who are each available 
35 hours per week. The plant has 10 type 1 machines available, 6 type 2 machines 
available, and 8 type 3 machines available. Products 1, 2, and 3 contribute $90, $120, 
and $150, respectively, in marginal profit per unit produced. 
a. Formulate an LP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution? 
d. How many workers should be assigned to each type of machine?

18. Tuckered Outfitters plans to market a custom brand of packaged trail mix. The 
ingredients for the trail mix will include Raisins, Grain, Chocolate Chips, Peanuts, 
and Almonds costing, respectively, $2.50, $1.50, $2.00, $3.50, and $3.00 per pound. The 
vitamin, mineral, and protein content of each of the ingredients (in grams per pound) 
is summarized in the following table along with the calories per pound of ingredient:

raisins grain Chocolate Peanuts Almonds

Vitamins 20 10 10 30 20
Minerals 7 4 5 9 3
Protein 4 2 1 10 1
Calories 450 160 500 300 500

  The company would like to identify the least costly mix of these ingredients that 
provides at least 40 grams of vitamins, 15 grams of minerals, 10 grams of protein, 
and 600 calories per two pound package. Additionally, they want each ingredient to 
account for at least 5% and no more than 50% of the weight of the package. 
a. Formulate a LP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal mix and how much is the total ingredient cost per package? 

 19. A bank has $650,000 in assets to allocate among investments in bonds, home 
mortgages, car loans, and personal loans. Bonds are expected to produce a return of 
10%, mortgages 8.5%, car loans 9.5%, and personal loans 12.5%. To make sure the 
portfolio is not too risky, the bank wants to restrict personal loans to no more than 
the 25% of the total portfolio. The bank also wants to ensure that more money is 
invested in mortgages than personal loans. The bank also wants to invest more in 
bonds than personal loans.
a. Formulate an LP model for this problem with the objective of maximizing the 

expected return on the portfolio.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?
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20. Aire-Co produces home dehumidifiers at two different plants in Atlanta and 
Phoenix. The per unit cost of production in Atlanta and Phoenix is $400 and 
$360, respectively. Each plant can produce a maximum of 300 units per month. 
Inventory holding costs are assessed at $30 per unit in beginning inventory each 
month. Aire-Co estimates the demand for its product to be 300, 400, and 500 units, 
respectively, over the next 3 months. Aire-Co wants to be able to meet this demand 
at minimum cost.
a. Formulate an LP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?
d. How does the solution change if each plant is required to produce at least 50 

units per month? 
e. How does the solution change if each plant is required to produce at least 100 

units per month? 
21. Valu-Com Electronics manufactures five different models of telecommunications 

interface cards for PCs and laptops. As summarized in the following table, each of 
these devices requires differing amounts of printed circuit board, resistors, memory 
chips, and assembly.

Per unit requirements

HyperLink FastLink SpeedLink MicroLink etherLink

Printed Circuit Board
 (square inches)

20 15 10 8 5

Resistors 28 24 18 12 16
Memory Chips 8 8 4 4 6
Assembly Labor
 (in hours)

0.75 0.6 0.5 0.65 1

  The unit wholesale price and manufacturing cost for each model are as follows.

Per unit revenues and Costs

HyperLink FastLink SpeedLink MicroLink etherLink

Wholesale Price $189 $149 $129 $169 $139
Manufacturing Cost $136 $101 $96 $137 $101

  In its next production period, Valu-Com has 80,000 square inches of PC board, 
100,000 resistors, 30,000 memory chips, and 5,000 hours of assembly time available. 
The company can sell all the product it can manufacture, but the marketing 
department wants to be sure the company produces at least 500 units of each 
product and at least twice as many FastLink cards as HyperLink cards while 
maximizing profit.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?
d. Could Valu-Com make more money if it schedules assembly workers to work 

overtime? 
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22. A trust officer at the Blacksburg National Bank needs to determine how to invest 
$100,000 in the following collection of bonds to maximize the annual return.

Bond
Annual
return Maturity risk Tax-Free

A 9.5% Long High Yes
B 8.0% Short Low Yes
C 9.0% Long Low No
D 9.0% Long High Yes
E 9.0% Short High No

  The officer wants to invest at least 50% of the money in short-term issues and no 
more than 50% in high-risk issues. At least 30% of the funds should go in tax-free 
investments and at least 40% of the total annual return should be tax free.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

23. The Rent-A-Dent car rental company allows its customers to pick up a rental car at 
one location and return it to any of its locations. Currently, two locations (1 and 2) 
have 16 and 18 surplus cars, respectively, and four locations (3, 4, 5, and 6) each 
need 10 cars. The costs of getting the surplus cars from locations 1 and 2 to the other 
locations are summarized in the following table.

Costs of Transporting Cars Between Locations

Location 3 Location 4 Location 5 Location 6

Location 1 $54 $17 $23 $30
Location 2 $24 $18 $19 $31

Because 34 surplus cars are available at locations 1 and 2, and 40 cars are needed at 
locations 3, 4, 5, and 6, some locations will not receive as many cars as they need. 
However, management wants to make sure that all the surplus cars are sent where 
they are needed, and that each location needing cars receives at least five.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

24. The Molokai Nut Company (MNC) makes four different products from macadamia 
nuts grown in the Hawaiian Islands: chocolate-coated whole nuts (Whole), 
chocolate-coated nut clusters (Cluster), chocolate-coated nut crunch bars (Crunch), 
and plain roasted nuts (Roasted). The company is barely able to keep up with the 
increasing demand for these products. However, increasing raw material prices and 
foreign competition are forcing MNC to watch its margins to ensure it is operating 
in the most efficient manner possible. To meet marketing demands for the coming 
week, MNC needs to produce at least 1,000 pounds of the Whole product, between 
400 and 500 pounds of the Cluster product, no more than 150 pounds of the Crunch 
product, and no more than 200 pounds of the Roasted product. Each pound of the 
Whole, Cluster, Crunch, and Roasted product contains, respectively, 60%, 40%, 20%, 
and 100% macadamia nuts with the remaining weight made up of chocolate coating. 
The company has 1100 pounds of nuts and 800 pounds of chocolate available for 
use in the next week. The various products are made using four different machines 
that hull the nuts, roast the nuts, coat the nuts in chocolate (if needed), and package 
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the products. The following table summarizes the time required by each product on 
each machine. Each machine has 60 hours of time available in the coming week.

Minutes required per Pound

Machine Whole Cluster Crunch roasted

Hulling 1.00 1.00 1.00 1.00
Roasting 2.00 1.50 1.00 1.75
Coating 1.00 0.70 0.20 0.00
Packaging 2.50 1.60 1.25 1.00

The selling price and variable cost associated with each pound of product is 
summarized in the following table:

Per Pound revenue and Costs

Whole Cluster Crunch roasted

Selling Price $5.00 $4.00 $3.20 $4.50
Variable Cost $3.15 $2.60 $2.16 $3.10

a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

25. A company is trying to determine how to allocate its $145,000 advertising budget 
for a new product. The company is considering newspaper ads and television 
commercials as its primary means for advertising. The following table summarizes 
the costs of advertising in these different media and the number of new customers 
reached by increasing amounts of advertising.

Media & No. of Ads
No. of New Customers 

reached Cost per Ad

Newspaper: 1210 900 $1,000
Newspaper: 11220 700 $900
Newspaper: 21230 400 $800
Television: 125 10,000 $12,000
Television: 6210 7,500 $10,000
Television: 11215 5,000 $8,000

For instance, each of the first 10 ads the company places in newspapers will cost 
$1,000 and is expected to reach 900 new customers. Each of the next 10 newspaper 
ads will cost $900 and is expected to reach 700 new customers. Note that the number 
of new customers reached by increasing amounts of advertising decreases as the 
advertising saturates the market. Assume the company will purchase no more than 
30 newspaper ads and no more than 15 television ads. 
a) Formulate an LP model for this problem to maximize the number of new 

customers reached by advertising.
b) Implement your model in a spreadsheet and solve it.
c) What is the optimal solution?
d) Suppose the number of new customers reached by 11–20 newspaper ads is 400 

and the number of new customers reached by 21–30 newspaper ads is 700. Make 
these changes in your spreadsheet and reoptimize the problem. What is the new 
optimal solution? What (if anything) is wrong with this solution and why? 

26. The Shop at Home Network sells various household goods during live television 
broadcasts. The company owns several warehouses to hold many of the goods it 
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sells but also leases extra warehouse space when needed. During the next 5 months 
the company expects it will need to lease the following amounts of extra warehouse 
space:

Month 1 2 3 4 5

Square Feet Needed 20,000 30,000 40,000 35,000 50,000

  At the beginning of any month the company can lease extra space for one or more 
months at the following costs:

Lease term (months) 1 2 3 4 5

Cost per Sq. Ft. Leased $55 $95 $130 $155 $185

  So, for instance, at the start of month 1 the company can lease as much space as it 
wants for 4 months at a cost of $155 per square foot. Similarly, at the start of month 
3 they can lease any amount of space for 2 months at a cost of $95 per square foot. 
The company wants to determine the least costly way of meeting their warehousing 
needs over the coming 5 months.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?
d. How much would it cost the company to meet its space needs if in each month it 

leases for 1 month exactly the amount of space required for the month? 
27. A manufacturer of prefabricated homes has decided to subcontract four components 

of the homes. Several companies are interested in receiving this business, but none 
can handle more than one subcontract. The bids made by the companies for the 
various subcontracts are summarized in the following table. 

Bids by Companies  
(in $1,000s) for Various Subcontracts 

Company

Component A B C D

1 185 225 193 207

2 200 190 175 225

3 330 320 315 300

4 375 389 425 445

  Assuming all the companies can perform each subcontract equally well, to which 
company should each subcontract be assigned if the home manufacturer wants to 
minimize payments to the subcontractors?
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

28. Holiday Fruit Company buys oranges and processes them into gift fruit baskets and 
fresh juice. The company grades the fruit it buys on a scale from 1 (lowest quality) 
to 5 (highest quality). The following table summarizes Holiday’s current inventory 
of fruit.

grade 1 2 3 4 5

Supply (1000s of lbs) 90 225 300 100 75
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Each pound of oranges devoted to fruit baskets results in a marginal profit of $2.50, 
whereas each pound devoted to fresh juice results in a marginal profit of $1.75. Hol-
iday wants the fruit in its baskets to have an average quality grade of at least 3.75 
and its fresh juice to have an average quality grade of at least 2.50.
a. Formulate an optimization model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

29. Riverside Oil Company in eastern Kentucky produces regular and supreme 
gasoline. Each barrel of regular sells for $21 and must have an octane rating of at 
least 90. Each barrel of supreme sells for $25 and must have an octane rating of 
at least 97. Each of these types of gasoline are manufactured by mixing different 
quantities of the following three inputs:

input Cost per Barrel Octane rating
Barrels Available 

(in 1000s)

1 $17.25 100 150
2 $15.75 87 350
3 $17.75 110 300

  Riverside has orders for 300,000 barrels of regular and 450,000 barrels of supreme. 
How should the company allocate the available inputs to the production of regular 
and supreme gasoline to maximize profits? 
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

 30. Maintenance at a major theme park in central Florida is an ongoing process that 
occurs 24 hours a day. Because it is a long drive from most residential areas to 
the park, employees do not like to work shifts of fewer than 8 hours. These eight-
hour shifts start every 4 hours throughout the day. The number of maintenance 
workers needed at different times throughout the day varies. The following table 
summarizes the minimum number of employees needed in each 4-hour time 
period.

Time Period Minimum employees Needed

12 a.m. to 4 a.m. 90
4 a.m. to 8 a.m. 215
8 a.m. to 12 p.m. 250
12 p.m. to 4 p.m. 165
4 p.m. to 8 p.m. 300
8 p.m. to 12 a.m. 125

The maintenance supervisor wants to determine the minimum number of 
employees to schedule that meets the minimum staffing requirements.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

 31. Radmore Memorial Hospital has a problem in its fluids analysis lab. The lab has 
available three machines that analyze various fluid samples. Recently, the demand 
for analyzing blood samples has increased so much that the lab director is having 
difficulty getting all the samples analyzed quickly enough and still completing the 
other fluid work that comes into the lab. The lab works with five types of blood 
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specimens. Any machine can be used to process any of the specimens. However, 
the amount of time required by each machine varies depending on the type of 
specimen being analyzed. These times are summarized in the following table.

required Specimen Processing Time in Minutes

Specimen Type

Machine 1 2 3 4 5

A 3 4 4 5 3
B 5 3 5 4 5
C 2 5 3 3 4

Each machine can be used a total of 8 hours a day. Blood samples collected on a 
given day arrive at the lab and are stored overnight and processed the next day. So, 
at the beginning of each day, the lab director must determine how to allocate the 
various samples to the machines for analysis. This morning, the lab has 80 type-1 
specimens, 75 type-2 specimens, 80 type-3 specimens, 120 type-4 specimens, and 60 
type-5 specimens awaiting processing. The lab director wants to know how many 
of each type of specimen should be analyzed on each machine in order to minimize 
the total time the machines are devoted to analyzing blood samples.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?
d. How much processing time will be available on each machine if this solution is 

implemented?
e. How would the model and solution change if the lab director wanted to balance 

the use of each machine so that each machine were used approximately the same 
amount of time? 

 32. Virginia Tech operates its own power generating plant. The electricity generated by 
this plant supplies power to the university and to local businesses and residences 
in the Blacksburg area. The plant burns three types of coal, which produce steam 
that drives the turbines that generate the electricity. The Environmental Protection 
Agency (EPA) requires that for each ton of coal burned, the emissions from the coal 
furnace smoke stacks contain no more than 2,500 parts per million (ppm) of sulfur 
and no more than 2.8 kilograms (kg) of coal dust. The following table summarizes 
the amounts of sulfur, coal dust, and steam that result from burning a ton of each 
type of coal.

Coal
Sulfur

(in ppm)
Coal Dust

(in kg)
Pounds of Steam 

Produced 

1 1,100 1.7 24,000
2 3,500 3.2 36,000
3 1,300 2.4 28,000

  The three types of coal can be mixed and burned in any combination. The resulting 
emission of sulfur or coal dust and the pounds of steam produced by any mixture 
are given as the weighted average of the values shown in the table for each type of 
coal. For example, if the coals are mixed to produce a blend that consists of 35% of 
coal 1, 40% of coal 2, and 25% of coal 3, the sulfur emission (in ppm) resulting from 
burning one ton of this blend is:

0.35 3 1,100 1 0.40 3 3,500 1 0.25 3 1,300 5 2,110 
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The manager of this facility wants to determine the blend of coal that will produce 
the maximum pounds of steam per ton without violating the EPA requirements. 
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?
d. If the furnace can burn up to 30 tons of coal per hour, what is the maximum 

amount of steam that can be produced per hour?
33. The Pitts Barbecue Company makes three kinds of barbecue sauce: Extra Hot, 

Hot, and Mild. Pitts’ vice president of marketing estimates that the company can 
sell 8,000 cases of its Extra Hot sauce plus 10 extra cases for every dollar it spends 
promoting this sauce; 10,000 cases of Hot sauce plus 8 extra cases for every dollar 
spent promoting this sauce; and 12,000 cases of its Mild sauce plus 5 extra cases 
for every dollar spent promoting this sauce. Although each barbecue sauce sells for 
$10 per case, the cost of producing the different types of sauce varies. It costs the 
company $6 to produce a case of Extra Hot sauce, $5.50 to produce a case of Hot 
sauce, and $5.25 to produce a case of Mild sauce. The president of the company 
wants to make sure the company manufactures at least the minimum amounts of 
each sauce that the marketing vice president thinks the company can sell. A budget 
of $25,000 total has been approved for promoting these items of which at least 
$5,000 must be spent advertising each item. How many cases of each type of sauce 
should be made and how do you suggest that the company allocate the promotional 
budget to maximize profits?
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

34. The Pelletier Corporation has just discovered that it will not have enough warehouse 
space for the next 5 months. The additional warehouse space requirements for this 
period are listed in the following table:

Month 1 2 3 4 5

Additional Space Needed 
(in 1,000 sq ft) 25 10 20 10 5

  To cover its space requirements, the firm plans to lease additional warehouse space 
on a short-term basis. Over the next 5 months, a local warehouse has agreed to lease 
Pelletier any amount of space for any number of months according to the following 
cost schedule. 

Length of Lease (in months) 1 2 3 4 5

Cost per 1,000 square feet $300 $525 $775 $850 $975

  This schedule of leasing options is available to Pelletier at the beginning of each of 
the next 5 months. For example, the company could elect to lease 5,000 square feet 
for 4 months beginning in month 1 (at a cost of 850 3 5) and lease 10,000 square feet 
for 2 months beginning in month 3 (at a cost of 525 3 10).
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

35. The Sentry Lock Corporation manufactures a popular commercial security lock at 
plants in Macon, Louisville, Detroit, and Phoenix. The per unit cost of production 
at each plant is $35.50, $37.50, $39.00, and $36.25, respectively, while the annual 
production capacity at each plant is 18,000, 15,000, 25,000, and 20,000, respectively. 
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Sentry’s locks are sold to retailers through wholesale distributors in seven 
cities across the United States. The unit cost of shipping from each plant to each 
distributor is summarized in the following table along with the forecasted demand 
from each distributor for the coming year.

unit Shipping Cost to Distributor in

Plants Tacoma San Diego Dallas Denver St. Louis Tampa Baltimore

Macon $2.50 $2.75 $1.75 $2.00 $2.10 $1.80 $1.65
Louisville $1.85 $1.90 $1.50 $1.60 $1.00 $1.90 $1.85
Detroit $2.30 $2.25 $1.85 $1.25 $1.50 $2.25 $2.00
Phoenix $1.90 $0.90 $1.60 $1.75 $2.00 $2.50 $2.65
Demand 8,500 14,500 13,500 12,600 18,000 15,000 9,000

Sentry wants to determine the least expensive way of manufacturing and shipping 
locks from its plants to the distributors. Because the total demand from distributors 
exceeds the total production capacity for all the plants, Sentry realizes it will not be 
able to satisfy all the demand for its product, but wants to make sure each distribu-
tor will have the opportunity to fill at least 80% of the orders received.
a. Create a spreadsheet model for this problem and solve it.
b. What is the optimal solution?

36. A paper recycling company converts newspaper, mixed paper, white office paper, 
and cardboard into pulp for newsprint, packaging paper, and print stock quality 
paper. The following table summarizes the yield for each kind of pulp recovered 
from each ton of recycled material.

recycling Yield

Newsprint Packaging Print Stock

Newspaper 85% 80% —
Mixed Paper 90% 80% 70%
White Office Paper 90% 85% 80%
Cardboard 80% 70% —

  For instance, a ton of newspaper can be recycled using a technique that yields 0.85 
tons of newsprint pulp. Alternatively, a ton of newspaper can be recycled using a 
technique that yields 0.80 tons of packaging paper. Similarly, a ton of cardboard can 
be recycled to yield 0.80 tons of newsprint or 0.70 tons of packaging paper pulp. 
Note that newspaper and cardboard cannot be converted to print stock pulp using 
the techniques available to the recycler. 

  The cost of processing each ton of raw material into the various types of pulp is 
summarized in the following table along with the amount of each of the four raw 
materials that can be purchased and their costs.

Processing Costs per Ton Purchase Cost Tons

Newsprint Packaging Print Stock Per Ton Available

Newspaper $6.50 $11.00 — $15 600
Mixed Paper $9.75 $12.25 $9.50 $16 500
White Office Paper $4.75 $7.75 $8.50 $19 300
Cardboard $7.50 $8.50 — $17 400

47412_ch03_ptg01_046-140.indd   127 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



128 Chapter 3 Modeling and Solving LP Problems in a Spreadsheet 

The recycler wants to determine the least costly way of producing 500 tons of news-
print pulp, 600 tons of packaging paper pulp, and 300 tons of print stock quality 
pulp.
a. Create a spreadsheet model for this problem and solve it.
b. What is the optimal solution?

37. A winery has the following capacity to produce an exclusive dinner wine at either 
of its two vineyards at the indicated costs:

Vineyard Capacity Cost per Bottle

1 3,500 bottles $23
2 3,100 bottles $25

Four Italian restaurants around the country are interested in purchasing this wine. 
Because the wine is exclusive, they all want to buy as much as they need but will 
take whatever they can get. The maximum amounts required by the restaurants and 
the prices they are willing to pay are summarized in the following table.

restaurant Maximum Demand Price

1 1,800 bottles $69
2 2,300 bottles $67
3 1,250 bottles $70
4 1,750 bottles $66

  The costs of shipping a bottle from the vineyards to the restaurants are summarized 
in the following table.

restaurant

Vineyard 1 2 3 4

1 $7 $8 $13 $9
2 $12 $6 $8 $7

  The winery needs to determine the production and shipping plan that allows it to 
maximize its profits on this wine.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

 38. Paul Bergey is in charge of loading cargo ships for International Cargo Company 
(ICC) at the port in Newport News, Virginia. Paul is preparing a loading plan for 
an ICC freighter destined for Ghana. An agricultural commodities dealer wants to 
transport the following products aboard this ship.

Commodity
Amount Available  

(tons)
Volume per Ton  

(cubic feet)
Profit per Ton 

($)

1 4,800 40 70
2 2,500 25 50
3 1,200 60 60
4 1,700 55 80

  Paul can elect to load any and/or all of the available commodities. However, the 
ship has three cargo holds with the following capacity restrictions:
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Cargo Hold Weight Capacity (tons) Volume Capacity (cubic feet)

Forward 3,000 145,000
Center 6,000 180,000
Rear 4,000 155,000

More than one type of commodity can be placed in the same cargo hold. However, 
because of balance considerations, the weight in the forward cargo hold must be 
within 10% of the weight in the rear cargo hold and the center cargo hold must be 
between 40% to 60% of the total weight on board.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution? 

39. Acme Manufacturing makes a variety of household appliances at a single 
manufacturing facility. The expected demand for one of these appliances during the 
next 4 months is shown in the following table along with the expected production 
costs and the expected capacity for producing these items.

Month

1 2 3 4

Demand 420 580 310 540
Production Cost $49.00 $45.00 $46.00 $47.00
Production Capacity 500 520 450 550

  Acme estimates it costs $1.50 per month for each unit of this appliance carried in 
inventory (estimated by averaging the beginning and ending inventory levels each 
month). Currently, Acme has 120 units in inventory on hand for this product. To 
maintain a level workforce, the company wants to produce at least 400 units per 
month. The company also wants to maintain a safety stock of at least 50 units per 
month. Acme wants to determine how many of each appliance to manufacture 
 during each of the next 4 months to meet the expected demand at the lowest possi-
ble total cost.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?
d. How much money could Acme save if they were willing to drop the restriction 

about producing at least 400 units per month?
 40. Carter Enterprises is involved in the soybean business in South Carolina, Alabama, 

and Georgia. The president of the company, Earl Carter, goes to a commodity 
sale once a month where he buys and sells soybeans in bulk. Carter uses a local 
warehouse for storing his soybean inventory. This warehouse charges $10 per 
average ton of soybeans stored per month (based on the average of the beginning 
and ending inventory each month). The warehouse guarantees Carter the capacity 
to store up to 400 tons of soybeans at the end of each month. Carter has estimated 
what he believes the price per ton of soybeans will be during each of the next 
6 months. These prices are summarized in the following table. 

Month 1 2 3 4 5 6

Price per Ton $135 $110 $150 $175 $130 $145 
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Assume Carter currently has 70 tons of soybeans stored in the warehouse. How 
many tons of soybeans should Carter buy and sell during each of the next 6 months 
to maximize his profit trading soybeans?
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

41. The DotCom Corporation is implementing a pension plan for its employees. The 
company intends to start funding the plan with a deposit of $50,000 on January 1, 
2018. It plans to invest an additional $12,000 one year later, and continue making 
additional investments (increasing by $2,000 per year) on January 1 of each year from 
2020 through 2032. To fund these payments, the company plans to purchase a number 
of bonds. Bond 1 costs $970 per unit and will pay a $65 coupon on January 1 of each 
year from 2019 through 2022 plus a final payment of $1,065 on January 1, 2023. Bond 2 
costs $980 and will pay a $73 coupon on January 1 of each year from 2019 through 2028 
plus a final payment of $1,073 on January 1, 2029. Bond 3 costs $1,025 and will pay a 
$85 coupon on January 1 of each year from 2019 through 2031 plus a final payment of 
$1,085 on January 1, 2032. The company’s cash holdings earn an interest rate of 4.5%. 
Assume the company wants to purchase bonds on January 1, 2018 and may buy them 
in fractional units. How much should the company invest in the various bonds and 
cash account to fund this plan through January 1, 2032 in the least costly way?
a. Create a spreadsheet model for this problem and solve it.
b. What is the optimal solution?

42. Jack Potts recently won $1,000,000 in Las Vegas and is trying to determine how to 
invest his winnings. He has narrowed his decision down to five investments, which 
are summarized in the following table.

Summary of Cash inflows and Outflows
(at beginning of years)

1 2 3 4

A ]1 0.50 0.80
B ]1 dS 1.25
C ]1 dS dS 1.35
D ]1 1.13
E ]1 dS 1.27

  If Jack invests $1 in investment A at the beginning of year 1, he will receive $0.50 at 
the beginning of year 2 and another $0.80 at the beginning of year 3. Alternatively, 
he can invest $1 in investment B at the beginning of year 2 and receive $1.25 at the 
beginning of year 4. Entries of “dS” in the table indicate times when no cash inflows 
or outflows can occur. At the beginning of any year, Jack can place money in a money 
market account that is expected to yield 8% per year. He wants to keep at least $50,000 
in the money market account at all times and doesn’t want to place any more than 
$500,000 in any single investment. How would you advise Jack to invest his winnings 
if he wants to maximize the amount of money he’ll have at the beginning of year 4?
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

43. Fred and Sally Merrit recently inherited a substantial amount of money from a 
deceased relative. They want to use part of this money to establish an account to 
pay for their daughter’s college education. Their daughter, Lisa, will be starting 
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college 5 years from now. The Merrits estimate that her first year college expenses 
will amount to $12,000 and increase $2,000 per year during each of the remaining 
3 years of her education. The following investments are available to the Merrits:

investment Available Matures return at Maturity

A Every year 1 year 6%
B 1, 3, 5, 7 2 years 14%
C 1, 4 3 years 18%
D 1 7 years 65%

  The Merrits want to determine an investment plan that will provide the necessary 
funds to cover Lisa’s anticipated college expenses with the smallest initial investment.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

 44. Refer to the previous question. Suppose the investments available to the Merrits 
have the following levels of risk associated with them.

investment risk Factor

A 1
B 3
C 6
D 8

  If the Merrits want the weighted average risk level of their investments to not 
exceed 4, how much money will they need to set aside for Lisa’s education and how 
should they invest it? 
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?

 45. A natural gas trading company wants to develop an optimal trading plan for the 
next 10 days. The following table summarizes the estimated prices (per thousand 
cubic feet (cf)) at which the company can buy and sell natural gas during this time. 
The company may buy gas at the “Ask” price and sell gas at the “Bid” price. 

Day 1 2 3 4 5 6 7 8 9 10

Bid $3.06 $4.01 $6.03 $4.06 $4.01 $5.02 $5.10 $4.08 $3.01 $4.01 

Ask $3.22 $4.10 $6.13 $4.19 $4.05 $5.12 $5.28 $4.23 $3.15 $4.18 

The company currently has 150,000 cf of gas in storage and has a maximum storage 
capacity of 300,000 cf. To maintain the required pressure in the gas transmission 
pipeline system, the company can inject no more than 200,000 cf into the storage facility 
each day and can extract no more than 180,000 cf per day. Assume extractions occur 
in the morning and injections occur in the evening. The owner of the storage facility 
charges a storage fee of 5% of the market (bid) value of the average daily gas inventory. 
(The average daily inventory is computed as the average of each day’s beginning and 
ending inventory.) 

a. Create a spreadsheet model for this problem and solve it.
b. What is the optimal solution?
c. Assuming price forecasts for natural gas change on a daily basis, how would you 

suggest the company in this problem actually use your model?
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46. The accounting firm of Coopers & Andersen is conducting a benchmarking survey 
to assess the satisfaction level of their clients versus clients served by competing 
accounting firms. The clients are divided into four groups: 

Group 1: Large clients of Coopers & Andersen 
Group 2: Small clients of Coopers & Andersen
Group 3: Large clients of other accounting firms
Group 4: Small clients of other accounting firms

A total of 4,000 companies are being surveyed either by telephone or via a two-way 
web cam interview. The costs associated with surveying the different types of com-
panies are summarized in the following table:

Survey Costs

group Telephone Web Cam

1 $18 $40

2 $14 $35
3 $25 $60
4 $20 $45

  Coopers & Andersen wants the survey to carry out the survey in the least costly 
way that meets the following conditions:
•	 At least 10% but not more than 50% of the total companies surveyed should 

come from each group.
•	 At least 50% of the companies surveyed should be clients of Coopers & Andersen.
•	 At least 25% of the surveys should be done via web cam.
•	 At least 50% of the large clients of Coopers & Anderson who are surveyed should 

be done via web cam.
•	 A maximum of 40% of those surveyed may be small companies.
•	 A maximum of 25% of the small companies surveyed should be done via web 

cam.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

 47. The CFO for Eagle Beach Wear and Gift Shop is in the process of planning for the 
company’s cash flows for the next 6 months. The following table summarizes the 
expected accounts receivables and planned payments for each of these months (in 
$100,000s).

January February March April May June

Accounts Receivable
Balances Due

1.50 1.00 1.40 2.30 2.00 1.00

Planned Payments 
(net of discounts)

1.80 1.60 2.20 1.20 0.80 1.20

The company currently has a beginning cash balance of $40,000 and desires to maintain 
a balance of at least $25,000 in cash at the end of each month. To accomplish this, the 
company has a number of ways of obtaining short-term funds:

1. Delay Payments. In any month, the company’s suppliers permit it to delay 
any or all payments for 1 month. However, for this consideration, the company 
forfeits a 2% discount that normally applies when payments are made on time. 
(Loss of this 2% discount is, in effect, a financing cost.)
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2. Borrow Against Accounts Receivables. In any month, the company’s bank will 
loan it up to 75% of the accounts receivable balances due that month. These loans 
must be repaid in the following month and incur an interest charge of 1.5%

3. Short-Term Loan. At the beginning of January, the company’s bank will also give 
it a 6-month loan to be repaid in a lump sum at the end of June. Interest on this 
loan is 1% per month and is payable at the end of each month.

Assume the company earns 0.5% interest each month on cash held at the beginning 
of the month. 

Create a spreadsheet model the company can use to determine the least costly 
cash management plan (i.e., minimal net financing costs) for this 6-month period. 
What is the optimal solution?

48. WinterWearhouse operates a clothing store specializing in ski apparel. Given the 
seasonal nature of their business, there is often somewhat of an imbalance between 
when bills must be paid for inventory purchased and when the goods are actually 
sold and cash is received. Over the next 6 months, the company expects cash 
receipts and requirements for bill paying as follows:

Month

1 2 3 4 5 6

Cash Receipts $100,000 $225,000 $275,000 $350,000 $475,000 $625,000
Bills Due $400,000 $500,000 $600,000 $300,000 $200,000 $100,000

The company likes to maintain a cash balance of at least $20,000 and currently 
has $100,000 cash on hand. The company can borrow money from a local bank for 
the following term/rate structure: 1-month at 1%, 2-months at 1.75%, 3-months 
at 2.49%, 4-months at 3.22%, and 5-months at 3.94%. When needed, money is 
borrowed at the end of a month and repaid, with interest, at the end of the month 
in which the obligation is due. For instance, if the company borrows $10,000 for 2 
months in month 3, they would have to pay back $10,175 at the end of month 5. 
a. Create a spreadsheet model for this problem and solve it.
b. What is the optimal solution?
c. Suppose its bank wants to limit WinterWearhouse to borrowing no more than 

$100,000 at each level in the term/rate structure. How would this restriction 
change the solution to the problem?

d. In light of your answer to part c, what would the bank’s borrowing limit need to 
increase to in order to obtain a feasible solution?

 49. Fidelity Savings & Loans (FS&L) operates a number of banking facilities 
throughout the Southeastern United States. The officers of FS&L wants to analyze 
the efficiency of the various branch offices using DEA. The following data has 
been selected to represent appropriate input and output measures of each banking 
facility. 

Branch r.O.A. New Loans Satisfaction Labor Hours Op. Costs

1 5.32 770 92 3.73 6.34
2 3.39 780 94 3.49 4.43
3 4.95 790 93 5.98 6.31
4 6.01 730 82 6.49 7.28
5 6.40 910 98 7.09 8.69
6 2.89 860 90 3.46 3.23
7 6.94 880 89 7.36 9.07
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Branch r.O.A. New Loans Satisfaction Labor Hours Op. Costs

8 7.18 970 99 6.38 7.42
9 5.98 770 94 4.74 6.75
10 4.97 930 91 5.04 6.35

a. Identify the inputs and outputs for FS&L. Are they all measured on the 
appropriate scale for use with DEA?

b. Compute the DEA efficiency of each branch office.
c. Which offices are DEA efficient?
d. What input and output levels should branch 5 aspire to in order to become 

efficient?
50. The Embassy Lodge hotel chain wants to compare its brand efficiency to that of its 

major competitors using DEA. Embassy collected the following data reported in 
industry trade publications. Embassy views customers’ perceptions of satisfaction 
and value (scored from 0 to 100 where 100 is best) to be outputs produced as 
a function of the following inputs: price, convenience, room comfort, climate 
control, service, and food quality. (All inputs are expressed on scales where less is 
better.)

Brand
Satis-
faction Value Price

Conven-
ience

room 
Comfort

Climate 
Control Service

Food 
Quality

Embassy Lodge 88 82 90.00 2.3 1.8 2.7 1.5 3.3
Sheritown Inn 87 93 70.00 1.5 1.1 0.2 0.5 0.5
Hynton Hotel 78 87 75.00 2.2 2.4 2.6 2.5 3.2
Vacation Inn 87 88 75.00 1.8 1.6 1.5 1.8 2.3
Merrylot 89 94 80.00 0.5 1.4 0.4 0.9 2.6
FairPrice Inn 93 93 80.00 1.3 0.9 0.2 0.6 2.8
Jetty Park Inn 90 91 77.00 2.0 1.3 0.9 1.2 3.0
President’s Suites 88 95 85.00 1.9 1.7 2.6 1.6 1.8
Johnson Loward’s 94 78 90.00 1.4 1.2 0.0 0.8 2.1
Leeward Place 93 87 93.00 0.7 2.3 2.5 2.3 3.2
Magmun Opus 91 89 77.00 1.9 1.5 1.9 1.9 0.8
Rural Retreat 82 93 76.00 2.2 1.3 0.8 0.8 2.3
Sleep Well Inn 93 90 88.00 1.5 0.9 0.5 1.6 3.2
Comfort Cave 87 89 87.00 2.3 1.4 1.2 2.2 2.0
Nights Inn 92 91 85.00 1.4 1.3 0.6 1.4 2.1
Western Hotels 97 92 90.00 0.3 1.7 1.7 1.7 1.8

a. Compute the DEA efficiency for each brand.
b. Which brands are efficient?
c. Is Embassy Lodge efficient? If not, what input and output values should they 

aspire to in order to become efficient?

Putting the Link in the Supply Chain
Rick Eldridge is the new Vice President for operations at the The Golfer’s Link (TGL), 
a company specializing in the production of quality, discount sets of golf clubs. Rick 
was hired primarily because of his expertise in supply chain management (SCM). SCM 
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is the integrated planning and control of all resources in the logistics process from the 
acquisition of raw materials to the delivery of finished products to the end user. While 
SCM seeks to optimize all activities in the supply chain including transactions between 
firms, Rick’s first priority is ensuring that all aspects of production and distribution 
within TGL are operating optimally.

TGL produces three different lines of golf clubs for men, women, and junior golfers 
at manufacturing plants in Daytona Beach, FL; Memphis, TN; and Tempe, AZ. The 
plant in Tempe produces all three lines of clubs while the one in Daytona only produces 
Men’s and Women’s lines, and the plant in Memphis only produces the Women’s and 
Junior’s lines. Each line of clubs requires varying amounts of three raw materials that 
are sometimes in short supply: titanium, aluminum, and a distinctive rock maple wood 
that TGL uses in all of its drivers. The manufacturing process for each line of clubs at 
each plant is identical. Thus, the amount of each of these materials required in each set 
of the different lines of clubs is summarized in the following table:

resources required per Club Set (in lbs)

Men’s Women’s Junior’s

Titanium 2.9 2.7 2.5 

Aluminum 4.5 4 5 

Rock Maple 5.4 5 4.8 

The estimated amount of each of these key resources available at each plant during 
the coming month is given as: 

estimated resource Availability (in lbs)

Daytona Memphis Tempe

Titanium 4,500 8,500 14,500

Aluminum 6,000 12,000 19,000

Rock Maple 9,500 16,000 18,000

TGL’s reputation for quality and affordability ensures that they can sell all the clubs 
they can make. The Men’s, Women’s, and Junior’s lines generate wholesale revenues 
of $225, $195, and $165, respectively, regardless of where they are produced. Club sets 
are shipped from the production plants to distribution centers in Sacramento, CA, 
Denver, CO, and Pittsburgh, PA. Each month, the different distributions centers order 
the number of club sets in each of the three lines that they would like to receive. TGL’s 
contract with this distributor requires the company to fill at least 90% (but no more 
than 100%) of all distributor orders. Rick recently received the following distributor 
orders for the coming month:

Number of Club Sets Ordered

Men’s Women’s Junior’s

Sacramento 700 900 900

Denver 550 1,000 1,500

Pittsburgh 900 1,200 1,100

The cost of shipping a set of clubs to each distribution point from each production 
facility is summarized in the following table. Note again that Daytona does not produce 
Junior’s club sets and Memphis does not produce Men’s club sets.
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Shipping Costs

  Men’s Women’s Junior’s

To \ From Daytona Tempe Daytona Memphis Tempe Memphis Tempe

Sacramento $51 $10 $49 $33 $9 $31 $8

Denver $28 $43 $27 $22 $42 $21 $40

Pittsburgh $36 $56 $34 $13 $54 $12 $52

Rick has asked you to determine an optimal production and shipping plan for the 
coming month.

1. Create a spreadsheet model for this problem and solve it. What is the optimal 
solution?

2. If Rick wanted to improve this solution, what additional resources would be needed 
and where would they be needed? Explain.

3. What would TGL’s optimal profit be if the company was not required to supply at 
least 90% of each distributor’s order?

4. Suppose TGL’s agreement included the option of paying a $10,000 penalty if the 
company cannot supply at least 90% of each distributor’s order but instead supply 
at least 80% of each distributor’s order. Comment of the pros and cons of TGL exer-
cising this option.

Foreign Exchange Trading at Baldwin 
Enterprises
Baldwin Enterprises is a large manufacturing company with operations and sales 
divisions located in the United States and several other countries. The CFO of the 
organization, Wes Hamrick, is concerned about the amount of money Baldwin has 
been paying in transaction costs in the foreign exchange markets and has asked you to 
help optimize Baldwin’s foreign exchange treasury functions. 

With operations in several countries, Baldwin maintains cash assets in several 
different currencies: U.S. dollars (USD), the European Union’s euro (EUR), Great 
Britian’s pound (GBP), Hong Kong dollars (HKD), and Japanese yen (JPY). To meet 
the different cash flow requirements associated with the company’s operations 
around the world, Baldwin must often move funds from one location (and currency) 
to another. For instance, to pay an unexpected maintenance expense at their facility in 
Japan, Baldwin may need to convert some of its holdings in U.S. dollars to Japanese 
yen.

The foreign exchange (FX) market is a network of financial institutions and brokers 
in which individuals, businesses, banks, and governments buy and sell the currencies 
of different countries. They do so in order to finance international trade, invest or do 
business abroad, or speculate on currency price changes. The FX market operates 24-hours 
a day and represents the largest and most liquid marketplace in the global economy. On 
average, the equivalent of about $1.5 trillion in different currencies is traded daily in 
the FX market around the world. The liquidity of the market provides businesses with 
access to international markets for goods and services by the providing foreign currency 
necessary for transactions worldwide (see: http://www.ny.frb.org/fxc ).

The FX market operates in much the same way as a stock or commodity market 
where there is a bid price and ask price for each commodity (or, in this case, currency). 

CASe 3.2

47412_ch03_ptg01_046-140.indd   136 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Case 3.3 137

A bid price is the price at which the market is willing to buy a particular currency and 
the ask price is the price at which the market is willing to sell a currency. The ask prices 
are typically slightly higher than the bid prices for the same currency – representing the 
transaction cost or the profit earned by the organizations that keep the market liquid.

The following table summarizes the current FX rates for the currencies Baldwin 
currently holds. The entries in this table represent the conversion rates from the row 
currencies to the column currencies. 

Convert \ To uSD eur gBP HKD JPY

USD 1 1.01864 0.6409 7.7985 118.55
EUR 0.9724 1 0.6295 7.6552 116.41
GBP 1.5593 1.5881 1 12.154 184.97
HKD 0.12812 0.1304 0.0821 1 15.1005
JPY 0.00843 0.00856 0.0054 0.0658 1

For example, the table indicates that 1 British pound (GBP) can be exchanged (or 
sold) for 1.5593 U.S. dollars (USD). Thus, $1.5593 is the bid price, in U.S. dollars, for 
1 British pound. Alternatively, the table indicates 1 U.S. dollar (USD) can be exchanged 
(sold) for 0.6409 British pounds (GBP). So, it takes about 1.5603 U.S. dollars (or 1/0.6409) 
to buy 1 British pound (or the ask price, in U.S. dollars, for 1 British pound is roughly 
$1.5603).

Notice that if you took 1 British pound, converted it to 1.5593 U.S. dollars, and then 
converted those 1.5593 dollars back to British pounds, you would end up with only 
0.999355 British pounds (i.e., 1 3 1.5593 3 0.6409 5 0.999355). The money you lose in 
this exchange is the transaction cost. 

Baldwin’s current portfolio of cash holdings includes 2 million USD, 5 million 
EUR, 1 million GBP, 3 million HKD, and 30 million JPY. This portfolio is equivalent to 
$9,058,560 USD under the current exchange rates (given earlier). Wes has asked you to 
design a currency trading plan that would increase Baldwin’s euro and yen holdings 
to 8 million EUR and 54 JPY, respectively, while maintaining the equivalent of at least 
$250,000 USD in each currency. Baldwin measures transaction costs as the change in 
the USD equivalent value of the portfolio.

 1. Create a spreadsheet model for this problem and solve it. 
 2. What is the optimal trading plan?
 3. What is the optimal transaction cost (in equivalent USD)?
 4. Suppose another executive thinks that holding $250,000 USD in each currency is 

excessive and wants to lower the amount to $50,000 USD in each currency. Does this 
help to lower the transaction cost? Why or why not?

 5. Suppose the exchange rate for converting USD to GBP increased from 0.6409 to 
0.6414. What happens to the optimal solution in this case?

The Wolverine Retirement Fund
Kelly Jones is a financial analyst for Wolverine Manufacturing, a company that 
produces engine bearings for the automotive industry. Wolverine is in the process of 
hammering out a new labor agreement with its unionized workforce. One of the major 
concerns of the labor union is the funding of Wolverine’s retirement plan for its hourly 
employees. The union believes the company has not been contributing enough money 
to this fund to cover the benefits it will need to pay to retiring employees. Because of 
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this, the union wants the company to contribute approximately $1.5 million dollars in 
additional money to this fund over the next 20 years. These extra contributions would 
begin with an extra payment of $20,000 at the end of 1 year with annual payments 
increasing by 12.35% per year for the next 19 years.

The union has asked the company to set up a sinking fund to cover the extra annual 
payments to the retirement fund. The Wolverines’ CFO and the union’s chief negotiator 
have agreed that AAA rated bonds recently issued by three different companies may 
be used to establish this fund. The following table summarizes the provisions of these 
bonds.

Company Maturity Coupon Payment Price Par Value

AC&C 15 years $80 $847.88 $1,000
IBN 10 years $90 $938.55 $1,000
MicroHard 20 years $85 $872.30 $1,000

According to this table, Wolverine may buy bonds issued by AC&C for $847.88 per 
bond. Each AC&C bond will pay the bondholder $80 per year for the next 15 years, plus 
an extra payment of $1,000 (the par value) in the fifteenth year. Similar interpretations 
apply to the information for the IBN and MicroHard bonds. A money market fund 
yielding 5% may be used to hold any coupon payments that are not needed to meet the 
company’s required retirement fund payment in any given year.

Wolverine’s CFO has asked Kelly to determine how much money the company 
would have to invest and which bonds the company should buy in order to meet the 
labor union’s demands. 

 1. If you were Kelly, what would you tell the CFO?
 2. Suppose the union insists on including one of the following stipulations in the 

agreement: 
a. No more than half of the total number of bonds purchased may be purchased 

from a single company. 
b. At least 10% of the total number of bonds must be purchased from each of the 

companies. Which stipulation should Wolverine agree to?

Saving the Manatees
“So how am I going to spend this money,” thought Tom Wieboldt as he sat staring at 
the pictures and posters of manatees around his office. An avid environmentalist, Tom 
is the president of “Friends of the Manatees”—a non-profit organization trying to help 
pass legislation to protect manatees. 

Manatees are large, gray-brown aquatic mammals with bodies that taper to a flat, 
paddle-shaped tail. These gentle and slow-moving creatures grow to an average adult 
length of 10 feet and weigh an average of 1,000 pounds. Manatees are found in shallow, 
slow-moving rivers, estuaries, saltwater bays, canals, and coastal areas. In the United 
States, manatees are concentrated in Florida in the winter, but can be found in summer 
months as far west as Alabama and as far north as Virginia and the Carolinas. They 
have no natural enemies, but loss of habitat is the most serious threat facing manatees 
today. Most human-related manatee deaths occur from collisions with motor boats.

Tom’s organization has been supporting a bill before the Florida legislature to 
restrict the use of motor boats in areas known to be inhabited by manatees. This bill is 
scheduled to come up for a vote in the legislature. Tom recently received a phone call 
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from a national environmental protection organization indicating that they are going 
to donate $300,000 to Friends of the Manatees to help increase public awareness about 
the plight of the manatees and to encourage voters to urge their representatives in the 
state legislature to vote for this bill. Tom intends to use this money to purchase various 
types of advertising media to “get the message out” during the 4 weeks immediately 
preceding the vote.

Tom is considering several different advertising alternatives: newspapers, TV, radio, 
billboards, and magazines. A marketing consultant provided Tom with the following 
data on the costs and effectiveness of the various types of media being considered.

Advertising Medium unit Cost unit impact rating

Half-page, Daily paper $800 55
Full-page, Daily paper $1,400 75
Half-page, Sunday paper $1,200 65
Full-page, Sunday paper $1,800 80
Daytime TV spot $2,500 85
Evening TV spot $3,500 100
Highway Billboards $750 35
15-second Radio spot $150 45
30-second Radio spot $300 55
Half-page, magazine $500 50
Full-page, magazine $900 60

According to the marketing consultant, the most effective type of advertising for this 
type of problem would be short TV ads during the evening prime-time hours. Thus, this 
type of advertising was given a “unit impact rating” of 100. The other types of advertising 
were then given unit impact ratings that reflect their expected effectiveness relative to an 
evening TV ad. For instance, a half-page magazine ad is expected to provide half the 
effectiveness of an evening TV ad and is therefore given an impact rating of 50.

Tom wants to allocate the $300,000 to these different advertising alternatives in a 
way that will maximize the impact achieved. However, he realizes it is important to 
spread his message via several different advertising channels as not everyone listens to 
the radio and not everyone watches TV in the evenings. 

The two most widely read newspapers in the state of Florida are the Orlando Sentinel 
and the Miami Herald. During the 4 weeks prior to the vote, Tom wants to have half-
page ads in the daily (Monday-Saturday) versions of each of these papers at least three 
times per week. He also wants to have one full-page ad in the daily version of each 
paper the week before the vote and he is willing to run more full-page ads if this would 
be helpful. He also wants to run full-page ads in the Sunday editions of each paper the 
Sunday before the vote. Tom never wants to run a full-page and half-page ad in a paper 
on the same day. So the maximum number of full-page ads and half-page ads that can 
be run in the daily papers should be 48 (i.e., 4 weeks × 6 days per week × 2 papers = 
48). Similarly, the maximum number of full and half-page ads that can be run in the 
Sunday papers is 8.

Tom wants to have at least one and no more than three daytime TV ads every day 
during the 4-week period. He also wants to have at least one ad on TV every night but 
no more than two per night. 

There are 10 billboard locations throughout the state that are available for use during 
the 4 weeks before the vote. Tom definitely wants to have at least 1 billboard in each of 
the cities of Orlando, Tampa, and Miami.
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Tom believes that the ability to show pictures of the cute, pudgy, lovable manatees 
in the print media offers a distinct advantage over radio ads. However, the radio ads 
are relatively inexpensive and may reach some people that the other ads will not reach. 
Thus, Tom wants to have at least two 15-second ads and at least two 30-second ads 
on the radio each day. However, he wants to limit the number of radio ads to five 
15-second ads and five 30-second ads per day.

There are three different weekly magazines in which Tom can run ads. Tom wants 
to run full-page ads in each of the magazines at some point during the 4-week period. 
However, he never wants to run full-page ads and half-page ads in the same magazine 
in a given week. Thus, the total number of full-page and half-page magazine ads 
selected should not exceed 12 (i.e., 4 weeks × 3 magazines × 1 ad per magazine per 
week = 12 ads).

Although Tom has some ideas about the minimum and maximum number of ads to 
run in the various types of media, he’s not sure how much money this will take. And 
if he can afford to meet all the minimums, he’s really confused about the best way to 
spend the remaining funds. So again Tom asks himself, “How am I going to spend this 
money?”

1. Create a spreadsheet model for this problem and solve it. What is the optimal 
solution?

2.  Of the constraints Tom placed on this problem, which are “binding” or preventing 
the objective function from being improved further?

3.  Suppose Tom was willing to increase the allowable number of evening TV ads. 
How much would this improve the solution? 

4.  Suppose Tom was willing to double the allowable number of radio ads aired each 
day. How much would this improve the solution?
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Chapter 4
Sensitivity Analysis and  
the Simplex Method

4.0 Introduction
In chapters 2 and 3, we studied how to formulate and solve LP models for a variety 
of decision problems. However, formulating and solving an LP model does not 
necessarily mean that the original decision problem has been solved. After solving an 
LP model, a number of questions often arise about the optimal solution. In particular, 
we might be interested in how sensitive the optimal solution is to changes in various 
coefficients of the LP model.

Businesses rarely know with certainty what costs will be incurred or the exact 
amount of resources that will be consumed or available in a given situation or time 
period. Thus, optimal solutions obtained using models that assume all relevant factors 
are known with certainty might be viewed with skepticism by management. Sensitivity 
analysis can help overcome this skepticism and provide a better picture of how the 
solution to a problem will change if different factors in the model change. Sensitivity 
analysis also can help answer a number of practical managerial questions that might 
arise about the solution to an LP problem.

4.1 The Purpose of Sensitivity Analysis
As noted in chapter 2, any problem that can be stated in the following form is an LP 
problem:

MAX (or MIN): c1X1    1 c2X2 1 . . . 1 cnXn

Subject to: a11X1 1 a12X2 1 . . . 1 a1nXn # b1

…

ak1X1 1 ak2X2 1 . . . 1 aknXn $ bk

…

 am1X1 1 am2X2 1 . . . 1 amnXn 5 bm

All the coefficients in this model (the cj, aij, and bi) represent numeric constants. So, 
when we formulate and solve an LP problem, we implicitly assume that we can specify 
the exact values for these coefficients. However, in the real world, these coefficients 
might change from day to day or minute to minute. For example, the price a company 
charges for its products can change on a daily, weekly, or monthly basis. Similarly, if 
a skilled machinist calls in sick, a manufacturer might have less capacity to produce 
items on a given machine than was originally planned.
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Realizing that such uncertainties exist, a manager should consider how sensitive 
an LP model’s solution is to changes or estimation errors that might occur in: (1) the 
objective function coefficients (the cj), (2) the constraint coefficients (the aij), and (3) the 
RHS values for the constraints (the bi). A manager also might ask a number of “What 
if?” questions about these values. For example, what if the cost of a product increases 
by 7%? What if a reduction in setup time allows for additional capacity on a given 
machine? What if a worker’s suggestion results in a product requiring only 2 hours 
of labor rather than three? Sensitivity analysis addresses these issues by assessing the 
sensitivity of the solution to uncertainty or estimation errors in the model coefficients, 
as well as the solution’s sensitivity to changes in model coefficients that might occur 
because of human intervention.

4.2 Approaches to Sensitivity Analysis
You can perform sensitivity analysis on an LP model in a number of ways. If you want 
to determine the effect of some change in the model, the most direct approach is simply 
to change the model and re-solve it. This approach is suitable if the model does not take 
an excessive amount of time to change or solve. In addition, if you are interested in 
studying the consequences of simultaneously changing several coefficients in the model, 
this might be the only practical approach to sensitivity analysis.

Solver also provides some sensitivity information after solving an LP problem. As 
mentioned in chapter 3, one of the benefits of using the simplex method to solve LP 
problems is its speed—it is considerably faster than the other optimization techniques. 
However, the simplex method also provides more sensitivity analysis information than 
the other techniques. In particular, the simplex method provides us with information 
about the following:

•	 The range of values the objective function coefficients can assume without changing 
the optimal solution

•	 The impact on the optimal objective function value of increases or decreases in the 
availability of various constrained resources

•	 The impact on the optimal objective function value of forcing changes in the values 
of certain decision variables away from their optimal values

•	 The impact that changes in constraint coefficients will have on the optimal solution 
to the problem

4.3 An Example Problem
We will again use the Blue Ridge Hot Tubs problem to illustrate the types of sensitivity 
analysis information available using Solver. The LP formulation of the problem is 
repeated here, where X1 represents the number of Aqua-Spas and X2 represents the 
number of Hydro-Luxes to be produced:

 MAX: 350X1 1 300X2   } pro�t
 Subject to: 1X1 1 1X2 # 200 } pump constraint
  9X1 1 6X2 # 1,566 } labor constraint
  12X1 1 16X2 # 2,880 } tubing constraint
   X1, X2 $ 0 } nonnegativity conditions

This model is implemented in the spreadsheet shown in Figure 4.1 (and file Fig4-1.
xlsm that accompanies this book). (See chapter 3 for details on the procedure used 
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to create and solve this spreadsheet model.) After solving the LP problem, a number 
of reports are available about its solution via the Reports icon on the Analytic Solver 
Platform tab on the ribbon.

Variable Cells

Objective Cell

Constraint Cells

Key Cell Formulas

Cell Formula Copied to

D6 5SUMPRODUCT(B6:C6,$B$5:$C$5) D9:D11

Figure 4.1 Spreadsheet model for the Blue Ridge Hot Tubs product mix problem

S o f t w a r e  N o t e
When solving an LP problem, be sure to use Solver’s Standard LP/Quadratic 
Engine. This allows for the maximum amount of sensitivity analysis information 
in the reports discussed throughout this chapter.

4.4 The Answer Report
Figure 4.2 shows the Answer Report for the Blue Ridge Hot Tubs problem. To create 
this report, first solve the LP problem in the usual way and then click Reports, Optimi-
zation, Answer on the Analytic Solver Platform tab on the ribbon. This report summa-
rizes the solution to the problem, and is fairly self-explanatory. The first section of the 
report summarizes the original and final (optimal) value of the objective cell. The next 
section summarizes the original and final (optimal) values of the decision variable cells.
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The final section of this report provides information about the constraints. In 
particular, the Cell Value column shows the final (optimal) value assumed by each 
constraint cell. Note that these values correspond to the final value assumed by the LHS 
formula of each constraint. The Formula column indicates the upper or lower bounds 
that apply to each constraint cell. The Status column indicates which constraints are 
binding and which are nonbinding. A constraint is binding if it is satisfied as a strict 
equality in the optimal solution; otherwise, it is nonbinding. Notice that the constraints 
for the number of pumps and amount of labor used are both binding, meaning that 
all the available pumps and labor hours will be used if this solution is implemented. 
Therefore, these constraints are preventing Blue Ridge Hot Tubs from achieving a 
higher level of profit.

Finally, the values in the Slack column indicate the difference between the LHS 
and RHS of each constraint. By definition, binding constraints have zero slack and 
nonbinding constraints have some positive level of slack. The values in the Slack 
column indicate that if this solution is implemented, all the available pumps and labor 
hours will be used, but 168 feet of tubing will be left over. The slack values for the 
nonnegativity conditions indicate the amounts by which the decision variables exceed 
their respective lower bounds of zero.

The Answer Report does not provide any information that could not be derived 
from the solution shown in the spreadsheet model. However, the format of this report 
gives a convenient summary of the solution that can be incorporated easily into a word-
processing document as part of a written report to management.

Figure 4.2

Answer Report 
for the hot tub 
problem
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4.5 The Sensitivity Report
Figure 4.3 shows the Sensitivity Report for the Blue Ridge Hot Tubs problem. To 
create this report, first solve the LP problem in the usual way and then click Reports, 
Optimization, Sensitivity on the Analytic Solver Platform tab on the ribbon. This report 
summarizes information about the variable cells and constraints for our model. This 
information is useful in evaluating how sensitive the optimal solution is to changes in 
various coefficients in the model.

4.5.1 ChaNgeS iN the ObjeCtive  
FuNCtiON COeFFiCieNtS
Chapter 2 introduced the level-curve approach to solving a graphical LP problem and 
showed how to use this approach to solve the Blue Ridge Hot Tubs problem. This graphical 
solution is repeated in Figure 4.4 (and file Fig4-4.xlsm that accompanies this book).

The slope of the original level curve in Figure 4.4 is determined by the coefficients 
in the objective function of the model (the values 350 and 300). In Figure 4.5, we can 

R e p o r t  h e a d i n g s
When creating the reports described in this chapter, Solver will try to use various 
text entries from the original spreadsheet to generate meaningful headings 
and labels in the reports. Given the various ways in which a model can be 
implemented, Solver might not always produce meaningful headings. However, 
you can change any text entry to make the report more meaningful or descriptive.

Figure 4.3

Sensitivity Report 
for the hot tub 
problem
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Original Level
Curve

Original
Optimal
Solutions

Figure 4.4 Graph of original feasible region and optimal solution

New Level
Curve

New Optimal
Solutions

Figure 4.5 How a change in an objective function coefficient can change the slope of the level curve and 
the optimal solution
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see that if the slope of the level curve were different, the extreme point represented by 
X1 5 80, X2 5 120 would be the optimal solution. Of course, the only way to change 
the level curve for the objective function is to change the coefficients in the objective 
function. So, if the objective function coefficients are at all uncertain, we might be 
interested in determining how much these values could change before the optimal 
solution would change.

For example, if the owner of Blue Ridge Hot Tubs does not have complete control 
over the costs of producing hot tubs (which is likely because he purchases the fiberglass 
hot tub shells from another company), the profit figures in the objective function 
of our LP model might not be the exact profits earned on hot tubs produced in the 
future. So before the manager decides to produce 122 Aqua-Spas and 78 Hydro-Luxes, 
he might want to determine how sensitive this solution is to the profit figures in the 
objective. That is, the manager might want to determine how much the profit figures 
could change before the optimal solution of X1 5 122, X2 5 78 would change. This 
information is provided in the Sensitivity Report shown in Figure 4.3.

The original objective function coefficients associated with the variable cells are 
listed in the Objective Coefficient column in Figure 4.3. The next two columns show the 
allowable increases and decreases in these values. For example, the objective function 
value associated with Aqua-Spas (or variable X1) can increase by as much as $100 or 
decrease by as much as $50 without changing the optimal solution, assuming all other 
coefficients remain constant. (You can verify this by changing the profit coefficient 
for Aqua-Spas to any value in the range from $300 to $450 and re-solving the model.) 
Similarly, the objective function value asso ciated with Hydro-Luxes (or variable X2) 
can increase by $50 or decrease by approximately $66.67 without changing the optimal 
values of the decision variables, assuming all other coefficients remain constant. (Again, 
you can verify this by re-solving the model with different profit values for Hydro-Luxes.)

S o f t w a r e  N o t e
When setting up a spreadsheet model for an LP problem for which you 
intend to generate a Sensitivity Report, it is a good idea to make sure the cells 
corresponding to RHS values of constraints contain constants or formulas that 
do not involve the decision variables. Thus, any RHS formula related directly 
or indirectly to the decision variables should be moved algebraically to the LHS 
of the constraint before implementing your model. This will help to reduce 
problems in interpreting the Solver Sensitivity Report.

4.5.2 a COmmeNt abOut CONStaNCy
The phrase “assuming all other coefficients remain constant” in the previous 
paragraph underscores the fact that the allowable increases and decreases shown in 
the Sensitivity Report apply only if all the other coefficients in the LP model do not 
change. The objective coefficient for Aqua-Spas can assume any value from $300 to 
$450 without changing the optimal solution—but this is guaranteed to be true only if all the 
other coefficients in the model remain constant (including the objective function coefficient for 
X2). Similarly, the objective function coefficient for X2 can assume any value between 
$233.33 and $350 without changing the optimal solution—but this is guaranteed to be 
true only if all the other coefficients in the model remain constant (including the objective 
function coefficient for X1). Later in this chapter, you will see how to determine whether 
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the current solution remains optimal if changes are made in two or more objective 
coefficients at the same time.

4.5.3 alteRNate Optimal SOlutiONS
Sometimes, the allowable increase or allowable decrease for the objective function 
coefficient for one or more variables will equal zero. In the absence of degeneracy (to 
be described later), this indicates that alternate optimal solutions exist. You can usually 
get Solver to produce an alternate optimal solution (when they exist) by: (1) adding 
a constraint to your model that holds the objective function at the current optimal 
value, and then (2) attempting to maximize or minimize the value of one of the decision 
variables that had an objective function coefficient with an allowable increase or 
decrease of zero. This approach sometimes involves some “trial and error” in step 2, 
but should cause Solver to produce an alternate optimal solution to your problem.

4.5.4 ChaNgeS iN the RhS valueS
As noted earlier, constraints that have zero slack in the optimal solution to an LP 
problem are called binding constraints. Binding constraints prevent us from further 
improving (i.e., maximizing or minimizing) the objective function. For  example, the 
Answer Report in Figure 4.2 indicates that the constraints for the number of pumps and 
hours of labor available are binding, whereas the constraint on the amount of tubing 
available is nonbinding. This is also evident in Figure 4.3 by comparing the Final Value 
column with the Constraint R.H. Side column. The values in the Final Value column 
represent the LHS values of each constraint at the optimal solution. A constraint is 
binding if its Final Value is equal to its Constraint R.H. Side value.

After solving an LP problem, you might want to determine how much better or 
worse the solution would be if we had more or less of a given resource. For example, 
Howie Jones might wonder how much more profit could be earned if additional pumps 
or labor hours were available. The Shadow Price column in Figure 4.3 provides the 
answers to such questions.

The shadow price for a constraint indicates the amount by which the objective 
function value changes given a unit increase in the RHS value of the constraint, assuming 
all other coefficients remain constant. If a shadow price is positive, a unit increase in the 
RHS value of the associated constraint results in an increase in the optimal objective 
function value. If a shadow price is negative, a unit increase in the RHS value of the 
associated constraint results in a decrease in the optimal objective function value. To 
analyze the effects of decreases in the RHS values, you reverse the sign on the shadow 
price. That is, the negated shadow price for a constraint indicates the amount by which 
the optimal objective function value changes given a unit decrease in the RHS value of 
the constraint, assuming all other coefficients remain constant. The shadow price values 
apply provided that the increase or decrease in the RHS value falls within the allowable 
increase or allowable decrease limits in the Sensitivity Report for each constraint.

For example, Figure 4.3 indicates that the shadow price for the labor constraint is 16.67. 
Therefore, if the number of available labor hours increased by any amount in the range 
from 0 to 234 hours, the optimal objective function value changes (increases) by $16.67 for 
each additional labor hour. If the number of available labor hours decreased by any amount 
in the range from 0 to 126 hours, the optimal objective function value changes (decreases) 
by 2$16.67 for each lost labor hour. A similar interpretation holds for the shadow price 
for the constraint on the number of pumps. (It is coincidental that the shadow price for the 
pump constraint (200) is the same as that constraint’s RHS and Final Values.)
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4.5.5 ShadOw pRiCeS FOR NONbiNdiNg CONStRaiNtS
Now, let’s consider the shadow price for the nonbinding tubing constraint. The tubing 
constraint has a shadow price of zero with an allowable increase of infinity and an 
allowable decrease of 168. Therefore, if the RHS value for the tubing constraint increases 
by any amount, the objective function value does not change (or changes by zero). This 
result is not surprising. Because the optimal solution to this problem leaves 168 feet 
of tubing unused, additional tubing will not produce a better solution. Furthermore, 
because the optimal solution includes 168 feet of unused tubing, we can reduce the 
RHS value of this constraint by 168 without affecting the  optimal solution.

As this example illustrates, the shadow price of a nonbinding constraint is always 
zero. There is always some amount by which the RHS value of a nonbinding constraint 
can be changed without affecting the optimal solution.

4.5.6 a NOte abOut ShadOw pRiCeS
One important point needs to be made concerning shadow prices. To illustrate 
this point, let’s suppose that the RHS value of the labor constraint for our example 
problem increases by 162 hours (from 1,566 to 1,728) due to the addition of new 
workers. Because this increase is within the allowable increase listed for the labor 
constraint, you might expect that the optimal objective function value would increase 
by $16.67 3 162 5 $2,700. That is, the new optimal objective function value would 
be approximately $68,800 1$66,100 1 $16.67 3 162 5 $68,800 2 . Figure 4.6 shows the 
re-solved model after increasing the RHS value for the labor constraint by 162 labor 
hours to 1,728.

In Figure 4.6, the new optimal objective function value is $68,800, as expected. But 
this solution involves producing 176 Aqua-Spas and 24 Hydro-Luxes. That is, the 

Figure 4.6 Solution to the revised hot tub problem with 162 additional labor hours
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optimal solution to the revised problem is different from the solution to the original 
problem shown in Figure 4.1. This is not surprising because changing the RHS of a 
constraint also changes the feasible region for the problem. The effect of increasing the 
RHS of the labor constraint is shown graphically in Figure 4.7.

So, although shadow prices indicate how the objective function value changes if 
a given RHS value changes, they do not tell you which values the decision variables 
need to assume in order to achieve this new objective function value. Determining the 
new optimal values for the decision variables requires that you make the appropriate 
changes in the RHS value and re-solve the model.

Figure 4.7

How a change 
in the RHS 
value of the labor 
constraint changes 
the feasible region 
and optimal 
solution

a n o t h e r  i n t e r p r e t a t i o n  

o f  S h a d o w  p r i c e s
Unfortunately, there is no one universally accepted way of reporting shadow 
prices for constraints. In some software packages, the signs of the shadow prices 
do not conform to the convention used by Solver. Regardless of which software 
package you use, there is another way to look at shadow prices that should 
always lead to a proper interpretation. The absolute value of the shadow price 
always indicates the amount by which the objective function will be improved 
if the corresponding constraint is loosened. A less than or equal to constraint is 
loosened by increasing its RHS value, whereas a greater than or equal to constraint 
is loosened by decreasing its RHS value. (The absolute value of the shadow price 
can also be interpreted as the amount by which the objective will be made worse if 
the corresponding constraint is tightened.)
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4.5.7 ShadOw pRiCeS aNd the value  
OF additiONal ReSOuRCeS
In the previous example, an additional 162 hours of labor allowed us to increase 
profits by $2,700. A question might then arise as to how much we should be willing to 
pay to acquire these additional 162 hours of labor. The answer to this question is, “It 
depends. . . .”

If labor is a variable cost that was subtracted (along with other variable costs) from 
the selling price of the hot tubs to determine the marginal profits associated with each 
type of tub, we should be willing to pay up to $2,700 above and beyond what we would 
ordinarily pay to acquire 162 hours of labor. In this case, notice that both the original 
and revised profit figures of $66,100 and $68,800, respectively, represent the profit 
earned after the normal labor charge has been paid. Therefore, we could pay a premium 
of up to $2,700 to acquire the additional 162 hours of labor (or an extra $16.67 per 
additional labor hour) and still earn at least as much profit as we would have without 
the additional 162 hours of labor. Thus, if the normal labor rate is $12 per hour, we 
could pay up to $28.67 per hour to acquire each of the additional 162 hours of labor.

On the other hand, if labor is a sunk cost, which must be paid regardless of how 
many hot tubs are produced, it would not (or should not) have been subtracted from 
the selling price of the hot tubs in determining the marginal profit coefficients for each 
tub produced. In this case, we should be willing to pay a maximum of $16.67 per hour 
to acquire each of the additional 162 hours of labor.

4.5.8 OtheR uSeS OF ShadOw pRiCeS
Because shadow prices represent the marginal values of the resources in an LP problem, 
they can help us answer a number of other managerial questions that might arise. For 
example, suppose Blue Ridge Hot Tubs is considering introducing a new model of hot 
tub called the Typhoon-Lagoon. Suppose that each unit of this new model requires 1 
pump, 8 hours of labor, and 13 feet of tubing, and can be sold to generate a marginal 
profit of $320. Would production of this new model be profitable?

Because Blue Ridge Hot Tubs has limited resources, the production of any Typhoon-
Lagoons would consume some of the resources currently devoted to the production 
of Aqua-Spas and Hydro-Luxes. So, producing Typhoon-Lagoons will reduce the 
number of pumps, labor hours, and tubing available for producing the other types of 
hot tubs. The shadow prices in Figure 4.3 indicate that each pump taken away from 
production of the current products will reduce profits by $200. Similarly, each labor 
hour taken away from the production of the current products will reduce profits by 
$16.67. The shadow price for the tubing constraint indicates that the supply of tubing 
can be reduced without adversely affecting profits.

Because each Typhoon-Lagoon requires 1 pump, 8 hours of labor, and 13 feet of 
tubing, the diversion of resources required to produce one unit of this new model 
would cause a reduction in profit of $200 3 1 1 $16.67 3 8 1 $0 3 13 5 $333.33. This 
reduction would be partially offset by the $320 increase in profit generated by each 
Typhoon-Lagoon. The net effect of producing each Typhoon-Lagoon would be a $13.33 
reduction in profit 1$320 2 $333.33 5 2$13.33 2 . Therefore, the production of Typhoon-
Lagoons would not be profitable (although the company might choose to produce a 
small number of Typhoon-Lagoons to enhance its product line for marketing purposes).

Another way to determine whether or not Typhoon-Lagoons should be produced is to 
add this alternative to our model and solve the resulting LP problem. The LP model for 
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this revised problem is represented as follows, where X1, X2, and X3 represent the number 
of Aqua-Spas, Hydro-Luxes, and Typhoon-Lagoons to be produced, respectively:

 MAX: 350X1 1 300X2 1 320X3   } pro�t
Subject to: 1X1 1 1X2 1 1X3 # 200 } pump constraint

9X1 1 6X2 1 8X3 # 1,566 } labor constraint
12X1 1 16X2 1 13X3 # 2,880 } tubing constraint

X1, X2, X3 $  0 } nonnegativity conditions

This model is implemented and solved in the spreadsheet, as shown in Figure 4.8 
(and file Fig4-8.xlsm that accompanies this book). Notice that the optimal solution 
to this problem involves producing 122 Aqua-Spas 1X1 5 122 2 , 78 Hydro-Luxes 
1X2 5 78 2 , and no Typhoon-Lagoons 1X3 5 0 2 . So, as expected, the optimal solution 
does not involve producing Typhoon-Lagoons. Figure 4.9 shows the Sensitivity Report 
for our revised model.

4.5.9 the meaNiNg OF the ReduCed COStS
The Sensitivity Report in Figure 4.9 for our revised model is identical to the Sensitivity 
Report for our original model except that it includes an additional row in the decision 
variable cells section. This row reports sensitivity information on the number of 
Typhoon-Lagoons to produce. Notice that the Reduced Cost column indicates that 

Key Cell Formulas

Cell Formula Copied to

E6 5SUMPRODUCT(B6:D6,$B$5:$D$5) E9:E11

Figure 4.8 Spreadsheet model for the revised product mix problem with three hot tub models
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the reduced cost value for Typhoon-Lagoons is 213.33. This is the same number that 
we calculated in the previous section when determining whether or not it would be 
profitable to produce Typhoon-Lagoons.

The reduced cost for each variable is equal to the per-unit amount the product 
contributes to profits minus the per-unit value of the resources it consumes (where the 
consumed resources are priced at their shadow prices). For example, the reduced cost 
of each variable in this problem is calculated as:

Reduced cost of Aqua-Spas 5 350 2 200 3 1 2 16.67 3 9 2 0 3 12 5 0
Reduced cost of Hydro-Luxes 5 300 2 200 3 1 2 16.67 3 6 2 0 3 16 5 0
Reduced cost of Typhoon-Lagoons 5 320 2 200 3 1 2 16.67 3 8 2 0 3 13 5 213.33

The allowable increase in the objective function coefficient for Typhoon-
Lagoons equals 13.33. This means that the current solution will remain optimal 
provided that the marginal profit on Typhoon-Lagoons is less than or equal to 
$320 1 $13.33 5 $333.33 (because this would keep its reduced cost less than or equal 
to zero). However, if the marginal profit for Typhoon-Lagoons is more than $333.33, 
producing this product would be profitable and the optimal solution to the problem 
would change.

It is interesting to note that the shadow prices (marginal values) of the resources 
consumed equate exactly with the marginal profits of the products that, at optimality, 
assume values between their simple lower and upper bounds. This will always be the 
case. In the optimal solution to an LP problem, the variables that assume values between 
their simple lower and upper bounds always have reduced cost values of zero. (In 
our example problem, all the variables have implicit simple upper bounds of positive 
infinity.) The variables with optimal values equal to their simple lower bounds have 
reduced cost values that are less than or equal to zero for maximization problems, or 
greater than or equal to zero for minimization problems. Variables with optimal values 
equal to their simple upper bounds have reduced cost values that are greater than or 

Figure 4.9

Sensitivity Report 
for the revised 
product mix 
problem with three 
hot tub models
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equal to zero for  maximization problems, or less than or equal to zero for minimization 
problems. Figure 4.10 summarizes these relationships.

Generally, at optimality, a variable assumes its largest possible value (or is set 
equal to its simple upper bound) if this variable helps improve the objective function 
value. In a maximization problem, the variable’s reduced cost must be nonnegative 
to indicate that if the variable’s value increased, the objective value would increase 
(improve). In a minimization problem, the variable’s reduced cost must be non-
positive to indicate that if the variable’s value increased, the objective value would 
decrease (improve).

Similar arguments can be made for the optimal reduced costs of variables at their 
lower bounds. At optimality, a variable assumes its smallest (lower bound) value if it 
cannot be used to improve the objective value. In a maximization problem, the vari-
able’s reduced cost must be nonpositive to indicate that if the variable’s value increased, 
the objective value would decrease (worsen). In a minimization problem, the variable’s 
reduced cost must be nonnegative to indicate that if the variable’s value increased, the 
objective value would increase (worsen).

Figure 4.10

Summary of 
optimal reduced 
cost values

 Optimal Value of Optimal Value of
Type of Problem Decision Variable reduced Cost

 at simple lower bound # 0
Maximization between lower and upper bounds 5 0
 at simple upper bound $ 0

 at simple lower bound $ 0
Minimization between lower and upper bounds 5 0
 at simple upper bound # 0

K e y  p o i n t s
Our discussion of Solver’s Sensitivity Report highlights some key points concern-
ing shadow prices and their relationship to reduced costs. These key points are 
summarized as:

•	 The shadow prices of resources equate the marginal value of the resources 
consumed with the marginal benefit of the goods being produced.

•	 Resources in excess supply have a shadow price (or marginal value) of zero.
•	 The reduced cost of a product is the difference between its marginal profit 

and the marginal value of the resources it consumes.
•	 Products whose marginal profits are less than the marginal value of the goods 

required for their production will not be produced in an optimal solution.

4.5.10 aNalyziNg ChaNgeS iN CONStRaiNt COeFFiCieNtS
Given what we know about reduced costs and shadow prices, we can now analyze how 
changes in some constraint coefficients affect the optimal solution to an LP problem. For 
example, it is unprofitable for Blue Ridge Hot Tubs to manufacture Typhoon-Lagoons 
assuming that each unit requires 8 hours of labor. However, what would happen if the 
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product could be produced in only 7 hours? The reduced cost value for Typhoon-La-
goons is calculated as:

$320 2 $200 3 1 2 $16.67 3 7 2 $0 3 13 5 $3.31

Because this new reduced cost value is positive, producing Typhoon-Lagoons would be 
profitable in this scenario and the solution shown in Figure 4.8 would no longer be optimal. 
We could also reach this conclusion by changing the labor requirement for Typhoon-
Lagoons in our spreadsheet model and re-solving the problem. In fact, we have to do this to 
determine the new optimal solution if each Typhoon-Lagoon requires only 7 hours of labor.

As another example, suppose that we wanted to know the maximum amount of labor 
that is required to assemble a Typhoon-Lagoon while keeping its production economically 
justifiable. The production of Typhoon-Lagoons would be profitable provided that the 
reduced cost for the product is greater than or equal to zero. If L3 represents the amount 
of labor required to produce a Typhoon-Lagoon, we want to find the maximum value of 
L3 that keeps the reduced cost for Typhoon-Lagoons greater than or equal to zero. That is, 
we want to find the maximum value of L3 that satisfies the inequality:

 $320 2 $200 3 1 2 $16.67 3 L3 2 $0 3 13 $ 0

If we solve this inequality for L3, we obtain:

 L3 #
120

16.67
5 7.20

Thus, the production of Typhoon-Lagoons would be economically justified pro-
vided that the labor required to produce them does not exceed 7.20 hours per unit. 
Similar types of questions can be answered using knowledge of the basic relationships 
between reduced costs, shadow prices, and optimality conditions.

4.5.11 SimultaNeOuS ChaNgeS iN ObjeCtive  
FuNCtiON COeFFiCieNtS
Earlier, we noted that the values in the Allowable Increase and Allowable Decrease 
columns in the Sensitivity Report for the objective function coefficients indicate the 
maximum amounts by which each objective coefficient can change without altering 
the optimal solution—assuming all other coefficients in the model remain constant. A 
technique known as The 100% Rule determines whether the current solution remains 
optimal when more than one objective function coefficient changes. The following two 
situations could arise when applying this rule:

Case 1. All variables whose objective function coefficients change have non-zero 
reduced costs.

Case 2. At least one variable whose objective function coefficient changes has a 
reduced cost of zero.

In case 1, the current solution remains optimal provided that the objective function 
coefficient of each changed variable remains within the limits indicated in the Allowable 
Increase and Allowable Decrease columns of the Sensitivity Report.

Case 2 is a bit trickier. In case 2, we must perform the following analysis where:

 cj  5 the original objective function coefficient for variable Xj

Dcj 5 the planned change in cj

Ij  5 the allowable increase in cj given in the Sensitivity Report
 Dj  5 the allowable decrease in cj given in the Sensitivity Report
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rj 5 µ

Dcj

Ij
, if Dcj $ 0

2Dcj

Dj
, if Dcj 0   

Notice that rj measures the ratio of the planned change in cj to the maximum 
allowable change for which the current solution remains optimal. If only one objective 
function coefficient changed, the current solution remains optimal provided that rj # 1
(or, if rj is expressed as a percentage, it must be less than or equal to 100%). Similarly, if 
more than one objective function coefficient changes, the current solution will remain 
optimal provided that Srj # 1. (Note that if Srj . 1, the current solution might remain 
optimal, but this is not guaranteed.)

4.5.12 a waRNiNg abOut degeNeRaCy
The solution to an LP problem sometimes exhibits a mathematical anomaly known as 
degeneracy. The solution to an LP problem is degenerate if the RHS values of any of 
the constraints have an allowable increase or allowable decrease of zero. The presence 
of degeneracy impacts our interpretation of the values on the Sensitivity Report in a 
number of important ways:

1) When the solution is degenerate, the methods mentioned earlier for detecting alter-
nate optimal solutions cannot be relied upon.

2) When a solution is degenerate, the reduced costs for the variable cells may not be 
unique. Additionally, in this case, the objective function coefficients for variable 
cells must change by at least as much as (and possibly more than) their respective 
reduced costs before the optimal solution would change.

3) When the solution is degenerate, the allowable increases and decreases for the 
objective function coefficients still hold and, in fact, the coefficients may have to be 
changed substantially beyond the allowable increase and decrease limits before the 
optimal solution changes.

4) When the solution is degenerate, the given shadow prices and their ranges may still 
be interpreted in the usual way but they may not be unique. That is, a different set 
of shadow prices and ranges may also apply to the problem (even if the optimal 
solution is unique).

So before interpreting the results on a Sensitivity Report, you should always first 
check to see if the solution is degenerate because this has important ramifications on 
how the numbers on the report should be interpreted. A complete description of the 
degeneracy anomaly goes beyond the intended scope of this book. However, degeneracy 
is sometimes caused by having redundant constraints in an LP model. Extreme caution
(and perhaps consultation with an expert in mathematical programming) is in order 
if important business decisions are being made based on the Sensitivity Report for a 
degenerate LP problem.

4.6 The Limits Report
The Limits Report for the original Blue Ridge Hot Tubs problem is shown in Figure 
4.11. This report lists the optimal value of the objective cell. It then summarizes the opti-
mal values for each variable cell and indicates what values the objective cell assumes 
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if each variable cell is set to its upper or lower limits. The values in the Lower Limits 
column indicate the smallest value each variable cell can assume while the values of all 
other variable cells remain constant and all the constraints are satisfied. The values in 
the Upper Limits column indicate the largest value each variable cell can assume while 
the values of all other variable cells remain constant and all the constraints are satisfied.

4.7 Ad Hoc Sensitivity Analysis
Although the standard Sensitivity Reports Solver prepares can be quite useful, they 
cannot possibly anticipate and provide answers to every question that might arise about 
the solution to an LP problem and the effects that changes to model parameters might 
have on the optimal solution. However, Analytic Solver Platform provides a number 
of powerful features that we can use to address ad hoc sensitivity analysis questions 
when they arise. In this section we will consider two such ad hoc techniques: Spider 
Plots and Solver Tables. A Spider Plot summarizes the optimal value for one output 
cell as individual changes are made to various input cells. A Solver Table summarizes 
the optimal value for multiple output cells as changes are made to a single input cell. 
As illustrated in the following example, these tools can be helpful in developing an 
understanding of how changes in various model parameters affect the optimal solution 
to a problem.

4.7.1 CReatiNg SpideR plOtS aNd tableS
Recall that the optimal solution to the original Blue Ridge Hot Tubs problem involves 
producing 122 Aqua-Spas and 78 Hydro-Luxes for a total profit of $66,100. However, 
this solution assumes there will be exactly 200 pumps, 1,566 labor hours, and 2,880 feet 
of tubing available. In reality, pumps and tubing are sometimes defective, and workers 
sometimes call in sick. So, the owner of the company may wonder how sensitive the 
total profit is to changes in these parameters. Although the Solver Sensitivity Report 
provides some information about this issue, a Spider Plot is sometimes more helpful in 
communicating this information to management.

Figure 4.11

Limits Report for 
the original Blue 
Ridge Hot Tubs 
problem
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Again, a Spider Plot summarizes the optimal value for one output cell as individual 
changes are made to various model input cells (or parameters) one at a time, while 
holding the values of the other input cells constant at their original (or “base case”) 
values. In this case, the output cell of interest is cell D6 representing total profit. 
The parameters of interest are cells E9, E10, and E11 representing, respectively, 
the availability of pumps, labor, and tubing. Figure 4.12 (and file Fig4-12.xlsm that 
accompanies this book) shows how to set up a spreadsheet to create a Spider Plot for 
this problem.

The strategy in Figure 4.12 is to individually (one at a time) vary the availability of 
pumps, labor, and tubing between 90% and 110% of their original values while holding 
the remaining resources at their base case levels. The base case values for each of our 
three parameters are listed in cells F9 through F11. For each of these three parameters 
we will create and optimize eleven different scenarios (while holding the other two 
parameters at their base case values) and record the corresponding optimal value for 
the objective function (cell D6). Therefore, we will use Analytic Solver to solve a total 
of 33 (i.e., 3 x 11) variations of our Blue Ridge Hot Tubs problem. In the first eleven 
runs we will change the first parameter (the number of pumps available) between 
90% and 110% of its base case value. In the next eleven runs (runs 12 to 22) we will 

Key Cell Formulas

Formula Copied toCell

D6 5SUMPRODUCT(B6:C6,$B$5:$C$5) D9:D11
E9 5PsiOptParam(0.9*F9,1.1*F9,F9) E10:E11

Figure 4.12 Set up for creating a Spider Plot and Table
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change the second parameter (the amount of labor available) between 90% and 110% 
of its base case value. Finally, in the last eleven runs (runs 23 to 33) we will change the 
third parameter (the amount of tubing available) between 90% and 110% of its base 
case value.

Cell E9 contains the following formula that will vary the value in E9 from 90% to 
110% of the base case value in cell F9:

Formula for cell E9:       =PsiOptParam(0.9*F9, 1.1*F9, F9)
(Copy to E10:E11.)

Note that the first two arguments in the PsiOptParam( ) function specify, respectively, 
the minimum and maximum values for the cell being parameterized while the third 
argument defines the base case value for the cell. So the general form of this function 
is =PsiOptParam(minimum value, maximum value, base case value). Similar formulas 
in cells E10 and E11 vary the values in those cells between 90% and 110% of their base 
case values found in cell F10 and F11, respectively.

To solve this problem, we use the same settings for the objective cell, variable cells, 
and constraint cells as before. However, to make Analytic Solver run the multiple 
optimizations needed for this problem and chart the results, do the following:

1. On the Analytic Solver Platform tab, click Charts, Multiple Optimizations, 
Parameter Analysis. (This causes the dialog in Figure 4.13 to appear.)

2. Make the selections indicated in Figure 4.13 and click OK.

Figure 4.13

Dialog box sttings 
for Spider Plot 
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Analytic Solver Platform then runs the 33 optimizations required for this 
analysis and charts the results named as an aptly Spider Plot as shown in 
Figure 4.14. (Labels were added manually to the lines in the chart for clarity.) 
Note that because eleven major axis points were requested in the dialog box in 
Figure 4.13 and we are varying three parameters, a total of 33 optimizations must 
be performed. Additionally, because each parameter is being varied over eleven 
equally spaced values between 90% and 110% of its base case value, the actual 
values used in this example include 90%, 92%, 94%, 96%, 98%, 100%, 102%, 104%, 
106%, 108%, and 110% of the base case value. (More generally, when varying 
a parameter between a minimum (min) and maximum (max) percent over n 
major axis points, the percentage used in optimization number i 1Pi 2  is given by 
Pi 5 min 1 1 i 2 1 2* 1max 2 min 2/ 1n 2 1 2 .)

The plot in Figure 4.14 shows the optimal objective function values (from 
cell D6) for each of our 33 optimization runs. The center point in the graph 
corresponds to the optimal solution to the original model with 100% of the pumps, 
labor, and tubing available. Each line in the graph shows the impact on total profit 
of varying a different resource level from 90% to 110% of its original (base case) 
value.

It is clear from Figure 4.14 that total profit is relatively insensitive to modest 
decreases or large increases in the availability of tubing (E11). This is consistent 
with the sensitivity information regarding tubing shown earlier in Figure 4.9. The 
optimal solution to the original problem involved using all the pumps and all the 
labor hours but only 2,712 feet of the 2,880 available feet of tubing. As a result, we 
could achieve the same level of profit even if the availability of tubing was reduced by 
168 feet (or to about 94.2% of its original value). Similarly, because we are not using all 
of the available tubing, acquiring more tubing would only increase the surplus 

Figure 4.14

A Spider Plot 
showing the 
relationship 
between profit and 
the availability of 
pumps, labor, and 
tubing
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and not allow for any improvement in profit. Thus, our analysis suggests that the  
availability of tubing probably should not be a top concern in this problem. On the 
other hand, the Spider Plot suggests that changes in the availability of pumps (E9) and 
labor (E10) have a more pronounced impact on profit and the optimal solution to the 
problem.

The data underlying a Spider Plot can be summarized in a Spider Table, which is 
also easy to create using Analytic Solver Platform. To create the Spider Table for our 
example problem do the following:

1. On the Analytic Solver Platform tab, click Reports, Optimization, Parameter Analy-
sis. (This also causes a dialog box like the one shown in Figure 4.13 to appear.)

2. Make the selections indicated in Figure 4.13 and click OK.

The resulting Spider Table is shown in Figure 4.15. Note that labels were added to 
the table manually for clarity. Additionally, conditional formatting was used to apply 
a “heat map” type of format to this table making it easier to distinguish the larger and 
smaller values in the table. (This was accomplished using the Conditional Formatting, 
Color Scales command on the Home tab on the ribbon.) This table provides the numeric 
detail for each of the lines drawn in the Spider Plot.

4.7.2 CReatiNg a SOlveR table
The Spider Plot in Figure 4.14 suggests that the total profit earned is most sensi-
tive to changes in the available supply of pumps. We can create a Solver Table to 
study in greater detail the impact of changes in the available number of pumps. 
Recall that a Solver Table summarizes the optimal value of multiple output cells 
as changes are made to a single input cell. In this case, the single input we want to 
change is cell E9 representing the number of pumps available. We might want to 
track what happens to several output cells, including the optimal number of Aqua-
Spas and Hydro-Luxes (cells B5 and C5), the total profit (cell D6), and the total 
amount pumps, labor, and tubing used (cells D9, D10, and D11). Figure 4.16 (and 
file Fig4-16.xlsm that accompanies this book) shows how to set up the Solver Table 
for this problem.

Figure 4.15 A Spider Table summarizing the relationship between profit and the availability of pumps, labor, and tubing
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In this problem we want to perform eleven optimizations, varying the number of 
pumps available from 170 to 220 in each successive run. The following formula in 
cell E9 will “parameterize” the number of pumps so that its value changes as each 
successive optimization is run:

Formula for cell E9:      =PsiOptParam(170,220,200)

In Figure 4.16, also notice that the “Monitor Value” property has been set to True for 
the constraints $D$9:$D$11<= $E$9:$E$11. This instructs Analytic Solver Platform to 
keep track of the final values of the left hand side of this constraint (i.e., the final values 
of cells D9, D10, and D11, corresponding to the quantity of pumps, labor, and tubing 
used in each optimization). The “Monitor Value” property for the objective cell and 
variables cells is set to True by default.

Key Cell Formulas

Cell Formula Copied to

D6 5SUMPRODUCT(B6:C6,$B$5:$C$5) D9:D11
E9 5PsiOptParam(170, 220, 200) E10:E11

1: Click These Constraints

2: Choose True

Figure 4.16 Setup for creating a Solver Table
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To solve this problem, we use the same settings for the objective cell, variable cells, 
and constraint cells as before. However, to make Analytic Solver run the multiple 
optimizations needed for this problem and summarize the results, do the following:

1. On the Analytic Solver Platform tab, click Reports, Optimization, Parameter Analy-
sis. (This causes the dialog box in Figure 4.17 to appear.)

2. Make the selections indicated in Figure 4.17 and click OK.

Analytic Solver Platform then runs the 11 optimizations required for this analysis 
and creates the results table shown in Figure 4.18. (The column titles in row 1 of this 
table were added manually for clarity.) Additionally, because each parameter is being 
varied over 11 equally spaced values between 170 and 220 the actual values used in this 
example include 170, 175, 180, 185, 190, 195, 200, 205, 210, 215 and 220. (More generally, 
when varying a parameter between a minimum (min) and maximum (max) over n 
major axis points, the parameter value used in optimization number i 1Vi 2  is given by 
Vi 5 min 1 1 i 2 1 2* 1max 2 min 2/ 1n 2 1 2 .)

A number of interesting insights emerge from Figure 4.18. First, comparing columns 
A and D, as the number of available pumps increases from 170 up to 205, they are 
always all used. With about 175 pumps, we also begin to use all the available labor. 
However, when the number of available pumps increases to 210 or more, only 207 
pumps can be used because we run out of both tubing and labor at that point. This 
suggests that the company should not be interested in getting more than 7 additional 
pumps unless it can also increase the amount of tubing and/or labor available.

Figure 4.17

Dialog box settings 
for creating a 
Solver Table
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Also note that the addition or subtraction of 5 pumps from the initial supply of 
200 causes the optimal objective function value (column E) to change by $1,000. This 
suggests that if the company has 200 pumps, the marginal value of each pump is about 
$200 (i.e., $1000/5 5 $200). Of course, this is equivalent to the shadow price of pumps 
shown earlier in Figure 4.9.

Finally, it is interesting to note that when the availability of pumps is between 175 
and 205, each increase of 5 pumps causes the optimal number of Aqua-Spas to decrease 
by 10 and the optimal number of Hydro-Luxes to increase by 15. Thus, one advantage 
of the Solver Table over the Sensitivity Report is that it tells you not only how much the 
optimal value of the objective function changes as the number of pumps change, but it 
can also tell you how the optimal solution changes.

4.7.3 COmmeNtS
Additional Solver Tables and Spider Plots/Tables could be constructed to analyze 
every element of the model, including objective function and constraint coefficients. 
However, these techniques are considered ‘computationally expensive’ because they 
require the LP model to be solved repeatedly. For small problems like Blue Ridge Hot 
Tubs, this is not really a problem. But as problem size and complexity increases, this 
approach to sensitivity analysis can become burdensome.

4.8 Robust Optimization
As we have seen, an optimal solution to an LP problem will occur on the boundary of its 
feasible region. While these boundaries can be determined very precisely for a given set 
of data, any uncertainties or changes in the data will result in uncertainties or changes 

Figure 4.18 Solver Table showing changes in the optimal solution, profit, and resource usage and the number of pumps changed
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in the boundaries of the feasible region. Thus, the optimal solution to an LP problem 
can be somewhat fragile and could actually become infeasible (and a costly mistake) if 
any of the coefficients in an LP model are incorrect or differ from the real-world phe-
nomena being modeled. In recent years, this reality has led a number of researchers 
and practitioners to consider (and often prefer) robust solutions to optimization prob-
lems. A robust solution to an LP problem is a solution in the interior of the feasible 
region (rather than on the boundary of the feasible region) that has a reasonably good 
objective function value. Clearly, such a solution will not maximize (or minimize) the 
objective function value (except in trivial cases), so it is not an optimal solution in the 
traditional sense of the word. However, a robust solution will generally remain feasible 
if modest perturbations or changes occur to the coefficients in the model.

Analytic Solver Platform offers a number of powerful tools for identifying robust 
solutions to optimization problems. In the case of LP problems, we can easily 
accommodate uncertainties in constraint coefficients using uncertainty set (USet) chance 
constraints. To illustrate this, recall that the original Blue Ridge Hot Tubs problem 
assumed each Aqua-Spa required 1 pump, 9 hours of labor, and 12 feet of tubing 
while each Hydro-Lux required 1 pump, 6 hours of labor, and 16 feet of tubing. The 
optimal solution to this problem was to make 122 Aqua-Spas and 78 Hydro-Luxes (see 
Figure 4.1). Clearly, each hot tub will require 1 pump, so there is really no uncertainty 
about that constraint. However, the actual amount of labor and tubing might vary 
a bit from the values assumed earlier. So, suppose the amount of labor required per 
hot tub might vary from their originally assumed values by 15 minutes (or .25 hours) 
and the amount of tubing required might vary by 6 inches (or 0.5 feet). That is, the 
amount of labor required per Aqua-Spa is uncertain but can reasonably be expected 
to vary uniformly between 8.75 and 9.25 hours and the labor required per Hydro-Lux 
is expected to vary uniformly from 5.75 to 6.25 hours. Similarly, the amount of tubing 
required per Aqua-Spa is uncertain but can reasonably be expected to vary uniformly 
between 11.5 and 12.5 feet and the tubing required per Hydro-Lux is expected to vary 
uniformly from 15.5 to 16.5 feet. Figure 4.19 (and the file Fig4-19.xlsm that accompanies 
this book) shows a revised version of the Blue Ridge Hot Tubs problem that accounts 
for these uncertainties in the labor and tubing constraints.

In Figure 4.19, note that the previous numeric constants in cells B10 through C11 
have been replaced by the following random number generators:

Formula for cell B10:      =PsiUniform(8.75,9.25)
Formula for cell C10:      =PsiUniform(5.75,6.25)
Formula for cell B11:      =PsiUniform(11.5,12.5)
Formula for cell C11:      =PsiUniform(15.5,16.5)

The PsiUniform(Lower,Upper) function is an Analytic Solver Platform function 
that returns a random value from a uniform distribution between a specified lower 
and upper limit each time the spreadsheet is recalculated. Because the numbers are 
randomly generated (or randomly sampled) the actual numbers on your computer’s 
screen will likely differ from those in Figure 4.19 (and will change if you recalculate 
your spreadsheet by pressing the F9 function key). Also notice that the optimal 
solution of 122 Aqua-Spas and 78 Hydro-Luxes actually violates the labor constraint 
in the scenario shown in Figure 4.19. So, as stated earlier, the optimal solution to an LP 
problem can actually end up being infeasible if uncertainty exists about the values of 
one or more model coefficients that we simply ignore or assume away. The spreadsheet 
in Figure 4.19 does not ignore the uncertainties in the labor and tubing coefficients but, 
instead, models them explicitly.
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In Figure 4.19, notice that the constraint on the number of pumps used was defined 
in the usual way and appears as a “normal” constraint in the Analytic Solver task 
pane Model tab. When defining the labor and tubing constraints we must select the 
USet constraint type and specify a value for the Set Size. (Notice that these constraints 
appear as Chance constraints in the Analytic Solver task pane Model tab.) The Set Size 
is sometimes referred to as the budget of uncertainty for the constraint. There is no 
prescribed way of determining the set size value. Generally speaking, as the set size 
value increases the solution obtained becomes more conservative (or more robust).

When we solve this problem, Analytic Solver actually formulates a larger LP 
problem with several different coefficient values for the USet constraints. It then 
solves this problem to obtain a solution that satisfies all of these possible constraint 
configurations. Figure 4.20 shows the first solution Analytic Solver found for this 

D6
B10
C10
B11
C11

5SUMPRODUCT(B6:C6,$B$5:$C$5)
5PsiUniform(8.75, 9.25)
5PsiUniform(5.75, 6.25)
5PsiUniform(11.5, 12.5)
5PsiUniform(15.5, 16.5)

D9:D11
--
--
--
--

Key Cell Formulas

Cell Formula Copied to

Figure 4.19 A robust optimization spreadsheet for the Blue Ridge Hot Tubs problem
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problem. This solution involves producing about 105 Aqua-Spas and 94 Hydro-
Luxes for a profit of $64,945. If you evaluate this solution under our original 
deterministic assumptions where Aqua-Spas require 9 hours of labor and 12 feet of 
tubing and Hydro-Luxes require 6 hours of labor and 16 feet of tubing you will see 
that this solution uses about 1,509 of the available 1,566 hours of labor and about 
2,764 feet of the available 2,880 feet of tubing. So as indicated on the Output tab in 
the Analytic Solver task pane, this is a “conservative solution” that does not make 
use of all the available resources. If you click the smaller green arrow on the Output 
tab, Analytic Solver will display a less conservative solution to the problem as 
shown in Figure 4.21.

The solution in Figure 4.21 involves producing about 115 Aqua-Spas and 85 
Hydro-Luxes for a profit of $65,769. If you evaluate this solution under our original 
deterministic assumptions (with 9 hours of labor and 12 feet of tubing for Aqua-Spas 
and 6 hours of labor and 16 feet of tubing for Hydro-Luxes) you will see that this 
solution uses about 1,545 of the available 1,566 hours of labor and about 2,740 feet of 
the available 2,880 feet of tubing. This solution is better than the previous one shown 
in Figure 4.20 from a profit perspective but takes us much closer to the boundary of the 
labor constraint.

As you can see, robust optimization is a very powerful technique but requires a bit of 
trial and error on the part of the decision maker in terms of specifying the set size and 
evaluating the trade-offs between satisfying the constraints by a comfortable margin (to 
allow for uncertainties) and sacrificing objective function value. A complete discussion 

Figure 4.20 A conservative robust solution to the Blue Ridge Hot Tubs problem
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of robust optimization is beyond the scope of this book, but you can read the Analytic 
Solver Platform User Manual for more information and additional reference resources. 
We will also explore the idea of optimization under uncertainty in chapter 12.

4.9 The Simplex Method
We have repeatedly mentioned that the simplex method is the preferred method for 
solving LP problems. This section provides an overview of the simplex method and 
shows how it relates to some of the items that appear on the Answer Report and the 
Sensitivity Report.

4.9.1 CReatiNg equality CONStRaiNtS  
uSiNg SlaCK vaRiableS
Because our original formulation of the LP model for the Blue Ridge Hot Tubs problem 
has only two decision variables (X1 and X2), you might be surprised to learn that Solver 
actually used five variables to solve this problem. As you saw in chapter 2 when we 
plotted the boundary lines for the constraints in an LP problem, it is easier to work 
with equal to conditions rather than less than or equal to, or greater than or equal to 
conditions. Similarly, the simplex method requires that all constraints in an LP model 
be expressed as equalities.

Figure 4.21 A less conservative robust solution to the Blue Ridge Hot Tubs problem
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To solve an LP problem using the simplex method, Solver temporarily turns all 
inequality constraints into equality constraints by adding one new variable to each less 
than or equal to constraint and subtracting one new variable from each greater than 
or equal to constraint. The new variables used to create equality constraints are called 
slack variables.

For example, consider the less than or equal to constraint:

ak1X1 1 ak2X2 1 c 1 aknXn # bk

Solver can turn this constraint into an equal to constraint by adding the nonnegative 
slack variable Sk to the LHS of the constraint:

 ak1X1 1 ak2X2 1 c 1 aknXn 1 Sk 5 bk

The variable Sk represents the amount by which ak1X1 1 ak2X2 1 c 1 aknXn is less 
than bk. Now consider the greater than or equal to constraint:

 ak1X1 1 ak2X2 1 c 1 aknXn $ bk

Solver can turn this constraint into an equal to constraint by subtracting the 
nonnegative slack variable Sk from the LHS of the constraint:

 ak1X1 1 ak2X2 1 c 1 aknXn 2 Sk 5 bk

In this case, the variable Sk represents the amount by which ak1X1 1 ak2X2 1 c1 aknXn

exceeds bk.
To solve the original Blue Ridge Hot Tubs problem using the simplex method, Solver 

actually solved the following modified problem involving five variables:

MAX: 350X1 1 300X2 } pro�t
 Subject to: 1X1 1 1X2 1 S1 5 200 } pump constraint

9X1 1 6X2 1 S2 5 1,566 } labor constraint
12X1 1 16X2 1 S3 5 2,880 } tubing constraint

X1, X2, S1, S2, S3 $ 0 } nonnegativity conditions

We will refer to X1 and X2 as the structural variables in the model to distinguish 
them from the slack variables.

Recall that we did not set up slack variables in the spreadsheet or include them in the 
formulas in the constraint cells. Solver automatically sets up the slack variables it needs 
to solve a particular problem. The only time Solver even mentions these variables is when 
it creates an Answer Report like the one shown in Figure 4.2. The values in the Slack 
column in the Answer Report correspond to the optimal values of the slack variables.

4.9.2 baSiC FeaSible SOlutiONS
After all the inequality constraints in an LP problem have been converted into 
equalities (by adding or subtracting appropriate slack variables), the constraints in the 
LP model represent a system (or collection) of linear equations. If there are a total of n 
variables in a system of m equations, one strategy for finding a solution to the system 
of equations is to select any m variables and try to find values for them that solve the 
system, assuming all other variables are set equal to their lower bounds (which are 
usually zero). This strategy requires more variables than constraints in the system of 
equations—or that n $ m.
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The m variables selected to solve the system of equations in an LP model are 
sometimes called basic variables, while the remaining variables are called nonbasic 
variables. If a solution to the system of equations can be obtained using a given set of 
basic variables (while the nonbasic variables are all set equal to zero), that solution is 
called a basic feasible solution. Every basic feasible solution corresponds to one of the 
extreme points of the feasible region for the LP problem, and we know that the optimal 
solution to the LP problem also occurs at an extreme point. So, the challenge in LP is to 
find the set of basic variables (and their optimal values) that produce the basic feasible 
solution corresponding to the optimal extreme point of the feasible region.

Because our modified problem involves three constraints and five variables, we 
could select three basic variables in ten different ways to form possible basic feasible 
solutions for the problem. Figure 4.22 summarizes the results for these ten options.

The first five solutions in Figure 4.22 are feasible and, therefore, represent basic 
feasible solutions to this problem. The remaining solutions are infeasible because they 
violate the nonnegativity conditions. The best feasible alternative shown in Figure 
4.22 corresponds to the optimal solution to the problem. In particular, if X1, X2, and 
S3 are selected as basic variables and S1 and S2 are nonbasic and assigned their lower 

Note: * denotes infeasible solutions

Figure 4.22

Possible basic 
feasible solutions 
for the original 
Blue Ridge Hot 
Tubs problem

1
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3

4

5

6*

7*

8*

9*

10*

S1, S2, S3

X1, S1, S3

X1, X2, S3

X1, X2, S2

X2, S1, S2

X1, X2, S1

X1, S1, S2

X1, S2, S3

X2, S2, S3

X2, S1, S3

X1, X2

X2, S2

S1, S2

S1, S3

X1, S3

S2, S3

X2, S3

X2, S1

X1, S1

X1, S2

X150, X250,
S15200, S251566, S352,880

X15174, X250,
 S1526, S250, S35792

X15122, X2578,
S150, S250, S35168

X1580, X25120,
S150, S25126, S350

X150, X25180,
S1520, S25486, S350

X15108, X2599,
S1527, S250, S350

X15240, X250,
S15240, S252594, S350

X15200, X250,
S150, S252234, S35480

X150, X25200,
S150, S25366, S352320

X150, X25261,
S15261, S250, S3521,296

 0

60,900

66,100

64,000

54,000

67,500

84,000

70,000
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78,300

 Basic Nonbasic  Objective
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47412_ch04_ptg01_141-188.indd   170 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



The Simplex Method 171

bound values (zero), we try to find values for X1, X2, and S3 that satisfy the following 
constraints:

 1X1 1 1X2 5 200 } pump constraint

 9X1 1 6X2 5 1,566 } labor constraint

12X1 1 16X2 1 S3 5 2,880 } tubing constraint

Notice that S1 and S2 in the modified equal to constraints are not included in 
the above constraint equations because we are assuming that the values of these 
nonbasic variables are equal to zero (their lower bounds). Using linear algebra, 
the simplex method determines that the values X1 5 122, X2 5 78, and S3 5 168 
satisfy the equations given above. So, a basic feasible solution to this problem is 
X1 5 122, X2 5 78, S1 5 0, S2 5 0, S3 5 168. As indicated in Figure 4.22, this solution 
produces an objective function value of $66,100. (Notice that the optimal values for the 
slack variables S1, S2, and S3 also correspond to the values shown in the Answer Report 
in Figure 4.2 in the Slack column for constraint cells D9, D10, and D11.) Figure 4.23 
shows the relationships between the basic feasible solutions listed in Figure 4.22 and 
the extreme points of the feasible region for this problem.

50

100

150

200

250

0
X1

X2

0 50 100 150 200 250

5

4

3

21

Basic Feasible Solutions:

1: X1 5 0, X2 5 0, S1 5 200, S2 5 1,566, S3 5 2,880
2: X1 5 174, X2 5 0, S1 5 26, S2 5 0, S3 5 792
3: X1 5 122, X2 5 78, S1 5 0, S2 5 0, S3 5 168
4: X1 5 80, X2 5 120, S1 5 0, S2 5 126, S3 5 0
5: X1 5 0, X2 5 180, S1 5 20, S2 5 486, S3 5 0

Figure 4.23

Illustration of 
the relationship 
between basic 
feasible solutions 
and extreme points
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4.9.3 FiNdiNg the beSt SOlutiON
The simplex method operates by first identifying any basic feasible solution (or extreme 
point) for an LP problem, and then moving to an adjacent extreme point, if such a move 
improves the value of the objective function. When no adjacent extreme point has a 
better objective function value, the current extreme point is optimal and the simplex 
method terminates.

The process of moving from one extreme point to an adjacent one is accomplished by 
switching one of the basic variables with one of the nonbasic variables to create a new 
basic feasible solution that corresponds to the adjacent extreme point. For example, in 
Figure 4.23, moving from the first basic feasible solution (point 1) to the second basic 
feasible solution (point 2) involves making X1 a basic variable and S2 a nonbasic variable. 
Similarly, we can move from point 2 to point 3 by switching basic variables with non-
basic variables. So, starting at point 1 in Figure 4.23, the simplex method could move to 
point 2, then to the optimal solution at point 3. Alternatively, the simplex method could 
move from point 1 through points 5 and 4 to reach the optimal solution at point 3. Thus, 
although there is no guarantee that the simplex method will take the shortest route to 
the optimal solution of an LP problem, it will find the optimal solution eventually.

To determine whether switching a basic and nonbasic variable will result in a bet-
ter solution, the simplex method calculates the reduced cost for each nonbasic variable 
to determine if the objective function could be improved if any of these variables are 
substituted for one of the basic variables. (Note that unbounded solutions are detected 
easily in the simplex method by the existence of a nonbasic variable that could improve 
the objective value by an infinite amount if it were made basic.) This process continues 
until no further improvement in the objective function value is possible.

4.10 Summary
This chapter described the methods for assessing how sensitive an LP model is to various 
changes that might occur in the model or its optimal solution. The impact of changes in 
an LP model can be analyzed easily by re-solving the model. Solver also  provides a sig-
nificant amount of sensitivity information automatically. For LP  problems, the maximum 
amount of sensitivity information is obtained by solving the problem using the simplex 
method. Before using the information on the Sensitivity Report, you should always first 
check for the presence of degeneracy because this can have a significant impact on how 
one should interpret the numbers on this report. While the information available in the 
Sensitivity Report is useful, it does not provide answers to all the questions an analyst 
might have about the optimal solution to an LP problem. As a result, various ad hoc 
techniques like Spider Plots/Tables and Solver Tables are available to help address spe-
cific questions that might arise.

The simplex method considers only the extreme points of the feasible region, and is 
an efficient way of solving LP problems. In this method, slack variables are first intro-
duced to convert all constraints to equal to constraints. The simplex method systemat-
ically moves to better and better corner point solutions until no adjacent extreme point 
provides an improved objective function value.
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the wORld OF maNagemeNt SCieNCe

Fuel Management and Allocation Model Helps  
National Airlines Adapt to Cost and Supply Changes

Fuel is a major component in the cost structure of an airline. Price and availability 
of fuel can vary from one air terminal to the next, and it is sometimes advantageous 
for an aircraft to carry more than the necessary minimum for the next leg of its 
route. Fuel loaded for the purpose of taking advantage of price or availability at 
a specific location is said to be tankered. A disadvantage of tankering is that fuel 
consumption increases when an aircraft is carrying more weight.

The use of LP to determine when and where to fuel aircraft saved National 
Airlines several million dollars during the first two years of implementation. 
In particular, National Airlines saw its average fuel costs drop 11.75% during 
a period when the average fuel cost for all domestic trunk airlines increased 
by 2.87%.

The objective function in the Fuel Management and Allocation Model consists 
of fuel costs and increases in operating costs from tankering. The constraints in 
the model address availability, minimum reserves, and aircraft capacities.

A particularly useful feature of the Fuel Management and Allocation Model 
is a series of reports that assist management in modifying the fuel-loading plan 
when sudden changes occur in availability or price. Shadow prices, along with 
the associated range of applicability, provide information about supply changes. 
Information about changes in price per gallon comes from the allowable increase 
and decrease for objective function coefficients.

For example, the availability report might indicate that the optimal quantity 
to purchase at Los Angeles from Shell West is 2,718,013 gallons; but if its supply 
decreases and fuel must be purchased from the next most attractive vendor, total 
cost would increase at the rate of $0.0478 per gallon (the shadow price). This fuel 
would be replaced by a prior purchase of up to 159,293 gallons from Shell East at 
New Orleans, tankered to Los Angeles.

The price report shows, for example, that vendor substitutions should be made 
if the current price of Shell West at Los Angeles, $0.3074, increases to $0.32583 or 
decreases to $0.27036. The report also indicates what that substitution should be.

Source: Darnell, D. Wayne and Carolyn Loflin, “National Airlines Fuel Management and Allocation 
Model,” Interfaces, vol. 7, no. 2, February 1977, pp 1–16.

Questions and Problems
Important Note: For all questions requiring a Sensitivity Report please use Analytic 
Solver Platform’s Standard LP/Quadratic Engine.
1. Howie Jones used the following information to calculate the profit coefficients for 

Aqua-Spas and Hydro-Luxes: pumps cost $225 each, labor costs $12 per hour, tub-
ing costs $2 per foot. In addition to pumps, labor, and tubing, the production of 
Aqua-Spas and Hydro-Luxes consumes, respectively, $243 and $246 per unit in 
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other resources that are not in short supply. Using this information, Howie calcu-
lated the marginal profits on Aqua-Spas and Hydro-Luxes as:

Aqua-Spas Hydro-Luxes

Selling Price $950 $875
Pump Cost 2$225 2$225
Labor Cost 2$108 2$72
Tubing Cost 2$24 2$32
Other Variable Costs 2$243 2$246
Marginal Pro�t $350 $300

Howie’s accountant reviewed these calculations and thinks Howie made a mistake. 
For accounting purposes, factory overhead is assigned to products at a rate of $16 
per labor hour. Howie’s accountant argues that because Aqua-Spas require 9 labor 
hours, the profit margin on this product should be $144 less. Similarly, because 
Hydro-Luxes require 6 labor hours, the profit margin on this product should be $96 
less. Who is right and why?

2. A variable that assumes an optimal value between its lower and upper bounds has 
a reduced cost value of zero. Why must this be true? (Hint: What if such a variable’s 
reduced cost value is not zero? What does this imply about the value of the objective 
function?)

3. Implement the following LP problem in a spreadsheet. Use Solver to solve the 
problem and create a Sensitivity Report. Use this information to answer the 
following questions:

MAX: 4X1 1 2X2

Subject to: 2X1 1 4X2 # 20
 3X1 1 5X2 # 15
 X1, X2 $  0

a.  What range of values can the objective function coefficient for variable X1 assume 
without changing the optimal solution?

b.  Is the optimal solution to this problem unique, or are there alternate optimal 
solutions?

c.  How much does the objective function coefficient for variable X2 have to increase 
before it enters the optimal solution at a strictly positive level?

d.  What is the optimal objective function value if X2 equals 1?
e.  What is the optimal objective function value if the RHS value for the second 

constraint changes from 15 to 25?
f.  Is the current solution still optimal if the coefficient for X2 in the second constraint 

changes from 5 to 1? Explain.
 4. Implement the following LP model in a spreadsheet. Use Solver to solve the problem 

and create a Sensitivity Report. Use this information to answer the following 
questions:

 MAX: 2X1 1 4X2

Subject to:          2X1 1 2X2 # 8
 X1 1 2X2 # 12
 X1 1  X2  $ 2
 X1, X2 $ 0

47412_ch04_ptg01_141-188.indd   174 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Questions and Problems 175

a. Which of the constraints are binding at the optimal solution?
b.  Is the optimal solution to this problem unique, or is there an alternate optimal 

solution?
c.  What is the optimal solution to this problem if the value of the objective function 

coefficient for variable X1 is zero?
d.  How much can the objective function coefficient for variable X2 decrease before 

changing the optimal solution? 
e.  Given the objective in this problem, if management could increase the RHS value 

for any of the constraints for identical costs, which would you choose to increase 
and why?

 5. Implement the following LP model in a spreadsheet. Use Solver to solve the problem 
and create a Sensitivity Report. Use this information to answer the following questions:

 MIN: 5X1 1 3X2 1 4X3

Subject to: X1 1  X2 1 2X3 $ 2
 5X1 1 3X2 1 2X3 $ 1
 X1, X2, X3 $ 0

a.  What is the smallest value the objective function coefficient for X3 can assume 
without changing the optimal solution?

b.  What is the optimal objective function value if the objective function coefficient 
for X3 changes to 21? (Hint: The answer to this question is not given in the 
Sensitivity Report. Consider what the new objective function is relative to the 
constraints.)

c.  What is the optimal objective function value if the RHS value of the first 
constraint increases to 7?

d.  What is the optimal objective function value if the RHS value of the first 
constraint decreases by 1?

e.  Will the current solution remain optimal if the objective function coefficients for 
X1 and X3 both decrease by 1?

 6. The CitruSun Corporation ships frozen orange juice concentrate from processing 
plants in Eustis and Clermont to distributors in Miami, Orlando, and Tallahassee. 
Each plant can produce 20 tons of concentrate each week. The company has just 
received orders of 10 tons from Miami for the coming week, 15 tons for Orlando, 
and 10 tons for Tallahassee. The cost per ton for supplying each of the distributors 
from each of the processing plants is shown in the following table. 

Miami Orlando Tallahassee

Eustis $260 $220 $290
Clermont $230 $240 $310

  The company wants to determine the least costly plan for filling their orders for the 
coming week.
a.  Formulate an LP model for this problem.
b.  Implement the model in a spreadsheet and solve it.
c.  What is the optimal solution?
d.  Is the optimal solution degenerate?
e.  Is the optimal solution unique? If not, identify an alternate optimal solution for 

the problem.
f.  How would the solution change if the plant in Clermont is forced to shut for one 

day resulting in a loss of four tons of production capacity?
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g.  What would the optimal objective function value be if the processing capacity in 
Eustis was reduced by five tons?

h.  Interpret the reduced cost for shipping from Eustis to Miami.
7. Use Solver to create Answer and Sensitivity Reports for question 16 at the end of 

chapter 2 and answer the following questions:
a. How much excess wiring and testing capacity exists in the optimal  solution?
b.  What is the company’s total profit if it has 10 additional hours of wiring capacity?
c.  By how much does the profit on alternators need to increase before their 

production is justified? 
d.  Does the optimal solution change if the marginal profit on generators decreases 

by $50 and the marginal profit on alternators increases by $75?
e.  Suppose the marginal profit on generators decreases by $25. What is the maximum 

profit that can be earned on alternators without changing the optimal solution?
f.  Suppose the amount of wiring required on alternators is reduced to 1.5 hours. 

Does this change the optimal solution? Why or why not?
8. Use Solver to create Answer and Sensitivity Reports for question 22 at the end of 

chapter 2 and answer the following questions:
a. If the profit on Razors decreased to $35 would the optimal solution change?
b.  If the profit on Zoomers decreased to $35 would the optimal solution change?
c.  Interpret the shadow price for the supply of polymer. 
d.  Why is the shadow price $0 for the constraint limiting the production of pocket 

bikes to no more than 700 units?
e.  Suppose the company could obtain 300 additional labor hours in production? 

What would the new optimal level of profit be?
9. Use Solver to create Answer and Sensitivity Reports for question 24 at the end of 

chapter 2 and answer the following questions:
a. How much can the price of watermelons drop before it is no longer optimal to 

plant any watermelons?
b.  How much does the price of cantaloupes have to increase before it is optimal to 

only grow cantaloupes? 
c.  Suppose the price of watermelons drops by $60 per acre and the price of 

cantaloupes increases by $50 per acre. Is the current solution still optimal?
d.  Suppose the farmer can lease up to 20 acres of land from a neighboring farm to 

plant additional crops. How many acres should the farmer lease and what is the 
maximum amount he should pay to lease each acre?

10. Use Solver to create Answer and Sensitivity Reports for question 25 at the end of 
chapter 2 and answer the following questions:
a. If the profit on doors increased to $700 would the optimal solution change?
b.  If the profit on windows decreased to $200 would the optimal solution change?
c.  Explain the shadow price for the finishing process. 
d.  If 20 additional hours of cutting capacity became available how much additional 

profit could the company earn?
e.  Suppose another company wanted to use 15 hours of Sanderson’s sanding 

capacity and was willing to pay $400 per hour to acquire it? Should Sanderson 
agree to this? How (if at all) would your answer change if the company instead 
wanted 25 hours of sanding capacity?

11. Create a Sensitivity Report for Electro-Poly’s make vs. buy problem in section 3.9 of 
chapter 3 and answer the following questions.
a. Is the solution degenerate?
b.  How much can the cost of making model 1 slip rings increase before it becomes 

more economical to buy some of them?

47412_ch04_ptg01_141-188.indd   176 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Questions and Problems 177

c.  Suppose the cost of buying model 2 slip rings decreased by $9 per unit. Would 
the optimal solution change?

d.  Assume workers in the wiring area normally make $12 per hour and get 50% 
more when they work overtime. Should Electro-Poly schedule these employees 
to work overtime to complete this job? If so, how much money would this save?

e.  Assume workers in the harnessing area normally make $12 per hour and 
get 50% more when they work overtime. Should Electro-Poly schedule these 
employees to work overtime to complete this job? If so, how much money 
would this save?

f.  Create a Spider plot that shows the effect of varying each of the wiring and 
harnessing requirements (in cells B17 thru D18) from 90% to 100% of their current 
levels in 1% increments. If Electro-Poly wanted to invest in training or new 
technology to reduce one of these values, which one offers the greatest potential 
for cost savings? 

12. Use Solver to create a Sensitivity Report for question 13 at the end of chapter 3 and 
answer the following questions:
a. How much would electric trimmers have to cost in order for the company to 

consider purchasing these items rather than making them?
b.  If the cost to make gas trimmers increased to $90 per unit, how would the optimal 

solution change? 
c.  How much should the company be willing to pay to acquire additional capacity 

in the assembly area? Explain.
d.  How much should the company be willing to pay to acquire additional capacity 

in the production area? Explain.
e.  Prepare a Spider Plot showing the sensitivity of the total cost to changes in costs 

to make and the costs to buy (adjusting the original values by of 90%, 92%, …, 
110%). Which of these costs is the total cost most sensitive to?

f.  Suppose the hours of production capacity available is uncertain and could vary 
from 9,500 to 10,500. How does the optimal solution change for every 100-hour 
change in production capacity within this range?

13. Use Solver to create a Sensitivity Report for question 14 at the end of chapter 3 and 
answer the following questions:
a. If the company could get 50 more units of routing capacity, should they do it? If 

so, how much should they be willing to pay for it?
b.  If the company could get 50 more units of sanding capacity, should they do it? If 

so, how much should they be willing to pay for it?
c.  Suppose the polishing time on country tables could be reduced from 2.5 to 

2 units per table. How much should the company be willing to pay to achieve 
this improvement in efficiency?

d.  Contemporary tables sell for $450. By how much would the selling price have to 
decrease before we would no longer be willing to produce contemporary tables? 
Does this make sense? Explain. 

e. Create a Spider Plot showing the effect on optimal profit of varying the 
availability of each resource between 90% and 110% of its base case value in 2% 
increments. Describe the information illustrated by this plot.

14. Use Solver to create a Sensitivity Report for question 15 at the end of chapter 3 and 
answer the following questions.
a. Is the solution degenerate?
b. Is the solution unique? 
c. Suppose the profit per pallet of Tahoe panels went down by $40. Would the 

optimal solution change?
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d. Suppose the profit per pallet of Aspen panels went up by $40. Would the optimal 
solution change?

e.  How much should the company be willing to pay to obtain 1,000 additional 
hours of pressing capacity?

f.  Suppose the company has received an offer to buy 5,000 pounds of its pine chips 
for $1,250. Should it accept this offer? Explain your answer.

g. Create a Spider Plot illustrating how the optimal profit changes as the 
availability of each of the four resources varies from 90% to 110% of their given 
values. Explain the relationship between this graph and the shadow prices of the 
resources given on the sensitivity report.

h. Suppose there in some uncertainty about the amount of pressing capacity that 
might be available. Create a Solver Table report summarizing how the optimal 
solution and profit changes as the amount of pressing capacity available changes 
from 5,000 to 7,000 in increments of 500. What information does this report 
convey about the optimal product mix as a function of the available pressing 
capacity?

15. Use Solver to create a Sensitivity Report for question 16 at the end of  chapter 3 and 
answer the following questions:
a. Is the solution degenerate?
b. Is the solution unique? 
c.  Explain the signs of the reduced costs for each of the decision variables. That is, 

considering the optimal value of each decision variable, why does the sign of its 
associated reduced cost make economic sense?

d. Suppose the cost per pound for Feed 3 increased by $3. Would the optimal 
solution change? Would the optimal objective function value change?

e. If the company could reduce any of the nutrient requirements, which one should 
they choose and why?

f. If the company could increase any of the nutrient requirements, which one 
should they choose and why?

g. Suppose there is some uncertainty about the cost estimates for each type of feed. 
Prepare a Spider Plot varying the cost per pound of each feed type between plus 
and minus $0.25 of its stated value in $0.05 increments and tracking the impact 
on the optimal cost. What does this chart reveal and what are the managerial 
implications?

16. Use Solver to create a Sensitivity Report for question 17 at the end of chapter 3 and 
answer the following questions:
a. Is the solution degenerate?
b. Explain the value of the shadow price associated with Machine 1.
c. If the plant could hire another cross-trained worker would you recommend they 

do so? Why?
d. Suppose the marginal profit for each product was computed using estimated 

costs. If you could get more accurate profit estimates for these products which 
one(s) would be of greatest interest to your? Why?

e. If all the 19 workers are present and work 35 hours per week, the company 
should have 665 total hours of labor available. Suppose the manager of this 
company is concerned about workers calling in sick or missing work for other 
reasons. Prepare a Solver Table that summarizes what happens to the optimal 
product mix and total profit as the total labor hours available varies from 600 to 
665 hours in 5 hour increments. What does this analysis reveal and what are the 
managerial implications?

47412_ch04_ptg01_141-188.indd   178 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Questions and Problems 179

17. Use Solver to create a Sensitivity Report for question 18 at the end of chapter 3 and 
answer the following questions:
a. Is the solution degenerate?
b.  Would the solution change if the price of raisins was $2.80 per pound?
c. Would the solution change if the price of peanuts was $3.25 per pound?
d. If you could relax one of the nutritional constraints which one would you choose? 

Why?
e. Create a Spider Plot summarizing the impact on total cost of varying the cost 

per pound of each ingredient between 90% and 110% of its base case value 
in 2% increments. What does this chart reveal and what are the managerial 
implications?

18. Use Solver to create a Sensitivity Report for question 21 at the end of chapter 3 and 
answer the following questions:
a. Which of the constraints in the problem are binding?
b.  If the company was going to eliminate one of its products, which should it be? 
c.  If the company could buy 1,000 additional memory chips at the usual cost, 

should they do it? If so, how much would profits increase?
d.  Suppose the manufacturing costs used in this analysis were estimated hastily 

and are known to be somewhat imprecise. Which products would you be most 
concerned about having more precise cost estimates for before implementing this 
solution?

e.  Create a Spider Plot showing the sensitivity of the total profit to the selling price 
of each product (adjusting the original values by 90%, 92%, …, 110%). According 
to this graph, total profit is most sensitive to which product?

19. Use Solver to create a Sensitivity Report for question 23 at the end of chapter 3 and 
answer the following questions:
a. Is the optimal solution unique? How can you tell? 
b.  Which location is receiving the fewest cars?
c.  Suppose a particular car at location 1 must be sent to location 3 in order to meet a 

customer’s request. How much does this increase costs for the company?
d.  Suppose location 6 must have at least eight cars shipped to it. What impact does 

this have on the optimal objective function value?
20. Refer to the previous question. Suppose location 1 has 15 cars available rather than 16. 

Create a Sensitivity Report for this problem and answer the following questions:
a. Is the optimal solution unique? How can you tell?
b.  According to the Sensitivity Report, by how much should the total cost increase 

if we force a car to be shipped from location 1 to location 3?
c.  Add a constraint to the model to force one car to be shipped from location 1 to 

location 3. By how much did the total cost increase?
21. Use Solver to create a Sensitivity Report for question 28 at the end of chapter 3 and 

answer the following questions.
a. What is the maximum level profit that can be achieved for this problem?
b.  Are there alternate optimal solutions to this problem? If so, identify the solution 

that allows the most grade 5 oranges to be used in fruit baskets while still 
achieving the maximum profit identified in part a.

c.  If Holiday could acquire 1,000 more pounds of grade 4 oranges at a cost of 
$2.65 per pound, should they do it? Why?

d.  Create a Spider Plot showing the change in the total profit obtained by changing 
the required grade of fruit baskets and juice from 90% to 110% in 1% increments. 
If the department of agriculture wants to increase the required rating of one of 
these products, which product should the company lobby for?
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22. Use Solver to create a Sensitivity Report for question 29 at the end of chapter 3 and 
answer the following questions:
a. Are there alternate optimal solutions to this problem? Explain.
b.  What is the highest possible octane rating for regular gasoline, assuming the 

company wants to maximize its profits? What is the octane rating for supreme 
gasoline at this solution?

c.  What is the highest possible octane rating for supreme gasoline, assuming the 
company wants to maximize its profits? What is the octane rating for regular 
gasoline at this solution?

d.  Which of the two profit-maximizing solutions identified in parts b and c would 
you recommend the company implement? Why?

e.  If the company could buy another 150 barrels of input 2 at a cost of $17 per barrel, 
should they do it? Why?

f. Create a Spider Plot showing the change in the total profit obtained by changing 
the availability of the inputs from 90% to 110% in 2% increments. What does this 
chart reveal and what are the managerial implications?

23. Use Solver to create a Sensitivity Report for question 34 at the end of chapter 3 and 
answer the following questions.
a. Is the solution degenerate?
b. Is the solution unique?
c. Use a Solver Plot to determine the maximum price the Pelletier Corporation 

should be willing to pay for a two-month lease.
d. Suppose the company is not certain that it will need exactly 20,000 sq. ft. in 

month 3 and believes that actual amount needed may be as low as 15,000 sq ft 
or as high as 25,000 sq. ft. Use a Solver Table to determine if this would have any 
impact on the leasing arrangements the company selects in months 1 and 2.

24. Use Solver to create a Sensitivity Report for question 35 at the end of chapter 3 and 
answer the following questions:
a. Is the solution unique?
b.  If Sentry wants to increase their production capacity in order to meet more of the 

demand for their product, which plant should they use? Explain.
c.  If the cost of shipping from Phoenix to Tacoma increased to $1.98 per unit, would 

the solution change? Explain.
d.  How much extra should the company charge the distributor in Tacoma if this 

distributor insisted on receiving 8,500 units?
e.  Sentry is considering changing its policy of filling at least 80% of each distribution 

center’s orders and would like to consider the impact on total cost of varying 
this percentage between 70% and 100% in 1% increments. Create a Spider 
Plot to illustrate this. What does this chart reveal and what are the managerial 
implications?

25. Use Solver to create a Sensitivity Report for question 36 at the end of chapter 3 and 
answer the following questions.
a. Is the solution degenerate?
b.  Is the solution unique?
c.  How much should the recycler be willing to pay to acquire more cardboard?
d.  If the recycler could buy 50 more tons of newspaper at a cost of $18 per ton, 

should they do it? Why or why not?
e.  What is the recycler’s marginal cost of producing each of the three different types 

of pulp?
f.  By how much would the cost of converting white office paper into newsprint 

have to drop before it would become economical to use white office paper for 
this purpose?
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g.  By how much would the yield of newsprint pulp per ton of cardboard have to 
increase before it would become economical to use cardboard for this purpose?

h.  Create a Spider Plot showing the impact on optimal total cost of varying cost per 
ton of newspaper, mixed paper, white office paper, and cardboard between plus 
or minus $1 from their stated values in $0.20 increments. What does this chart 
reveal and what are the managerial implications?

i. Suppose it is possible to increase any of the (non-zero) recycling yield coefficients 
in the problem by up to 5% in 1% increments. Create a Spider Plot and Table 
summarizing the effect this would have on the optimal total cost. If the company 
could increase one of the yield coefficients by 5% for free which one should it 
choose and how much would be saved? 

26. Use Solver to create a Sensitivity Report for question 38 at the end of chapter 3 and 
answer the following questions.
a. Is the solution degenerate?
b. Is the solution unique?
c. How much can the profit per ton on commodity one decrease before the optimal 

solution would change?
d. Create a Spider Plot showing the change in the total profit obtained by changing 

the profit per ton on each commodity from 95% to 105% in 1% increments. If 
the shipping company wanted to increase the price of transporting one of the 
commodities, which one would have the greatest influence on total profits?

27. Refer to question 45 at the end of chapter 3 and answer the following questions. 
a. Create a Spider Plot to summarize what happens to the optimal total profit 

as the total storage capacity increases from 300,000 cf to 400,000 cf in 10,000 cf 
increments. 

b. Which of the storage capacity amounts considered in the previous question 
results in the highest profit (without having excessive storage capacity)? 

c. How much should the company be willing to pay to increase their storage 
capacity to 350,000 cf?

d. Suppose the gas trading company has increased its storage capacity to 350,000 cf. 
Now assume a gas producer is in need of an extra 50,000 cf of storage capacity 
for the next 10 days and wants to buy this capacity from the gas trading firm. 
What is the least amount of money the gas trading company should demand to 
provide this capacity? 

28. Consider the following LP problem:

MAX: 4X1 1 2X2

Subject to:        2X1 1 4X2 # 20
 3X1 1 5X2 # 15
 X1, X2 $   0

a.  Use slack variables to rewrite this problem so that all its constraints are equal-to 
constraints.

b.  Identify the different sets of basic variables that might be used to obtain a 
solution to the problem.

c.  Of the possible sets of basic variables, which lead to feasible solutions and what 
are the values for all the variables at each of these solutions?

d.  Graph the feasible region for this problem and indicate which basic feasible 
solution corresponds to each of the extreme points of the feasible region.

e.  What is the value of the objective function at each of the basic feasible solutions?
f.  What is the optimal solution to the problem?
g.  Which constraints are binding at the optimal solution?
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29. Consider the following LP problem:

MAX: 2X1 1 4X2

Subject to: 2X1 1 2X2 #   8
 X1 1 2X2 # 12
 X1 1   X2 $   2
 X1, X2 $    0

a.  Use slack variables to rewrite this problem so that all its constraints are equal-to 
constraints.

b.  Identify the different sets of basic variables that might be used to obtain a 
solution to the problem.

c.  Of the possible sets of basic variables, which lead to feasible solutions and what 
are the values for all the variables at each of these solutions?

d.  Graph the feasible region for this problem and indicate which basic feasible 
solution corresponds to each of the extreme points of the feasible region.

e.  What is the value of the objective function at each of the basic feasible solutions?
f.  What is the optimal solution to the problem?
g.  Which constraints are binding at the optimal solution?

 30. Consider the following LP problem:

 MIN: 5X1 1 3X2 1 4X3

Subject to: X1 1   X2 1 2X3 $ 2
 5X1 1 3X2 1 2X3 $ 1
 X1, X2, X3 $ 0

a.  Use slack variables to rewrite this problem so that all its constraints are equal-to 
constraints.

b.  Identify the different sets of basic variables that might be used to obtain a 
solution to the problem.

c.  Of the possible sets of basic variables, which lead to feasible solutions and what 
are the values for all the variables at each of these solutions?

d.  What is the value of the objective function at each of the basic feasible solutions?
e.  What is the optimal solution to the problem?
f.  Which constraints are binding at the optimal solution?

31. Consider the following constraint, where S is a slack variable:

  2X1 1 4X2 1 S 5 16

a. What was the original constraint before the slack variable was included?
b.  What value of S is associated with each of the following points:

i)  X1 5 2, X2 5 2
ii)  X1 5 8, X2 5 0
iii) X1 5 1, X2 5 3
iv)  X1 5 4, X2 5 1

32. Consider the following constraint, where S is a slack variable:

3X1 1 4X2 2 S 5 12
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a. What was the original constraint before the slack variable was included?
b.  What value of S is associated with each of the following points:

i) X1 5 5, X2 5 0
ii) X1 5 2, X2 5 2
iii) X1 5 7, X2 5 1
iv) X1 5 4, X2 5 0

A Nut Case
The Molokai Nut Company (MNC) makes four different products from macadamia 
nuts grown in the Hawaiian Islands: chocolate-coated whole nuts (Whole), chocolate-
coated nut clusters (Cluster), chocolate-coated nut crunch bars (Crunch), and plain 
roasted nuts (Roasted). The company is barely able to keep up with the increasing 
demand for these products. However, increasing raw material prices and foreign 
competition are forcing MNC to watch its margins to ensure it is operating in the most 
efficient manner possible. To meet marketing demands for the coming week, MNC 
needs to produce at least 1,000 pounds of the Whole product, between 400 and 500 
pounds of the Cluster product, no more than 150 pounds of the Crunch product, and 
no more than 200 pounds of Roasted product.

Each pound of the Whole, Cluster, Crunch, and Roasted product contains, respectively, 
60%, 40%, 20%, and 100% macadamia nuts with the remaining weight made up of 
chocolate coating. The company has 1100 pounds of nuts and 800 pounds of chocolate 
available for use in the next week. The various products are made using four different 
machines that hull the nuts, roast the nuts, coat the nuts in chocolate (if needed), and 
package the products. The following table summarizes the time required by each product 
on each machine. Each machine has 60 hours of time available in the coming week.

Minutes required per Pound

Machine Whole Cluster Crunch roasted

Hulling 1.00 1.00 1.00 1.00

Roasting 2.00 1.50 1.00 1.75

Coating 1.00 0.70 0.20 0.00

Packaging 2.50 1.60 1.25 1.00

The controller recently presented management with the following financial 
summary of MNC’s average weekly operations over the past quarter. From this report, 
the controller is arguing that the company should cease producing its Cluster and 
Crunch products.

CASe 4.1

Product

Whole Cluster Crunch roasted Total

Sales Revenue $5,304.00 $1,800.00 $510.00 $925.00 $8,539.00

Variable Costs

Direct materials $1,331.00 $560.00 $144.00 $320.00 $2,355.00
Direct labor $1,092.00 $400.00 $96.00 $130.00 $1,718.00
Manufacturing overhead $333.00 $140.00 $36.00 $90.00 $599.00
Selling & Administrative $540.00 $180.00 $62.00 $120.00 $902.00
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Product

Whole Cluster Crunch roasted Total

Allocated Fixed Costs

Manufacturing overhead $687.83 $330.69 $99.21 $132.28 $1,250.01
Selling & Administrative $577.78 $277.78 $83.33 $111.11 $1,050.00

Net Profit $742.39 2$88.47 2$10.54 $21.61 $664.99

Units Sold 1040 500 150 200 1890

Net Profit Per Unit $0.7138 2$0.1769 2$0.0703 $0.1081 $0.3518

1. Do you agree with the controller’s recommendation? Why or why not?
2. Formulate an LP model for this problem.
3. Create a spreadsheet model for this problem and solve it using Solver.
4. What is the optimal solution?
5. Create a sensitivity report for this solution and answer the following questions.
6. Is the solution degenerate? 
7. Is the solution unique?
8. If MNC wanted to decrease the production on any product which one would you 

recommend and why?
9. If MNC wanted to increase the production of any product which one would you 

recommend and why?
10. Which resources are preventing MNS from making more money? If they could 

acquire more of this resource how much should they acquire & how much should 
they be willing to pay to acquire it?

11. How much should MNC be willing to pay to acquire more chocolate?
12. If the marketing department wanted to decrease the price of the Whole product by 

$0.25 would the optimal solution change?
13. Create a Spider plot showing the impact on net profit of changing each product’s 

required time in the packaging process from between 70% to 130% of their original 
values in 5% increments. Interpret the information in the resulting chart.

14. Create a Spider plot showing the impact on net profit of changing the availability 
of nuts and chocolate from between 70% to 100% of their original values in 5% 
increments. Interpret the information in the resulting chart.

Parket Sisters 
(Contributed by Jack Yurkiewicz, Lubin School of Business, Pace University, New York.)

Computers and word processors notwithstanding, the art of writing by hand recently 
entered a boom era. People are buying fountain pens again, and mechanical pencils are 
becoming more popular than ever. Joe Script, the president and CEO of Parket Sisters, 
a small but growing pen and pencil manufacturer, wants to establish a better foothold 
in the market. The writing market is divided into two main sectors. One, dominated 
by Mont Blanc, Cross, Parker Brothers, Waterman, Schaffer, and a few others, caters to 
people who want writing instruments. The product lines from these companies consist 
of pens and pencils of elaborate design, lifetime warranty, and high price. At the other 
end of the market are manufacturers like BIC, Pentel, and many companies from the 
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far east, offering good quality items, low price, few trims, and limited diversity. These 
pens and pencils are meant to be used for a limited time and disposed of when the ink 
in a ballpoint pen runs out, or when the lead in a mechanical pencil won’t retract or 
extend. In short, these items are not meant for repair.

Joe thinks that there must be a middle ground, and that is where he wants to position 
his company. Parket Sisters makes high-quality items, with limited trim and diversity, 
but also offers lifetime warranties. Furthermore, its pens and pencils are ergonomically 
efficient. Joe knows that some people want the status of the Mont Blanc Meisterstuck 
pen, for example, but he has never met a person who said that writing with such a 
pen is enjoyable. The pen is too large and clumsy for smooth writing. Parket Sisters’ 
products, on the other hand, have a reputation for working well, are easy to hold and 
use, and cause limited “writer’s fatigue.”

Parket Sisters makes only three items—a ballpoint pen, a mechanical pencil, and a 
fountain pen. All are available in just one color, black, and are sold mostly in specialty 
stores and from better catalog companies. The per-unit profit of the items is $3.00 for 
the ballpoint pen, $3.00 for the mechanical pencil, and $5.00 for the fountain pen. These 
values take into account labor, the cost of materials, packing, quality control, and so on.

The company is trying to plan its production mix for each week. Joe believes that 
the company can sell any number of pens and pencils it produces, but production 
is currently limited by the available resources. Because of a recent strike and certain 
cash-flow problems, the suppliers of these resources are selling them to Parket Sisters 
in limited amounts. In particular, Joe can count on getting at most 1,000 ounces of 
plastic, 1,200 ounces of chrome, and 2,000 ounces of stainless steel each week from 
his suppliers, and these figures are not likely to change in the near future. Because of 
Joe’s excellent reputation, the suppliers will sell Joe any amount (up to his limit) of 
the resources he needs when he requires them. That is, the suppliers do not require 
Joe to buy some fixed quantities of resources in advance of his production of pens and 
pencils; therefore, these resources can be considered variable costs rather than fixed 
costs for the pens and pencils.

Each ballpoint pen requires 1.2 ounces of plastic, 0.8 ounces of chrome, and 2 ounces 
of stainless steel. Each mechanical pencil requires 1.7 ounces of plastic, no chrome, and 
3 ounces of stainless steel. Each fountain pen requires 1.2 ounces of plastic, 2.3 ounces 
of chrome, and 4.5 ounces of stainless steel. Joe believes LP could help him decide what 
his weekly product mix should consist of.

Getting his notes and notebooks, Joe grapples with the LP formulation. In addition 
to the constraints of the available resources, he recognizes that the model should 
include many other constraints (such as labor time availability and materials for 
packing). However, Joe wants to keep his model simple. He knows that eventually he’ll 
have to take other constraints into account, but as a first-pass model, he’ll restrict the 
constraints to just the three resources: plastic, chrome, and stainless steel.

With only these three constraints, Joe can formulate the problem easily as:

Max 3.0X1 1 3.0X2 1 5.0X3

Subject to: 1.2X1 1 1.7X2 1 1.2X3 # 1,000
0.8X1 1 0.0X2 1 2.3X3 # 1,200
2.0X1 1 3.0X2 1 4.5X3 # 2,000
X1, X2, X3 $  0

where:
X1 5 the number of ballpoint pens
X2 5 the number of mechanical pencils
X3 5 the number of fountain pens
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Joe’s knowledge of Excel and the Solver feature is limited so he asks you to enter 
and solve the problem for him, then answer the following questions. (Assume each 
question is independent unless otherwise stated.)

1. What should the weekly product mix consist of, and what is the weekly net profit?
2. Is the optimal solution to question 1 degenerate? Explain your response.
3. Is the optimal solution from question 1 unique, or are there alternate answers to this 

question? Explain your response.
4. What is the marginal value of one more unit of chrome? Of plastic?
5. A local distributor has offered to sell Parket Sisters an additional 500 ounces of 

stainless steel for $0.60 per ounce more than it ordinarily pays. Should the company 
buy the steel at this price? Explain your response.

6. If Parket Sisters buys the additional 500 ounces of stainless steel noted in question 
5, what is the new optimal product mix and what is the new optimal profit? Explain 
your response.

7. Suppose that the distributor offers to sell Parket Sisters some additional plastic at a 
price of only $1.00 over its usual cost of $5.00 per ounce. However, the distributor 
will sell the plastic only in lot sizes of 500 ounces. Should Parket Sisters buy one 
such lot? Explain your response.

8. The distributor is willing to sell the plastic in lots of just 100 ounces instead of the 
usual 500-ounce lots, still at $1.00 over Parket Sisters’ cost of $5.00 per ounce. How 
many lots (if any) should Parket Sisters buy? What is the optimal product mix if the 
company buys these lots, and what is the optimal profit?

9. Parket Sisters has an opportunity to sell some of its plastic for $6.50 per ounce to 
another company. The other company (which does not produce pens and pencils 
and, therefore, is not a competitor) wants to buy 300 ounces of plastic from Parket 
Sisters. Should Parket Sisters sell the plastic to the other company? What happens 
to Parket Sisters’ product mix and overall profit if it does sell the plastic? Be as 
specific as possible.

10. The chrome supplier might have to fulfill an emergency order, and would be able 
to send only 1,000 ounces of chrome this week instead of the usual 1,200 ounces. 
If Parket Sisters receives only 1,000 ounces of chrome, what is the optimal product 
mix and optimal profit? Be as specific as possible.

11. The R&D department at Parket Sisters has been redesigning the mechanical pencil 
to make it more profitable. The new design requires 1.1 ounces of plastic, 2.0 ounces 
of chrome, and 2.0 ounces of stainless steel. If the company can sell one of these 
pencils at a net profit of $3.00, should it approve the new design? Explain your 
response.

12. If the per-unit profit on ballpoint pens decreases to $2.50, what is the optimal 
product mix and what is the company’s total profit?

13. The marketing department suggested introducing a new felt tip pen that 
requires 1.8 ounces of plastic, 0.5 ounces of chrome, and 1.3 ounces of stainless 
steel. What profit must this product generate in order to make it worthwhile to 
produce?

14. What must the minimum per-unit profit of mechanical pencils be in order to make 
them worthwhile to produce?

15. Management believes that the company should produce at least 20 mechanical 
pencils per week to round out its product line. What effect would this have on 
overall profit? Give a numerical answer.

16. If the profit on a fountain pen is $6.75 instead of $5.00, what is the optimal product 
mix and optimal profit?
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Kamm Industries
If your home or office is carpeted, there’s a good chance that carpet came from Dalton, 
Georgia – also known as the “Carpet Capital of the World.” Manufacturers in the 
Dalton area produce more than 70 percent of the total output of the $9 billion world-
wide carpet industry. Competition in this industry is intense and and forces producers 
to strive for maximum efficiency and economies of scale. It also forces producers to 
continually evaluate investments in new technology. 

Kamm Industries is one of the leading carpet producers in the Dalton area. Its owner, 
Geoff Kamm, has asked for you assistance in planning the production schedule for the 
next quarter (13 weeks). The company has orders for fifteen different types of carpets 
that the company can either produce on two types of looms: Dobbie looms and Pantera 
looms. Pantera looms produce standard tufted carpeting. Dobbie looms can also 
produce standard tufted carpeting but also allow the incorporation of designs (such 
as flowers or corporate logos) into the carpeting. The following table summarizes the 
orders for each type of carpet that must be produced in the coming quarter along with 
their production rates and costs on each type of loom, and the cost of subcontracting 
each order. Note that the first 4 orders involved special production requirements that 
can only be achieved on a Dobbie loom or via subcontracting. Assume that any portion 
of an order may be subcontracted.

Carpet

Demand Dobbie Pantera Subcontract

Yds Yd/Hr Cost/Yd Yd/Hr Cost/Yd Cost/Yd

1 14,000 4.510 $2.66 na na $2.77
2 52,000 4.796 2.55 na na 2.73
3 44,000 4.629 2.64 na na 2.85
4 20,000 4.256 2.56 na na 2.73
5 77,500 5.145 1.61 5.428 $1.60 1.76
6 109,500 3.806 1.62 3.935 1.61 1.76
7 120,000 4.168 1.64 4.316 1.61 1.76
8 60,000 5.251 1.48 5.356 1.47 1.59
9 7,500 5.223 1.50 5.277 1.50 1.71
10 69,500 5.216 1.44 5.419 1.42 1.63
11 68,500 3.744 1.64 3.835 1.64 1.80
12 83,000 4.157 1.57 4.291 1.56 1.78
13 10,000 4.422 1.49 4.558 1.48 1.63
14 381,000 5.281 1.31 5.353 1.30 1.44
15 64,000 4.222 1.51 4.288 1.50 1.69

Kamm currently owns and operates 15 Dobbie looms and 80 Pantera looms. To 
maximize efficiency and keep pace with demand, the company operates 24 hours a 
day, 7 days a week. Each machine is down for routine maintenance for approximately 
2 hours per week. Create a spreadsheet model for this problem that can be used to 
determine the optimal production plan and answer the following questions.
 1. What is the optimal production plan and associated cost?
 2. Is the solution degenerate?
 3. Is the solution unique?
 4. What would happen to the total cost if one of the Dobbie machines broke and could 

not be used at all during the quarter?

CASe 4.3
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5. What would happen to the total cost if an additional Dobbie machine was purchased 
and available for the quarter?

6. What would happen to the total cost if one of the Pantera machines broke and could 
not be used at all during the quarter?

7. What would happen to the total cost if an additional Pantera machine was 
purchased and available for the quarter?

8. Explain the shadow prices and the values in the “Allowable Increase” column of 
the Sensitivity Report for the products that are being outsourced.

9. How much money does it cost to produce carpet order 2? How much would the 
total cost decrease if that order were eliminated? Explain.

10. If the carpets in orders 5 through 15 all sell for the same amount, which type of 
carpet should Kamm encourage its salesforce to sell more of? Why?

11. If the cost of buying the carpet in order 1 increased to $2.80 per yard, would the 
optimal solution change? Why?

12. If the cost of buying the carpet in order 15 decreased to $1.65 per yard, would the 
optimal solution change? Why?

13. Suppose that the cost of buying the different types of carpet could be negotiated and 
savings of up to $0.50 per yard might be possible. Which carpets would be the best 
candidates for price negotiation? Explain how you arrive at your recommendation.
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Chapter 5
Network Modeling

5.0 Introduction
A number of practical decision problems in business fall into a category known as 
network flow problems. These problems share a common characteristic—they can 
be described or displayed in a graphical form known as a network. This chapter 
focuses on several types of network flow problems: transshipment problems, shortest 
path problems, maximal flow problems, transportation/assignment problems, and 
generalized network flow problems. Although specialized solution procedures exist 
for solving network flow problems, we will consider how to formulate and solve these 
problems as LP problems. We will also consider a different type of network problem 
known as the minimum spanning tree problem.

5.1 The Transshipment Problem
Let’s begin our study of network flow problems by considering the transshipment 
problem. As you will see, most of the other types of network flow problems can be 
viewed as simple variations of the transshipment problem. So, after you understand 
how to formulate and solve transshipment problems, the other types of problems will 
be easy to solve. The following example illustrates the transshipment problem.

The Bavarian Motor Company (BMC) manufactures expensive luxury cars in 
Hamburg, Germany, and exports cars to sell in the United States. The exported 
cars are shipped from Hamburg to ports in Newark, New Jersey and Jacksonville, 
Florida. From these ports, the cars are transported by rail or truck to distributors 
located in Boston, Massachusetts; Columbus, Ohio; Atlanta, Georgia; Richmond, 
Virginia; and Mobile, Alabama. Figure 5.1 shows the possible shipping routes 
available to the company along with the transportation cost for shipping each car 
along the indicated path.

Currently, 200 cars are available at the port in Newark and 300 are available in 
Jacksonville. The numbers of cars needed by the distributors in Boston, Columbus, 
Atlanta, Richmond, and Mobile are 100, 60, 170, 80, and 70, respectively. BMC wants 
to determine the least costly way of transporting cars from the ports in Newark and 
Jacksonville to the cities where they are needed.

5.1.1 CharaCteristiCs of Network flow Problems
Figure 5.1 illustrates a number of characteristics common to all network flow problems. 
All network flow problems can be represented as a collection of nodes connected by 
arcs. The circles in Figure 5.1 are called nodes in the terminology of network flow 
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190 Chapter 5 Network Modeling

problems, and the lines connecting the nodes are called arcs. The arcs in a network 
indicate the valid paths, routes, or connections between the nodes in a network flow 
problem. When the lines connecting the nodes in a network are arrows that indicate 
a direction, the arcs in the network are called directed arcs. This chapter discusses 
directed arcs primarily but, for convenience, refers to them as arcs.

The notion of supply nodes (or sending nodes) and demand nodes (or receiving 
nodes) is another common element of network flow problems illustrated in Figure 5.1. 
The nodes representing the port cities of Newark and Jacksonville are both supply 
nodes because each has a supply of cars to send to other nodes in the network. 
Richmond represents a demand node because it demands to receive  cars from the other 
nodes. All the other nodes in this network are transshipment nodes. Transshipment 
nodes can both send to and receive from other nodes in the network. For example, the 
node representing Atlanta in Figure 5.1 is a transshipment node because it can receive 
cars from Jacksonville, Mobile, and Columbus, and it can also send cars to Columbus, 
Mobile, and Richmond.

The net supply or demand for each node in the network is indicated, respectively, by 
a negative or positive number next to each node. We use a positive number to represent 
the needed net flow into (i.e., the demand at) a given node, and a negative number to 
represent the available net flow out of (i.e., the supply at) a node. For example, the value 
180 next to the node for Richmond indicates that the number of cars needs to increase 
by 80—or that Richmond has a demand for 80 cars. The value -200 next to the node for 
Newark indicates that the number of cars there can be reduced by 200—or that Newark 
has a supply of 200 cars. A transshipment node can have either a net supply or demand, 
but not both. In this particular problem, all the transshipment nodes have demands. For 
example, the node representing Mobile in Figure 5.1 has a demand for 70 cars.
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The Transshipment Problem 191

5.1.2 the DeCisioN Variables for Network  
flow Problems
The goal in a network flow model is to determine how many items should be moved (or 
flow) across each of the arcs. In our example, BMC needs to determine the least costly 
method of transporting cars along the various arcs shown in Figure 5.1 to distribute 
cars where they are needed. Thus, each of the arcs in a network flow model represents 
a decision variable. Determining the optimal flow for each arc is the equivalent of 
determining the optimal value for the corresponding decision variable.

It is customary to use numbers to identify each node in a network flow problem. 
In Figure 5.1, the number 1 identifies the node for Newark, 2 identifies the node for 
Boston, and so on. You can assign numbers to the nodes in any manner, but it is best 
to use a series of consecutive integers. The node numbers provide a convenient way to 
identify the decision variables needed to formulate the LP model for the problem. For 
each arc in a network flow model, you need to define one decision variable as:

Xij 5  the number of items shipped (or flowing) from node i to node j

The network in Figure 5.1 for our example problem contains 11 arcs. Therefore, the 
LP formulation of this model requires the following 11 decision variables:

 X12 5  the number of cars shipped from node 1 (Newark) to node 2 (Boston)
 X14 5  the number of cars shipped from node 1 (Newark) to node 4 (Richmond)
 X23 5  the number of cars shipped from node 2 (Boston) to node 3 (Columbus)
 X35 5  the number of cars shipped from node 3 (Columbus) to node 5 (Atlanta)
 X53 5  the number of cars shipped from node 5 (Atlanta) to node 3 (Columbus)
 X54 5  the number of cars shipped from node 5 (Atlanta) to node 4 (Richmond)
 X56 5  the number of cars shipped from node 5 (Atlanta) to node 6 (Mobile)
 X65 5  the number of cars shipped from node 6 (Mobile) to node 5 (Atlanta)
 X74 5  the number of cars shipped from node 7 (Jacksonville) to node 4 (Richmond)
 X75 5  the number of cars shipped from node 7 (Jacksonville) to node 5 (Atlanta)
 X76 5  the number of cars shipped from node 7 (Jacksonville) to node 6 (Mobile)

5.1.3 the objeCtiVe fuNCtioN for Network  
flow Problems
Each unit that flows from node i to node j in a network flow problem usually incurs 
some cost, cij. This cost might represent a monetary payment, a distance, or some other 
type of penalty. The objective in most network flow problems is to minimize the total 
cost, distance, or penalty that must be incurred to solve the problem. Such problems are 
known as minimum cost network flow problems.

In our example problem, different monetary costs must be paid for each car shipped 
across a given arc. For example, it costs $30 to ship each car from node 1 (Newark) to node 
2 (Boston). Because X12 represents the number of cars shipped from Newark to Boston, 
the total cost incurred by cars shipped along this path is determined by $30X12. Similar 
calculations can be done for the other arcs in the network. Because BMC is interested in 
minimizing the total shipping costs, the objective function for this problem is expressed as:

MIN:  130X12 1 40X14 1 50X23 1 35X35 1 40X53 1 30X54

1 35X56 1 25X65 1 50X74 1 45X75 1 50X76
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192 Chapter 5 Network Modeling

5.1.4 the CoNstraiNts for Network flow Problems
Just as the number of arcs in the network determines the number of variables in the LP 
formulation of a network flow problem, the number of nodes determines the number 
of constraints. In particular, there must be one constraint for each node. A simple set of 
rules, known as the balance-of-flow rules, applies to constructing the constraints for 
minimum cost network flow problems. These rules are summarized as follows:

For Minimum Cost Network Apply This Balance-of-Flow Rule
Flow Problems Where: at Each Node: 

Total Supply . Total Demand In�ow 2 Out�ow $ Supply or Demand
Total Supply 5 Total Demand In�ow 2 Out�ow 5 Supply or Demand
Total Supply , Total Demand In�ow 2 Out�ow # Supply or Demand

It should be noted that if the total supply in a network flow problem is less than 
the total demand, then it will be impossible to satisfy all the demand. The balance-
of-flow rule listed for this case assumes that you want to determine the least costly 
way of distributing the available supply—knowing that it is impossible to satisfy all 
the demand. If you want to meet as much of the demand as possible, add an artificial 
supply node to the network with an arbitrarily large supply (so that total supply $
total demand) and connect it to each demand node with an arbitrarily large cost of 
flow. The optimal solution to the resulting problem (ignoring flows on the artificial 
arcs) meets as much of the demand as possible in the least costly manner.

To apply the correct balance-of-flow rule, we must first compare the total supply 
in the network to the total demand. In our example problem, there is a total supply 
of 500 cars and a total demand for 480 cars. Because the total supply exceeds the total 
demand, we will use the first balance-of-flow rule to formulate our example problem. 
That is, at each node, we will create a constraint of the form:

Inflow 2 Outflow $ Supply or Demand

For example, consider node 1 (Newark) in Figure 5.1. No arcs flow into this node but 
two arcs (represented by X12 and X14) flow out of the node. According to the balance-of-
flow rule, the constraint for this node is:

 Constraint for node 1: 2X12 2 X14 $ 2200

Notice that the supply at this node is represented by 2200 following the convention 
we established earlier. If we multiply both sides of this inequality by 21, we see that 
it is equivalent to 1X12 1 X14 # 1 200. (Note that multiplying an inequality by 21
reverses the direction of the inequality.) This constraint indicates that the total number 
of cars flowing out of Newark must not exceed 200. So, if we include either form of this 
constraint in the model, we can ensure that no more than 200 cars will be shipped from 
Newark.

Now consider the constraint for node 2 (Boston) in Figure 5.1. Because Boston 
has a demand for 100 cars, the balance-of-flow rule requires that the total number of 
cars coming into Boston from Newark (via X12) minus the total number of cars being 
shipped out of Boston to Columbus (via X23) must leave at least 100 cars in Boston. This 
condition is imposed by the constraint:

Constraint for node 2: 1X12 2 X23 $ 1 100

Note that this constraint makes it possible to leave more than the required number 
of cars in Boston (e.g., 200 cars could be shipped into Boston and only 50 shipped out, 
leaving 150 cars in Boston). However, because our objective is to minimize costs, we 
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The Transshipment Problem 193

can be sure that an excess number of cars will never be shipped to any city, because 
that would result in unnecessary costs being incurred.

Using the balance-of-flow rule, the constraints for each of the remaining nodes in 
our example problem are represented as:

Constraint for node 3:  1 X23 1 X53 2 X35 $ 1 60
Constraint for node 4:  1 X14 1 X54 1 X74 $ 1 80
Constraint for node 5:  1 X35 1 X65 1 X75 2 X53 2 X54 2 X56 $ 1 170
Constraint for node 6:  1 X56 1 X76 2 X65 $ 1 70
Constraint for node 7:  2 X74 2 X75 2 X76 $ 2 300

Again, each constraint indicates that the flow into a given node minus the flow out 
of that same node must be greater than or equal to the supply or demand at the node. 
So, if you draw a graph of a network flow problem like the one in Figure 5.1, it is easy 
to write out the constraints for the problem by following the balance-of-flow rule. 
Of course, we also need to specify the following nonnegativity condition for all the 
decision variables because negative flows should not occur on arcs:

Xij $ 0 for all i and j

5.1.5 imPlemeNtiNg the moDel iN a sPreaDsheet
The formulation for the BMC transshipment problem is summarized as:

MIN:        1 30X12 1 40X14 1 50X23 1 35X35 1 40X53  
1 30X54 1 35X56 1 25X65 1 50X74 1 45X75       j total shipping cost  
1 50X76 

Subject to:

2X12 2 X14 $ 2200 } flow constraint for node 1
 1X12 2 X23 $ 1100 } flow constraint for node 2
 1X23 1 X53 2 X35 $ 160 } flow constraint for node 3
 1X14 1 X54 1 X74 $ 180 } flow constraint for node 4
 1X35 1 X65 1 X75 2 X53 2 X54 2 X56 $ 1170 } flow constraint for node 5

1X56 1 X76 2 X65 $ 170 } flow constraint for node 6
 2X74 2 X75 2 X76 $ 2300 } flow constraint for node 7
 Xij $ 0 for all i and j } nonnegativity conditions

A convenient way of implementing this type of problem is shown in Figure 5.2 (and 
in the file Fig5-2.xlsm that accompanies this book). In this spreadsheet, cells B6 through 
B16 are used to represent the decision variables for our model (or the number of cars 
that should flow between each of the cities listed). The unit cost of transporting cars 
between each city is listed in column G. The objective function for the model is then 
implemented in cell G18 as follows:

Formula for cell G18: 5SUMPRODUCT(B6:B16,G6:G16)

To implement the LHS formulas for the constraints in this model, we need to 
compute the total inflow minus the total outflow for each node. This is done in cells K6 
through K12 as follows:

 Formula for cell K6:  5SUMIF($E$6:$E$16,I6,$B$6:$B$16)2 
 (Copy to cells K7 through K12.) SUMIF($C$6:$C$16,I6,$B$6:$B$16)
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194 Chapter 5 Network Modeling

The first SUMIF( ) function in this formula compares the values in the range E6 
through E16 to the value in I6 and, if a match occurs, sums the corresponding value 
in the range B6 through B16. Of course, this gives us the total number of cars flowing 
into Newark (which in this case will always be zero because none of the values 
in E6 through E16 match the value in I6). The next SUMIF( ) function compares the 
values in the range C6 through C16 to the value in I6 and, if a match occurs, sums the 
corresponding values in the range B6 through B16. This gives us the total number of 
cars flowing out of Newark (which in this case will always equal the values in cells B6 
and B7 because these are the only arcs flowing out of Newark). Copying this formula 
to cells K7 though K12 allows us to easily calculate the total inflow minus the total 
outflow for each of the nodes in our problem. The RHS values for these constraint cells 
are shown in cells L6 though L12.

The VLOOKUP( ) functions used in columns D and F of this spreadsheet are not 
required to solve the problem but do help communicate the logic of our model by 
providing the city names associated with the “From” and “To” node values in columns 
C and E, respectively. The formula in cell D6 is:

Formula for cell D6: 5 VLOOKUP(C6,$I$6:$J$12,2)  
(Copy to cells D7 through D16 and F6 through F16.)

This VLOOKUP( ) function “looks up” the value in cell C6 in the first column of 
the range I6 through J12 and, when it finds the matching value, returns the value in 
the 2nd column of the matching row (as specified by the value 2 as the third argument 
in the VLOOKUP( ) function). So, for cell D6, the VLOOKUP( ) function first looks for 

Key Cell Formulas

Cell Formula Copied to

D6 5VLOOKUP(C6,$I$6:$J$12,2) D7:D16 and F6:F16
G18 5SUMPRODUCT(B6:B16,G6:G16) --
K6 5SUMIF($E$6:$E$16,I6,$B$6:$B$16) K7:K12   
    2SUMIF($C$6:$C$16,I6,$B$6:$B$16)

Objective Cell

Constraint Cells

Variable Cells

FIGURE 5.2 Spreadsheet implementation of the BMC transshipment problem
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The Transshipment Problem 195

the value one (from C6) in the first column of the range I6 through J12, and locates this 
value in the first row of the range. It then returns the value “Newark” found in the 
2nd column on that same row in the range I6 through J12. Copying this formula to 
cells D7 through D16 and F6 through F16 allow us to retrieve the city names associated 
with the other “From” and “To” nodes in this problem. (By default, the VLOOKUP( ) 
function assumes the values in the first column of the given range appear in ascending 
order. If that’s not the case, an optional fourth argument should be should be passed to 
the VLOOKUP( ) function with a Boolean value of False.)

Figure 5.3 shows the Solver parameters and options required to solve this problem. 
The optimal solution to the problem is shown in Figure 5.4.

Solver Settings:

Objective: G18 (Min)
Variable cells: B6:B16
Constraints:  
 K6:K12 .5 L6:L12
 B6:B16 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

FIGURE 5.3

Solver settings 
and options 
for the BMC 
transshipment 
problem

FIGURE 5.4 Optimal solution to the BMC transshipment problem

5.1.6 aNalyziNg the solutioN
Figure 5.4 shows the optimal solution for BMC’s transshipment problem. The solution 
indicates that 120 cars should be shipped from Newark to Boston 1X12 5 120 2 , 80 cars  
from Newark to Richmond 1X14 5 80 2 , 20 cars from Boston to Columbus 1X23 5 20 2 ,
40 cars from Atlanta to Columbus 1X53 5 40 2 , 210 cars from Jacksonville to Atlanta 
1X75 5 210 2 , and 70 cars from Jacksonville to Mobile 1X76 5 70 2 . Cell G18 indicates that 
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196 Chapter 5 Network Modeling

the total cost associated with this shipping plan is $22,350. The values of the constraint 
cells in K6 and K12 indicate, respectively, that all 200 cars available at Newark are being 
shipped and only 280 of the 300 cars available at Jacksonville are being shipped. A 
comparison of the remaining constraint cells in K7 through K11 with their RHS values 
in L7 through L11 reveals that the demand at each of these cities is being met by the net 
flow of cars through each city.

This solution is summarized graphically, as shown in Figure 5.5. The values in the 
boxes next to each arc indicate the optimal flows for the arcs. The optimal flow for all 
the other arcs in the problem, which are not shown in Figure 5.5, is 0. Notice that the 
amount flowing into each node minus the amount flowing out of each node is equal 
to the supply or demand at the node. For example, 210 cars are being shipped from 
Jacksonville to Atlanta. Atlanta will keep 170 of the cars (to satisfy the demand at this 
node) and send the extra 40 to Columbus.
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FIGURE 5.5

Network  
representation  
of the optimal  
solution for  
the BMC  
transshipment 
problem

5.2 The Shortest Path Problem
In many decision problems, we need to determine the shortest (or least costly) route 
or path through a network from a starting node to an ending node. For example, 
many cities are developing computerized models of their highways and streets to 
help emergency vehicles identify the quickest route to a given location. Each street 
intersection represents a potential node in a network, and the streets connecting the 
intersections represent arcs. Depending on the day of the week and the time of day, 
the time required to travel various streets can increase or decrease due to changes in 
traffic patterns. Road construction and maintenance also affect traffic flow patterns. So, 
the quickest route (or shortest path) for getting from one point in the city to another 
can change frequently. In emergency situations, lives or property can be lost or saved 
depending on how quickly emergency vehicles arrive where they are needed. The 
ability to quickly determine the shortest path to the location of an emergency situation 
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The Shortest Path Problem 197

is extremely useful in these situations. The following example illustrates another 
application of the shortest path problem.

The American Car Association (ACA) provides a variety of travel-related services 
to its members, including information on vacation destinations, discount hotel 
reservations, emergency road assistance, and travel route planning. This last service, 
travel route planning, is one of its most popular services. When members of the 
ACA are planning to take a driving trip, they visit the organization’s website and 
indicate what cities they will be traveling from and to. The ACA then determines 
an optimal route for traveling between these cities. The ACA’s computer databases 
of major highways and interstates are kept up-to-date with information on 
construction delays and detours and estimated travel times along various segments 
of roadways.

Members of the ACA often have different objectives in planning driving trips. 
Some are interested in identifying routes that minimize travel times. Others, 
with more leisure time on their hands, want to identify the most scenic route to 
their desired destination. The ACA wants to develop an automated system for 
identifying an optimal travel plan for its members.

To see how the ACA could benefit by solving shortest path problems, consider the 
simplified network shown in Figure 5.6 for a travel member who wants to drive from 
Birmingham, Alabama to Virginia Beach, Virginia. The nodes in this graph represent 
different cities and the arcs indicate the possible travel routes between the cities. For 
each arc, Figure 5.6 lists both the estimated driving time to travel the road represented 
by each arc and the number of points that route has received on the ACA’s system for 
rating the scenic quality of the various routes.
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198 Chapter 5 Network Modeling

Solving this problem as a network flow model requires the various nodes to have 
some supply or demand. In Figure 5.6, node 1 (Birmingham) has a supply of 1, node 11 
(Virginia Beach) has a demand of 1, and all other nodes have a demand (or supply) of 0. 
If we view this model as a transshipment problem, we want to find either the quickest 
way or the most scenic way of shipping 1 unit of flow from node 1 to node 11. The 
route this unit of supply takes corresponds to either the shortest path or the most scenic 
path through the network, depending on which objective is being pursued.

5.2.1 aN lP moDel for the examPle Problem
Using the balance-of-flow rule, the LP model to minimize the driving time in this 
problem is represented as:

MIN:  12.5X12 1 3X13 1 1.7X23 1 2.5X24 1 1.7X35 1 2.8X36 1 2X46 1 1.5X47 1 2X56  
1 5X59 1 3X68 1 4.7X69 1 1.5X78 1 2.3X7,10 1 2X89 1 1.1X8,10 1 3.3X9,11 1 2.7X10,11

Subject to: 

2X12 2 X13  5 21  } flow constraint for node 1
1X12 2 X23 2 X24    5 0 } flow constraint for node 2
1X13 1 X23 2 X35 2 X36      5 0 } flow constraint for node 3
1X24 2 X46 2 X47    5 0 } flow constraint for node 4
1X35 2 X56 2 X59    5 0 } flow constraint for node 5
1X36 1 X46 1 X56 2 X68 2 X69       5 0 } flow constraint for node 6
1X47 2 X78 2 X7,10      5 0 } flow constraint for node 7
1X68 1 X78 2 X89 2 X8,10        5 0 } flow constraint for node 8
1X59 1 X69 1 X89 2 X9,11        5 0 } flow constraint for node 9
1X7,10 1 X8,10 2 X10,11           5 0 } flow constraint for node 10
1X9,11 1 X10,11       5 11 } flow constraint for node 11
Xij $ 0 for all i and j } nonnegativity conditions

Because the total supply equals the total demand in this problem, the constraints 
should be stated as equalities. The first constraint in this model ensures that the 1 unit 
of supply available at node 1 is shipped to node 2 or node 3. The next nine  constraints 
indicate that anything flowing to nodes 2 though node 10 must also flow out of these 
nodes because each has a demand of 0. For example, if the unit of supply leaves node 1 
for node 2 (via X12), the second constraint ensures that it will leave node 2 for node 3 or 
node 4 (via X23 or X24). The last constraint indicates that the unit must ultimately flow to 
node 11. Thus, the solution to this problem indicates the quickest route for getting from 
node 1 (Birmingham) to node 11 (Virginia Beach).

5.2.2 the sPreaDsheet moDel aND solutioN
The optimal solution to this problem shown in Figure 5.7 (and in the file Fig5-7.xlsm 
that accompanies this book) was obtained using the Solver parameters and options 
shown in Figure 5.8. Notice that this model includes calculations of both the total 
expected driving time (cell G26) and total scenic rating points (cell H26) associated with 
any solution. Either of these cells can be chosen as the objective function according to 
the client’s desires. However, the solution shown in Figure 5.7 minimizes the expected 
driving time.
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The Shortest Path Problem 199

The optimal solution shown in Figure 5.7 indicates that the quickest travel plan 
involves driving from node 1 (Birmingham) to node 2 (Atlanta), then to node 4 
(Greenville), then to node 7 (Charlotte), then to node 10 (Raleigh), and finally to node 11 
(Virginia Beach). The total expected driving time along this route is 11.5 hours. 
Also note that this route receives a rating of 15 points on the ACA’s scenic rating 
scale.

Using this spreadsheet, we can also determine the most scenic route by instructing 
Solver to maximize the value in cell H26. Figure 5.9 shows the optimal solution 

L8:L17

Copied to

D8:D24 and F7:F24
H26

Key Cell Formulas

Cell Formula

D7 5VLOOKUP(C7,$J$7:$K$17,2)
G26 5SUMPRODUCT(G7:G24,$B$7:$B$24)
L7 5SUMIF($E$7:$E$24,J7,$B$7:$B$24) 2SUMIF($C$7:$C$24,J7,$B$7:$B$24)

Objective Cell

Variable Cells

Constraint Cells

FIGURE 5.7 Spreadsheet model and solution showing the route that minimizes estimated driving time for the ACA’s shortest path problem

Solver Settings:

Objective: G26 (Min)
Variable cells: B7:B24
Constraints:  
 L7:L17 5 M7:M17
 B7:B24 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

FIGURE 5.8

Solver settings and  
options for the 
ACA’s shortest 
path problem
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200 Chapter 5 Network Modeling

obtained in this case. This travel plan involves driving from Birmingham to Atlanta, to 
Chattanooga, to Knoxville, to Asheville, to Lynchburg, and finally, to Virginia Beach. 
This itinerary receives a rating of 35 points on the ACA’s scenic rating scale but takes 
almost 16 hours of driving time.

5.2.3 Network flow moDels  
aND iNteger solutioNs
Up to this point, each of the network flow models we have solved generated integer 
solutions. If you use the simplex method to solve any minimum cost network flow 
model having integer constraint RHS values, then the optimal solution automatically 
assumes integer values. This property is helpful because the items flowing through 
most network flow models represent discrete units (such as cars or people).

Sometimes, it is tempting to place additional constraints (or side constraints) on a 
network model. For example, in the ACA problem, suppose that the customer wants to 
get to Virginia Beach in the most scenic way possible within 14 hours of driving time. 
We can easily add a constraint to the model to keep the total driving time G26 less than 
or equal to 14 hours. If we then re-solve the model to maximize the scenic rating in cell 
H26, we obtain the solution shown in Figure 5.10.

Unfortunately, this solution is useless because it produces fractional results. Thus, 
if we add side constraints to network flow problems that do not obey the balance-
of-flow rule, we can no longer ensure that the solution to the LP formulation of the 
problems will be integral. If integer solutions are needed for such problems, the integer 
programming techniques discussed in chapter 6 must be applied.

FIGURE 5.9 Solution showing the most scenic route
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The Equipment Replacement Problem 201

5.3 The Equipment Replacement Problem
The equipment replacement problem is a common type of business problem that can 
be modeled as a shortest path problem. This type of problem involves determining the 
least costly schedule for replacing equipment over a specified length of time. Consider 
the following example.

Jose Maderos is the owner of Compu-Train, a small company that provides 
hands-on software education and training for businesses in and around Boulder, 
Colorado. Jose leases the computer equipment used in his business and he likes to 
keep the equipment up-to-date so that it will run the latest, state-of-the-art software 
in an efficient manner. Because of this, Jose wants to replace his equipment at least 
every 2 years.

Jose is currently trying to decide between two different lease contracts his 
equipment supplier has proposed. Under both contracts Jose would be required to 
pay $62,000 initially to obtain the equipment he needs. However, the two contracts 
differ in terms of the amount Jose would have to pay in subsequent years to replace 
his equipment. Under the first contract, the price to acquire new equipment would 
increase by 6% per year, but he would be given a trade-in credit of 60% for any 
equipment that is 1 year old and 15% for any equipment that is 2 years old. Under 
the second contract, the price to acquire new equipment would increase by just 2% 
per year, but he would be given a trade-in credit of only 30% for any equipment 
that is 1 year old and 10% for any equipment that is 2 years old.

Jose realizes that no matter what he does, he will have to pay $62,000 to obtain 
the equipment initially. However, he wants to determine which contract would 
allow him to minimize the remaining leasing costs over the next 5 years and when 
he should replace his equipment under the selected contract.

FIGURE 5.10 Example of a noninteger solution to a network problem with side constraints
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202 Chapter 5 Network Modeling

Each of the two contracts Jose is considering can be modeled as a shortest path 
problem. Figure 5.11 shows how this would be accomplished for the first contract 
under consideration. Each node corresponds to a point in time during the next 5 years 
when Jose can replace his equipment. Each arc in this network represents a choice 
available to Jose. For example, the arc from node 1 to node 2 indicates that Jose can 
keep the equipment he initially acquires for 1 year and then replace it (at the begin-
ning of year 2) for a net cost of $28,520 1$62,000 3 1.06 2 0.6 3 $62,000 5 $28,520 2 .
Alternatively, the arc from node 1 to node 3 indicates that Jose can keep his initial 
equipment for 2 years and replace it at the beginning of year 3 for a net cost of 
$60,363 1$62,000 3 1.062 2 0.15 3 $62,000 5 $60,363 2 .

The arc from node 2 to node 3 indicates that if Jose replaces his initial equipment at 
the beginning of year 2, he can keep the new equipment for 1 year and replace it at the 
beginning of year 3 at a net cost of $30,231 1$62,000 3 1.06 ^ 2 2 0.60 3 1$62,000 3 1.06 2
5 $30,231 2 .  The remaining arcs and costs in the network can be interpreted in the same 
way. Jose’s decision problem is to determine the least costly (or shortest) way of getting 
from node 1 to node 5 in this network.

5.3.1 the sPreaDsheet moDel aND solutioN
The LP formulation of Jose’s decision problem can be generated from the graph in 
Figure 5.11 using the balance-of-flow rule in the same manner as the previous network 
flow problems. The spreadsheet model for this problem was implemented as shown 
in Figure 5.12 (and in the file Fig5-12.xlsm that accompanies this book) and solved 
using the settings shown in Figure 5.13. To assist Jose in comparing the two different 
alternatives he faces, notice that an area of the spreadsheet in Figure 5.12 has been 
reserved to represent assumptions about the annual increase in leasing costs (cell G5), 
and the trade-in values for 1- and 2-year-old equipment (cells G6 and G7). The rest of 
the spreadsheet model uses these assumed values to compute the various costs. This 
enables us to change any of the assumptions and re-solve the model very easily.

The optimal solution to this problem shows that under the provisions of the first 
contract, Jose should replace his equipment at the beginning of each year at a total cost 
of $124,764. This amount is in addition to the $62,000 he has to pay up front at the 
beginning of year 1.

To determine the optimal replacement strategy and costs associated with the second 
contract, Jose could simply change the assumptions at the top of the spreadsheet and 
re-solve the model. The results of this are shown in Figure 5.14.

The optimal solution to this problem shows that under the provisions of the second 
contract, Jose should replace his equipment at the beginning of years 3 and 5 at a total 

2 4

1 3 5
$67,824$60,363

$63,985
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The Equipment Replacement Problem 203

cost of $118,965. Again, this amount is in addition to the $62,000 he has to pay up 
front at the beginning of year 1. Although the total costs under the second contract 
are lower than under the first, under the second contract Jose would be working with 
older equipment during years 2 and 4. Thus, although the solution to these two models 
makes the financial consequences of the two different alternatives clear, Jose still must 
decide for himself whether the benefits of the financial cost savings under the second 

H13:H15

Key Cell Formulas

Cell Formula Copied to

E19 5SUMPRODUCT(E11:E17,B11:B17) --

I11 5SUMIF($D$11:$D$17,G11,$B$11:$B$17)2SUMIF($C$11:$C$17,G11,$B$11:$B$17) I12:I15

H12 5H11*(11$G$5)

E12:E17E11 5VLOOKUP(D11,G$11:J$15,2)2(IF(D112C1151,G$6,G$7)*VLOOKUP(C11,G$11:J$15,2))

Constraint Cells

Objective Cell

Variable Cells

FIGURE 5.12 Spreadsheet model and solution for Compu-Train’s first lease contract alternative

Solver Settings:

Objective: E19 (Min)
Variable cells: B11:B17
Constraints:  
 I11:I15 5 J11:J15
 B11:B17 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

FIGURE 5.13

Solver settings and  
options for 
Compu-Train’s 
equipment  
replacement 
problem
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204 Chapter 5 Network Modeling

contract outweigh the non-financial costs associated with using slightly out-of-date 
equipment during years 2 and 4. Of course, regardless of which contract Jose decides 
to go with, he will get to reconsider whether or not to upgrade his equipment at the 
beginning of each of the next 4 years.

s u m m a r y  o f  s h o r t e s t  P a t h  P r o b l e m s
You can model any shortest path problem as a transshipment problem by assign-
ing a supply of 1 to the starting node, a demand of 1 to the ending node, and a 
demand of 0 to all other nodes in the network. Because the examples presented 
here involved only a small number of paths through each of the networks, it might 
have been easier to solve these problems simply by enumerating the paths and 
calculating the total distance of each one. However, in a problem with many nodes 
and arcs, an automated LP model is far easier than a manual solution approach.

5.4 Transportation/Assignment Problems
Chapter 3 presented an example of another type of network flow problem known 
as the transportation/assignment problem. The example involved the Tropicsun 
Company—a grower and distributor of fresh citrus products. The company wanted 
to determine the least expensive way of transporting freshly picked fruit from three 
citrus groves to three processing plants. The network representation of the problem is 
repeated in Figure 5.15.

FIGURE 5.14 Solution for Compu-Train’s second lease contract alternative
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Generalized Network Flow Problems 205

The network shown in Figure 5.15 differs from the earlier network flow problems 
in this chapter because it contains no transshipment nodes. Each node in Figure 5.15 
is either a sending node or a receiving node. The lack of transshipment nodes is the 
key feature that distinguishes transportation/assignment problems from other types 
of network flow problems. As you saw in chapter 3, this property allows you to set 
up and solve transportation/assignment problems conveniently in a matrix format 
in the spreadsheet. Although it is possible to solve transportation/assignment 
problems in the same way in which we solved transshipment problems, it is much 
easier to implement and solve these problems using the matrix approach described 
in chapter 3.

Sometimes, transportation/assignment problems are sparse or not fully 
interconnected (meaning not all the supply nodes have arcs connecting them to all 
the demand nodes). These “missing” arcs can be handled conveniently in the matrix 
approach to implementation by assigning arbitrarily large costs to the variable 
cells representing these arcs so that flow on these arcs becomes prohibitively 
expensive. However, as the number of missing arcs increases, the matrix approach 
to implementation becomes less and less computationally efficient compared to the 
procedure described in this chapter.

5.5 Generalized Network Flow Problems
In all of the network problems we have considered so far, the amount of flow that 
exited an arc was always the same as the amount that entered the arc. For example, 
if we put 40 cars on a train in Jacksonville and sent them to Atlanta, the same 40 cars 
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206 Chapter 5 Network Modeling

came off the train in Atlanta. However, there are numerous examples of network flow 
problems in which a gain or loss occurs on flows across arcs. For instance, if oil or gas 
is shipped through a leaky pipeline, the amount of oil or gas arriving at the intended 
destination will be less than the amount originally placed in the pipeline. Similar loss-
of-flow examples occur as a result of evaporation of liquids, spoilage of foods and other 
perishable items, or imperfections in raw materials entering production processes that 
result in a certain amount of scrap. Many financial cash flow problems can be modeled 
as network flow problems in which flow gains (or increases) occur in the form of inter-
est or dividends as money flows through various investments. The following example 
illustrates the modeling changes required to accommodate these types of problems.

Nancy Grant is the owner of Coal Bank Hollow Recycling, a company that 
specializes in collecting and recycling paper products. Nancy’s company uses 
two different recycling processes to convert newspaper, mixed paper, white office 
paper, and cardboard into paper pulp. The amount of paper pulp extracted from the 
recyclable materials and the cost of extracting the pulp differs depending on which 
recycling process is used. The following table summarizes the recycling processes:

Recycling Process 1 Recycling Process 2

Material Cost per Ton Yield Cost per Ton Yield

Newspaper $13 90% $12 85%
Mixed Paper $11 80% $13 85%
White Of®ce Paper $9 95% $10 90%
Cardboard $13 75% $14 85%

For instance, every ton of newspaper subjected to recycling process 1 costs $13 
and yields 0.9 tons of paper pulp. The paper pulp produced by the two different 
recycling processes goes through other operations to be transformed into pulp for 
newsprint, packaging paper, or print stock quality paper. The yields associated with 
transforming the recycled pulp into pulp for the final products are summarized in 
the following table:

Newsprint Pulp Packaging Paper Pulp Print Stock Pulp

Pulp Source Cost per Ton Yield Cost per Ton Yield Cost per Ton Yield

Recycling Process 1 $5 95% $6 90% $8 90%
Recycling Process 2 $6 90% $8 95% $7 95%

For instance, a ton of pulp exiting recycling process 2 can be transformed into 0.95 
tons of packaging paper at a cost of $8.

Nancy currently has 70 tons of newspaper, 50 tons of mixed paper, 30 tons of 
white office paper, and 40 tons of cardboard. She has a contract to produce 60 tons 
of newsprint pulp, 40 tons of packaging paper pulp, and 50 tons of print stock pulp, 
and wants to determine the most efficient way to meet this obligation.

Figure 5.16 shows how Nancy’s recycling problem can be viewed as a generalized 
network flow problem. The arcs in this graph indicate the possible flow of recycling 
material through the production process. On each arc, we have listed both the cost 
of flow along the arc and the reduction factor that applies to flow along the arc. For 
instance, the arc from node 1 to node 5 indicates that each ton of newspaper going to 
recycling process 1 costs $13 and yields 0.90 tons of paper pulp.
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Generalized Network Flow Problems 207

5.5.1 formulatiNg aN lP moDel  
for the reCyCliNg Problem
To formulate the LP model for this problem algebraically, we defined the decision 
variable Xij to represent the tons of product flowing from node i to node j. The objective 
is then stated in the usual way as follows:

MIN:   13X15 1 12X16 1 11X25 1 13X26 1 9X35 1 10X36 1 13X45 1 14X46 1 5X57 
        1 6X58 1 8X59 1 6X67 1 8X68 1 7X69 

The constraints for this problem may be generated using the balance-of-flow 
rule for each node. The constraints for the first four nodes (representing the supply 
of newspaper, mixed paper, white office paper, and cardboard, respectively) are 
given by:

 2X15 2 X16 $ 2 70 } flow constraint for node 1
 2X25 2 X26 $ 2 50 } flow constraint for node 2
 2X35 2 X36 $ 2 30 } flow constraint for node 3
 2X45 2 X46 $ 2 40 } flow constraint for node 4

These constraints simply indicate that the amount of product flowing out of each 
of these nodes may not exceed the supply available at each node. (Recall that the con-
straint given for node 1 is equivalent to 1X15 1 X16 # 1 70.)
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208 Chapter 5 Network Modeling

Applying the balance-of-flow rule at nodes 5 and 6 (representing the two recycling 
processes) we obtain:

10.9X15 1 0.8X25 1 0.95X35 1 0.75X45 2 X57 2 X58 2 X59 $ 0   } �ow constraint for node 5
10.85X16 1 0.85X26 1 0.9X36 1 0.85X46 2 X67 2 X68 2 X69 $ 0 } �ow constraint for node 6

To better understand the logic of these constraints, we will rewrite them in the 
following algebraically equivalent manner:

1 0.9X15 1 0.8X25 1 0.95X35 1 0.75X45 $ 1X57 1 X58 1 X59  }  equivalent �ow  
constraint for node 5

10.85X16 1 0.85X26 1 0.9X36 1 0.85X46 $ 1X67 1 X68 1 X69  }  equivalent �ow  
constraint for node 6

Notice that the constraint for node 5 requires that the amount being shipped from  
node 5 (given by X57 1 X58 1 X59) cannot exceed the net amount that would be available 
at node 5 (given by 0.9X15 1 0.8X25 1 0.95X35 1 0.75X45). Thus, here the yield factors 
come into play in determining the amount of product that would be available from the 
recycling processes. A similar interpretation applies to the constraint for node 6.

Finally, applying the balance-of-flow rule to nodes 7, 8, and 9 we obtain the 
constraints:

 10.95X57 1 0.90X67 $ 60 } flow constraint for node 7
     10.9X58 1 0.95X68 $ 40 } flow constraint for node 8
     10.9X59 1 0.95X69 $ 50 } flow constraint for node 9

The constraint for node 7 ensures that the final amount of product flowing to node 7  
10.95X57 1 0.90X67 2  is sufficient to meet the demand for pulp at this node. Again, 
similar interpretations apply to the constraints for nodes 8 and 9.

5.5.2 imPlemeNtiNg the moDel
The model for Coal Bank Hollow Recycling’s generalized network flow problem is 
summarized as:

MIN:           13X15 1 12X16 1 11X25 1 13X26 1 9X35 1 10X36 1 13X45 1 14X46 1 5X57  

1 6X58 1 8X59 1 6X67 1 8X68 1 7X69 

Subject to:

2X15 2 X16 $ 270   } �ow constraint for node 1
2X25 2 X26 $ 250   } �ow constraint for node 2
2X35 2 X36 $ 230   } �ow constraint for node 3
2X45 2 X46 $ 240   } �ow constraint for node 4
10.9X15 1 0.8X25 1 0.95X35 1 0.75X45 2 X57 2 X58 2 X59 $ 0 } �ow constraint for node 5
10.85X16 1 0.85X26 1 0.9X36 1 0.85X46 2 X67 2 X68 2 X69 $ 0 } �ow constraint for node 6
10.95X57 1 0.90X67 $ 60 } �ow constraint for node 7
10.9X58 1 0.95X68 $ 40   } �ow constraint for node 8
10.9X59 1 0.95X69 $ 50   } �ow constraint for node 9
Xij $ 0 for all i and j } nonnegativity conditions

In all the other network flow models we have seen up to this point, all the coefficients 
in all the constraints were implicitly always 11 or 21. This is not true in the preceding 
model. Thus, we must give special attention to the coefficients in the constraints as we 
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Generalized Network Flow Problems 209

implement this model in the spreadsheet. One approach to implementing this problem 
is shown in Figure 5.17 (and the file Fig5-17.xlsm that accompanies this book).

The spreadsheet in Figure 5.17 is very similar to those of the other network flow 
problems we have solved. Cells A6 through A19 represent the decision variables (arcs) 
for our model, and the corresponding unit cost associated with each variable is listed in 
the range from H6 through H19. The objective function is implemented in cell H21 as:

Formula for cell H21:           5SUMPRODUCT(H6:H19,A6:A19)

To implement the LHS formulas for our constraints, we can no longer simply sum 
the variables flowing into each node and subtract the variables flowing out of the nodes. 
Instead, we need first to multiply the variables flowing into a node by the appropriate 
yield factor. With the yield factors entered in column D, the yield-adjusted flow for 
each arc is computed in column E as follows:

Formula for cell E6:          5A6*D6
(Copy to cells E7 through E19.)

Now, to implement the LHS formulas for each node in cells L6 through L14, we 
will sum the yield-adjusted flows into each node and subtract the raw flow out of each 
node. This may be done as follows:

Formula for cell L6:          5SUMIF($F$6:$F$19,J6,$E$6:$E$19)2
(Copy to cells L7 through L14.)          SUMIF($B$6:$B$19,J6,$A$6:$A$19)

--

Key Cell Formulas

Cell Formula Copied to

C6 5VLOOKUP(B6,$J$6:$K$14,2) C7:C19 and G6:G19
E6 5D6*A6 E7:E19
H21 5SUMPRODUCT(H6:H19,A6:A19)

L7:L14L6 5SUMIF($F$6:$F$19,J6,$E$6:$E$19)
   2SUMIF($B$6:$B$19,J6,$A$6:$A$19)

Objective Cell

Constraint Cells

Variable Cells

FIGURE 5.17 Spreadsheet model for Coal Bank Hollow Recycling’s generalized network flow problem
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210 Chapter 5 Network Modeling

Notice that the first SUMIF( ) function in this formula sums the appropriate yield-
adjusted flows in column E while the second SUMIF( ) sums the appropriate raw 
flow values from column A. Thus, although this formula is very similar to the ones 
used in earlier models, there is a critical difference here that must be carefully noted 
and understood. The RHS values for these constraint cells are listed in cells M6 
through M14.

5.5.3 aNalyziNg the solutioN
The Solver parameters used to solve this problem are shown in Figure 5.18 and the 
optimal solution is shown in Figure 5.19.

In this solution, 43.4 tons of newspaper, 50 tons of mixed paper, and 30 tons of white 
office paper are assigned to recycling process 1 (i.e., X15 5 43.4, X25 5 50, X35 5 30).  
This  recycl ing process  then yields a  total  of  107.6  tons of  pulp ( i .e . , 
0.9 3 43.4 1 0.8 3 50 1 0.95 3 30 5 107.6) of which 63.2 tons are allocated to the 

Solver Settings:

Objective: H21 (Min)
Variable cells: A6:A19
Constraints:  
 L6:L14 .5 M6:M14
 A6:A19 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

FIGURE 5.18

Solver options and 
settings for the 
recycling problem

FIGURE 5.19 Optimal solution to Coal Bank Hollow Recycling’s generalized network flow problem
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production of newsprint pulp 1X57 5 63.2 2  and 44.4 tons are allocated to the produc-
tion of pulp for packaging paper 1X58 5 44.4 2 . This allows us to meet the demand 
for 60 tons of newsprint pulp 10.95 3 63.2 5 60 2  and 40 tons of packaging paper 
10.90 3 44.4 5 40 2 .

The remaining 26.6 tons of newspaper are combined with 35.4 tons of cardboard in 
recycling process 2 (i.e., X16 5 26.6, X46 5 35.4). This results in a yield of 52.6 tons of 
pulp (i.e., 0.85 3 26.6 1 0.85 3 35.4 5 52.6), which is all devoted 1via X69 5 52.6 2  to the 
production of 50 tons of print stock quality pulp 10.95 3 52.6 5 50 2 .

It is important for Nancy to note that this production plan calls for the use of all 
her supply of newspaper, mixed paper, and white office paper, but it leaves about 4.6 
tons of cardboard left over. Thus, she should be able to lower her total costs further by 
acquiring more newspaper, mixed paper, or white office paper. It would be wise for 
her to see if she could trade her surplus cardboard to another recycler for the material 
that she is running short on.

5.5.4 geNeralizeD Network flow Problems  
aND feasibility
In generalized network flow problems, the gains and/or losses associated with flows 
across each arc effectively increase and/or decrease the supply available in the network. 
For example, consider what happens in Figure 5.16 if the supply of newspaper is 
reduced to 55 tons. Although it appears that the total supply in the network (175 tons) 
still exceeds the total demand (150 tons), if we try to solve the modified problem, Solver 
will tell us that the problem has no feasible solution. (You may verify this on your own.) 
So we are not able to satisfy all of the demand due to the loss of material that occurs in 
the production process.

The point being made here is that with generalized network flow problems, you 
cannot always tell before solving the problem if the total supply is adequate to meet 
the total demand. As a result, you cannot always know which balance-of-flow rule to 
apply. When the issue is unclear, it is safest (see question 3 at the end of this chapter 
for more on this issue) first to assume that all the demand can be met and (according 
to the balance-of-flow rule) use constraints of the form: Inflow 2 Outflow $ Supply
or Demand. If the resulting problem is infeasible (and there are no errors in the 
model!), then we know all the demand cannot be satisfied and we should (according 
to the balance-of-flow rule) use constraints of the form: Inflow 2 Outflow # Supply or 
Demand. In this case, the solution will identify the least costly way of distributing the 
available supply.

As an example of this approach, Figures 5.20 and 5.21 show, respectively, the Solver 
parameters and optimal solution for this revised recycling problem with 55 tons 
of newspaper. Note that this solution uses all of the available supply of each of the 
recycling materials. Although the solution satisfies all the demand for newsprint pulp 
and packaging paper pulp, it falls almost 15 tons short of the total demand for print 
stock pulp. The recycling company would need to consult with its customer about 
whether this shortage should be subcontracted or backlogged.

When the total supply cannot meet the total demand, another possible managerial 
objective is to meet as much of the demand as possible at minimum cost. This is done 
easily by adding an artificial supply node to the network with an arbitrarily large 
amount of supply (so that total supply . total demand) and connecting it directly to 
each of the demand nodes with an arbitrarily large cost on flows over those arcs. Flows 
over the artificial arcs will be minimized because they incur a large cost penalty. This, 
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212 Chapter 5 Network Modeling

in turn, causes as much of the demand as possible to be met by the real (non-artificial) 
supply nodes in the network.

As an example of this approach, Figures 5.22 and 5.23 (and the file Fig5-23.xlsm 
that accompanies this book) show, respectively, the Solver parameters and optimal 

Solver Settings:

Objective: H21 (Min)
Variable cells: A6:A19
Constraints:  
 L6:L14 ,5 M6:M14
 A6:A19 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

FIGURE 5.20

Solver parameters 
for modified  
recycling problem

FIGURE 5.21 Optimal solution to the modi�ed recycling problem

Solver Settings:

Objective: H26 (Min)
Variable cells: A6:A22
Constraints:  
 L6:L15 .5 M6:M15
 A6:A22 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

FIGURE 5.22

Solver settings  
and options for the 
modified recycling 
problem with an 
artificial supply 
node
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Generalized Network Flow Problems 213

solution for this revised recycling problem with 55 tons of newspaper and an 
artificial supply node. Note an artificial node (node 10) was added to this problem 
with an arbitrarily large amount of supply. Additionally, three new arcs were added 
to connect this new supply node to nodes 7, 8, and 9 which represent, respectively, 
the demand nodes for newspaper pulp, packaging paper pulp, and print stock 
pulp. Thus, any demand that cannot be met by the flow of real materials can now 
be met (in a virtual sense) by the artificial supply. Arbitrarily large costs of $999 are 
assigned to flows on these artificial arcs in cells H20 through H22. The total cost to 
be minimized in cell H26 is made up of the real cost of materials flowing through 
the network (cell H24) and the cost of using the artificial supply (cell H25). Note that 
the optimal solution shown in Figure 5.23 has a real cost of $3,159 and falls almost 
4 tons short of meeting the total demand for packaging paper pulp. This solution 
meets as much of the total demand as possible in the least costly manner and might 
be preferred by management (and the company’s customer) over the solution shown 
in Figure 5.21.

H26

Copied to

Key Cell Formulas

Cell Formula

C6 5VLOOKUP(B6,$J$6:$K$15,2) C7:C22 and G6:G22

E6 5D6*A6 E7:E22

L6 5SUMIF($F$6:$F$22,J6,$E$6:$E$22)2SUMIF($B$6:$B$22,J6,$A$6:$A$22) L7:L15

H24 5SUMPRODUCT(H6:H19,A6:A19) --

--

--

H25 5SUMPRODUCT(H20:H22,A20:A22)

5H241H25

FIGURE 5.23 Spreadsheet model and optimal solution to the modified recycling problem with an artificial supply node
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214 Chapter 5 Network Modeling

5.6 Maximal Flow Problems
The maximal flow problem (or max flow problem) is a type of network flow problem 
in which the goal is to determine the maximum amount of flow that can occur in the 
network. In a maximal flow problem, the amount of flow that can occur over each arc is 
limited by some capacity restriction. This type of network might be used to model the 
flow of oil in a pipeline (in which the amount of oil that can flow through a pipe in a 
unit of time is limited by the diameter of the pipe). Traffic engineers also use this type 
of network to determine the maximum number of cars that can travel through a collec-
tion of streets with different capacities imposed by the number of lanes in the streets 
and speed limits. The following example illustrates a max flow problem.

5.6.1 aN examPle of a maximal flow Problem

The Northwest Petroleum Company operates an oil field and refinery in Alaska. 
The crude obtained from the oil field is pumped through the network of pumping 
substations shown in Figure 5.24 to the company’s refinery located 500 miles 
from the oil field. The amount of oil that can flow through each of the pipelines, 
represented by the arcs in the network, varies due to differing pipe diameters. 
The numbers next to the arcs in the network indicate the maximum amount of oil 

i m p o r t a n t  m o d e l i n g  P o i n t
For generalized network flow problems, the gains and/or losses associated with 
flows across each arc effectively increase and/or decrease the supply available in 
the network. As a result, it is sometimes difficult to tell in advance whether the 
total supply is actually adequate to meet the total demand in a generalized net-
work flow problem. When in doubt, it is best to assume the total supply is capable 
of satisfying the total demand and use Solver to prove (or refute) this assumption.

Pumping
Station 1

Pumping
Station 3

Pumping
Station 2

Pumping
Station 4

2

1

6

3

2

2
4

5

4

6

3 5

4

6

Oil Field Re�nery

FIGURE 5.24

Network  
representation of 
Northwest  
Petroleum’s oil 
refinery operation
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Maximal Flow Problems 215

that can flow through the various pipelines (measured in thousands of barrels per 
hour). The company wants to determine the maximum number of barrels per hour 
that can flow from the oil field to the refinery.

The max flow problem appears to be very different from the network flow models 
described earlier because it does not include specific supplies or demands for the nodes. 
However, you can solve the max flow problem in the same way as a transshipment 
problem if you add a return arc from the ending node to the starting node, assign a 
demand of 0 to all the nodes in the network, and attempt to maximize the flow over the 
return arc. Figure 5.25 shows these modifications to the problem.

10 10

1010

10 10

Pumping
Station 1

Pumping
Station 3

Pumping
Station 2

Pumping
Station 4

2

1

6

3

2

2
4

5

4

6

3 5

4

6

Oil Field Re�nery

FIGURE 5.25

Network structure 
of Northwest  
Petroleum’s max 
flow problem

To understand the network in Figure 5.25, suppose that k units are shipped from 
node 6 to node 1 (where k represents some integer). Because node 6 has a supply of 0, 
it can send k units to node 1 only if these units can be returned through the network 
to node 6 (to balance the flow at node 6). The capacities on the arcs limit how many 
units can be returned to node 6. Therefore, the maximum flow through the network 
corresponds to the largest number of units that can be shipped from node 6 to node 
1 and then returned through the network to node 6 (to balance the flow at this node). 
We can solve an LP model to determine the maximal flow by maximizing the flow 
from node 6 to node 1, given appropriate upper bounds on each arc and the usual 
balance-of-flow constraints. This model is represented as:

MAX: X61

Subject to: 1X61 2 X12 2 X13 5 0
1X12 2 X24 2 X25 5 0
1X13 2 X34 2 X35 5 0
1X24 1 X34 2 X46 5 0
1X25 1 X35 2 X56 5 0
1X46 1 X56 2 X61 5 0
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216 Chapter 5 Network Modeling

with the following bounds on the decision variables:

0 # X12 # 6     0 # X25 # 2     0 # X46 # 6
0 # X13 # 4     0 # X34 # 2     0 # X56 # 4
0 # X24 # 3     0 # X35 # 5     0 # X61 # `

5.6.2 the sPreaDsheet moDel aND solutioN
This model is implemented in the spreadsheet shown in Figure 5.26 (and in the file 
Fig5-26.xlsm that accompanies this book). This spreadsheet model differs from the earlier 
network models in a few minor, but important, ways. First, column G in Figure 5.26 
represents the upper bounds for each arc. Second, the objective function is represented by 
cell B16, which contains the formula:

Formula in cell B16:      5B14

Cell B14 represents the flow from node 6 to node 1 (or X61). This cell cor responds to 
the variable we want to maximize in the objective function of the LP model. The Solver 

Key Cell Formulas

Cell Formula Copied to

Variable Cells

Constraint Cells

Objective Cell

B16 5B14 --

D6 5VLOOKUP(C6,$I$6:$J$11,2) D7:D14 and F6:F14

K6 5SUMIF($E$6:$E$14,I6,$B$6:$B$14)2SUMIF($C$6:$C$14,I6,$B$6:$B$14) K7:K11

FIGURE 5.26 Spreadsheet model and solution to Northwest Petroleum’s max flow problem
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Maximal Flow Problems 217

parameters and options shown in Figure 5.27 are used to obtain the optimal solution 
shown in Figure 5.26.

Because the arcs leading to node 6 (X46 and X56) have a total capacity for 10 units of 
flow, it might be surprising to learn that only 9 units can flow through the network. 
However, the optimal solution shown in Figure 5.26 indicates that the maximal flow 
through the network is just 9 units.

The optimal flows identified in Figure 5.26 for each arc are shown in the boxes next 
to the capacities for each arc in Figure 5.28. In Figure 5.28, the arc from node 5 to node 6 
is at its full capacity of 4 units, whereas the arc from node 4 to node 6 is 1 unit below its 
full capacity of 6 units. Although the arc from node 4 to node 6 can carry 1 additional 
unit of flow, it is prevented from doing so because all the arcs flowing to node 4 (X24

and X34) are at full capacity.

Solver Settings:

Objective: B16 (Max)
Variable cells: B6:B14
Constraints:  
 B6:B14 ,5 G6:G14
 K6:K11 5 L6:L11
 B6:B14 .5 0

Solver Options:
 Standard LP/Quadratic Engine (Simplex LP)

FIGURE 5.27

Solver settings and 
options for  
Northwest  
Petroleum’s max 
flow problem
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FIGURE 5.28

Network  
representation of  
the solution to 
Northwest  
Petroleum’s max 
flow problem

A graph like Figure 5.28, which summarizes the optimal flows in a max flow 
problem, is helpful in identifying where increases in flow capacity would be most 
effective. For example, from this graph, we can see that even though X24 and X34 are 
both at full capacity, increasing their capacity will not necessarily increase the flow 
through the network. Increasing the capacity of X24 would allow for an increased 
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218 Chapter 5 Network Modeling

flow through the network because an additional unit could then flow from node 1 to 
node 2 to node 4 to node 6. However, increasing the capacity of X34 would not allow 
for an increase in the total flow because the arc from node 1 to node 3 is already at 
full capacity.

5.7 Special Modeling Considerations
A number of special conditions can arise in network flow problems that require a bit of 
creativity to model accurately. For example, it is easy to impose minimum or maximum 
flow restrictions on individual arcs in the networks by placing appropriate lower and 
upper bounds on the corresponding decision variables. However, in some network 
flow problems, minimum or maximum flow requirements may apply to the total flow 
emanating from a given node. For example, consider the network flow problem shown 
in Figure 5.29.

2 4

3

2100

12100

10

10

$4

$4

$3

$5

$3

$5 $6

$5
5

150

175

6

FIGURE 5.29

Example network 
flow problem

Now suppose that the total flow into node 3 must be at least 50 and the total flow 
into node 4 must be at least 60. We could easily enforce these conditions with the 
following constraints:

X13 1 X23 $ 50
X14 1 X24 $ 60

Unfortunately, these constraints do not conform to the balance-of-flow rule and 
would require us to impose side constraints on the model. An alternative approach to 
modeling this problem is shown in Figure 5.30.

Two additional nodes and arcs were inserted in Figure 5.30. Note that the arc from 
node 30 to node 3 has a lower bound (L.B.) of 50. This will ensure that at least 50 units 
flow into node 3. Node 3 must then distribute this flow to nodes 5 and 6. Similarly, the 
arc connecting node 40 to node 4 ensures that at least 60 units will flow into node 4. The 
additional nodes and arcs added to Figure 5.30 are sometimes referred to as dummy/
artificial nodes and dummy/artificial arcs.

As another example, consider the network in the upper portion of Figure 5.31 in 
which the flow between two nodes can occur at two different costs. One arc has a cost 
of $6 per unit of flow and an upper bound (U.B. in the figure) of 35. The other arc has 
a cost of $8 per unit of flow with no upper bound on the amount of flow allowed. Note 
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Special Modeling Considerations 219

that the minimum cost solution is to send 35 units of flow from node 1 to node 2 across 
the $6 arc and 15 units from node 1 to node 2 across the $8 arc.

To model this problem mathematically, we would like to have two arcs called X12

because both arcs go from node 1 to node 2. However, if both arcs are called X12, there 
is no way to distinguish one from the other! A solution to this dilemma is shown in the 
lower portion of Figure 5.31 in which we inserted a dummy node and a dummy arc. 
Thus, there are now two distinct arcs flowing into node 2: X12 and X10,2. Flow from node 
1 to node 2 across the $8 arc now must first go through node 10.

As a final example, note that upper bounds (or capacity restrictions) on the arcs 
in a network flow may effectively limit the amount of supply that can be sent through 
the network to meet the demand. As a result, in a network flow problem with flow 
restrictions (upper bounds) on the arcs, it is sometimes difficult to tell in advance 
whether the total demand can be met—even if the total supply available exceeds the 
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FIGURE 5.30

Revised network 
flow problem with 
lower bounds on 
the total flow into 
nodes 3 and 4
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FIGURE 5.31

Alternative 
networks allowing 
two different types 
of flow between 
two nodes
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220 Chapter 5 Network Modeling

total demand. This again creates a potential problem in knowing which balance-of-
flow rule to use. Consider the example in Figure 5.32.

The upper portion of Figure 5.32 shows a network with a total supply of 200 and 
total demand of 155. Because the total supply appears to exceed the total demand, we 
are inclined to apply the balance-of-flow rule that would generate constraints of the 
form: Inflow 2 Outflow $ Supply or Demand. This balance of flow rule requires the 
total inflow to nodes 3 and 4 to be greater than or equal to their demands of 75 and 80, 
respectively. However, the upper bounds on the arcs leading into node 3 limit the total 
flow into this node to 70 units. Similarly, the total flow into node 4 is limited to 70. As 
a result, there is no feasible solution to the problem. In this case, we cannot resolve the 
infeasibility by reversing the constraints to be of the form: Inflow 2 Outflow # Supply or 
Demand. Although this allows for less than the total amount demanded to be sent to nodes 
3 and 4, it now requires all the supply to be sent out of nodes 1 and 2. Clearly, some of the 
200 units of supply available from nodes 1 and 2 will have nowhere to go if the total flow 
into nodes 3 and 4 cannot exceed 140 units (as required by the upper bounds on the arcs).

A solution to this predicament is shown in the bottom half of Figure 5.32. Here, we 
added a dummy demand node (node 0) that is connected directly to nodes 1 and 2 with 
arcs that impose very large costs on flows to the dummy node. Note that the demand 
at this dummy node is equal to the total supply in the network. Now, the total demand 
exceeds the total supply so the balance-of-flow rule mandates we use constraints of the 
form: Inflow 2 Outflow # Supply or Demand. Again, this allows for less than the total 
amount demanded to be sent to nodes 0, 3, and 4 but requires all the supply to be sent out 
of nodes 1 and 2. Due to the large costs associated with flows from nodes 1 and 2 to the 
dummy demand node, Solver will ensure that as much of the supply as possible is first sent 
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Example of using a  
dummy demand 
node
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Minimal Spanning Tree Problems 221

to nodes 3 and 4. Any remaining supply at nodes 1 and 2 would then be sent to the dummy 
node. Of course, flows to the dummy node actually represent excess supply or inventory at 
nodes 1 and 2 that would not actually be shipped anywhere or incur any costs. But using a 
dummy node in this manner allows us to model and solve the problem accurately.

Dummy nodes and arcs can be helpful in modeling a variety of situations that naturally 
occur in network problems. The techniques illustrated here are “tricks of the trade” in 
network modeling and may prove useful in some of the problems at the end of this chapter.

5.8 Minimal Spanning Tree Problems
Another type of network problem is known as the minimal spanning tree problem. 
This type of problem cannot be solved as an LP problem, but is solved easily using a 
simple manual algorithm.

For a network with n nodes, a spanning tree is a set of n 2 1 arcs that connects all the 
nodes and contains no loops. A minimum spanning tree problem involves determining 
the set of arcs that connects all the nodes in a network while minimizing the total length 
(or cost) of the selected arcs. Consider the following example.

Jon Fleming is responsible for setting up a local area network (LAN) in the design 
engineering department of Windstar Aerospace Company. A LAN consists of a 
number of individual computers connected to a centralized computer or file server. 
Each computer in the LAN can access information from the file server and commu-
nicate with the other computers in the LAN.

Installing a LAN involves connecting all the computers together with commu-
nications cables. Not every computer has to be connected directly to the file server, 
but there must be some link between each computer in the network. Figure 5.33 
summarizes all the possible connections that Jon could make. Each node in this fig-
ure represents one of the computers to be included in the LAN. Each line connect-
ing the nodes represents a possible connection between pairs of computers. The 
dollar amount on each line represents the cost of making the connection.
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FIGURE 5.33

Network  
representation of 
Windstar  
Aerospace’s  
minimal spanning 
tree problem
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222 Chapter 5 Network Modeling

The arcs in Figure 5.33 have no specific directional orientation, indicating that 
information can move in either direction across the arcs. Also note that the communication 
links represented by the arcs do not exist yet. Jon’s challenge is to determine which links 
to establish. Because the network involves n 5 6 nodes, a spanning tree for this problem 
consists of n 2 1 5 5 arcs that results in a path existing between any pair of nodes. The 
objective is to find the minimal (least costly) spanning tree for this problem.

5.8.1 aN algorithm for the miNimal  
sPaNNiNg tree Problem
You can apply a simple algorithm to solve minimal spanning tree problems. The steps 
to this algorithm are:

1. Select any node. Call this the current subnetwork.
2. Add to the current subnetwork the cheapest arc that connects any node within the 

current subnetwork to any node not in the current subnetwork. (Ties for the cheap-
est arc can be broken arbitrarily.) Call this the current subnetwork.

3. If all the nodes are in the subnetwork, stop; this is the optimal solution. Otherwise, 
return to step 2.

5.8.2 solViNg the examPle Problem
You can program this algorithm easily or, for simple problems, execute it manually. 
The following steps illustrate how to execute the algorithm manually for the example 
problem shown in Figure 5.33.

Step 1. If we select node 1 in Figure 5.33, then node 1 is the current subnetwork.
Step 2. The cheapest arc connecting the current subnetwork to a node not in the 

current subnetwork is the $80 arc connecting nodes 1 and 5. This arc and 
node 5 are added to the current subnetwork.

Step 3. Four nodes (nodes 2, 3, 4, and 6) remain unconnected—therefore, return to 
step 2.

Step 2. The cheapest arc connecting the current subnetwork to a node not in the 
current subnetwork is the $50 arc connecting nodes 5 and 6. This arc and 
node 6 are added to the current subnetwork.

Step 3. Three nodes (nodes 2, 3, and 4) remain unconnected—therefore, return to 
step 2.

Step 2. The cheapest arc connecting the current subnetwork to a node not in the 
current subnetwork is the $65 arc connecting nodes 6 and 3. This arc and 
node 3 are added to the current subnetwork.

Step 3. Two nodes (nodes 2 and 4) remain unconnected—therefore, return to step 2.
Step 2. The cheapest arc connecting the current subnetwork to a node not in the 

current subnetwork is the $40 arc connecting nodes 3 and 2. This arc and 
node 2 are added to the current subnetwork.

Step 3. One node (node 4) remains unconnected—therefore, return to step 2.
Step 2. The cheapest arc connecting the current subnetwork to a node not in the 

current subnetwork is the $75 arc connecting nodes 5 and 4. This arc and 
node 4 are added to the current subnetwork.

Step 3. All the nodes are now connected. Stop; the current subnetwork is optimal.
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Figure 5.34 shows the optimal (minimal) spanning tree generated by this algorithm. 
The algorithm described here produces the optimal (minimal) spanning tree regardless 
of which node is selected initially in step 1. You can verify this by solving the example 
problem again starting with a different node in step 1.

5.9 Summary
This chapter presented several business problems modeled as network flow problems, 
including transshipment problems, shortest path problems, maximal flow problems, 
transportation/assignment problems, and generalized network flow models. It also 
introduced the minimal spanning tree problem and presented a simple algorithm for 
solving this type of problem manually.

Although special algorithms exist for solving network flow problems, you can also 
formulate and solve them as LP problems. The constraints in an LP formulation of a 
network flow problem have a special structure that enables you to implement and solve 
these models easily in a spreadsheet. Although there might be more efficient ways of 
solving network flow problems, the methods discussed in this chapter are often the 
most practical. For extremely complex network flow problems, you might need to use 
a specialized algorithm. Unfortunately, you are unlikely to find this type of software 
at your local software store. However, various network optimization packages can be 
found in the technical/scientific directories on the Internet.
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the worlD of busiNess aNalytiCs

Yellow Freight System Boosts Profits and Quality with 
Network Optimization

One of the largest motor carriers in the United States, Yellow Freight System, 
Inc. of Overland Park, Kansas, uses network modeling and optimization to assist 
management in load planning, routing empty trucks, routing trailers, dropping or 
adding direct service routes, and strategic planning of terminal size and location. 
The system, called SYSNET, operates on a network of Sun workstations optimizing 
over a million network flow variables. The company also uses a tactical planning 
room equipped with graphical display tools that allow planning meetings to be 
conducted interactively with the system.

The company competes in the less–than–truckload (LTL) segment of the trucking 
market. That is, they contract for shipments of any size, regardless of whether the 
shipment fills the trailer. To operate efficiently, Yellow Freight must consolidate and 
transfer shipments at 23 break–bulk terminals located throughout the United States. 
At these terminals, shipments might be reloaded into different trailers depending 
on the final destination. Each break–bulk terminal serves several end–of–line 
terminals, in a hub–and–spoke network. Normally, shipments are sent by truck to 
the break–bulk dedicated to the origination point. Local managers occasionally try 
to save costs by loading direct, which means bypassing a break–bulk and sending 
a truckload of consolidated shipments directly to the final destination. Before 
SYSNET, these decisions were made in the field without accurate information on 
how they would affect costs and reliability in the entire system.

Since its implementation in 1989, SYSNET has scored high with upper 
management. Often, the first response to a new proposal is, “Has it been run 
through SYSNET?” The benefits attributed to the new system include:

•	 an increase of 11.6% in freight loaded directly, saving $4.7 million annually
•	 better routing of trailers, saving $1 million annually
•	 savings of $1.42 million annually by increasing the average number of pounds 

loaded per trailer
•	 reduction in claims for damaged merchandise
•	 a 27% reduction in the number of late deliveries
•	 tactical planning projects with SYSNET in 1990 that identified $10 million in 

annual savings

Equally important has been the effect on the management philosophy and culture 
at Yellow Freight. Management now has greater control over network operations; 
tradition, intuition, and “gut feel” have been replaced with formal analytical tools; 
and Yellow Freight is better able to act as a partner with customers in total quality 
management and just–in–time inventory systems.

Source: Braklow, John W., William W. Graham, Stephen M. Hassler, Ken E. Peck, and Warren 
B. Powell, “Interactive Optimization Improves Service and Performance for Yellow Freight 
System,” Interfaces, 22:1, January–February 1992, pp. 147–172.
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Questions and Problems
1. This chapter followed the convention of using negative numbers to represent the 

supply at a node and positive numbers to represent the demand at a node. Another 
convention is just the opposite—using positive numbers to represent supply and 
negative numbers to represent demand. How would the balance-of-flow rule presented 
in this chapter need to be changed to accommodate this alternate convention?

2. To use the balance-of-flow rule presented in this chapter, constraints for supply nodes 
must have negative RHS values. Some LP software packages cannot solve problems 
in which the constraints have negative RHS values. How could these constraints be 
modified to produce LP models that can be solved with such software packages?

3. Consider the revised Coal Bank Hollow recycling problem discussed in Section 
5.5.4 of this chapter. We said that it is safest to assume the supply in a generalized 
network flow problem is capable of meeting the demand (until Solver proves 
otherwise). 
a. Solve the problem in Figure 5.17 (and file Fig5-17.xlsm on your data disk) 

assuming 80 tons of newspaper is available and that the supply is not adequate 
to meet the demand. How much of each of the raw recycling materials is used? 
How much demand for each product is met? What is the cost of this solution?

b. Solve the problem again assuming that the supply is adequate to meet the 
demand. How much of each of the raw recycling materials is used? How much 
demand for each product is met? What is the cost of this solution?

c. Which one is better? Why?
d. Suppose there are 55 tons of newspaper available. Figure 5.21 shows the least 

cost solution for distributing the supply in this case. In that solution, the demand 
for newsprint pulp and packaging pulp is met, but we are almost 15 tons short 
on print stock pulp. How much can this shortage be reduced (without creating 
shortages of the other products) and how much extra would it cost to do so?

4. Consider the generalized transportation problem shown in Figure 5.35. How can 
this problem be transformed into an equivalent transportation problem? Draw the 
network for the equivalent problem.
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FIGURE 5.35

Graph of a 
generalized 
network flow 
problem

47412_ch05_ptg01_189-246.indd   225 11/08/16   10:24 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



226 Chapter 5 Network Modeling

5. Draw the network representation of the following network flow problem.

MIN:                17X12 1 6X14 1 3X23 1 4X24 1 5X32 1 9X43 1 8X52 1 5X54

Subject to:       2X12 2 X14 5 25

 1X12 1 X52 1 X32 2 X23 2 X24 5 14

 2X32 1 X23 1 X43 5 18

 1X14 1 X24 1 X54 2 X43 5 10

 2X52 2 X54 5 27

 Xij $ 0 for all i and j

 6. Draw the network representation of the following network flow problem. What 
kind of network flow problem is this?

 MIN:                12X13 1 6X14 1 5X15 1 4X23 1 3X24 1 7X25

Subject to:        2X13 2 X14 2 X15 5 28

2X23 2 X24 2 X25 5 27

1X13 1 X23 5 15

1X14 1 X24 5 15

1X15 1 X25 5 15

Xij $ 0 for all i and j

 7.  Refer to the equipment replacement problem discussed in Section 5.3 of this chapter. 
In addition to the lease costs described for the problem, suppose that it costs Compu-
Train $2,000 extra in labor costs whenever the company replaces their existing 
computers with new ones. What effect does this have on the formulation and solution 
of the problem? Which of the two leasing contracts is optimal in this case?

 8. Suppose the x’s in the following table indicate locations where fire sprinkler heads 
need to be installed in an existing building. The S indicates the location of the 
water source to supply these sprinklers. Assume pipe can only be run vertically or 
horizontally (not diagonally) between the water source and the sprinkler heads. 

  1 2 3 4 5 6 7

1 x

2 x x x x x x

3 x x x x x

4 x x x x x

5 x x x x x

6

7 x

8       s      x

a. Create a spanning tree showing how water can be brought to all the sprinkler 
heads using a minimal amount of pipe.

b. Suppose that it takes 10 feet of pipe to connect each cell in the table to each 
adjacent cell. How much pipe does your solution require?
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9. Acme Manufacturing makes a variety of household appliances at a single 
manufacturing facility. The expected demand for one of these appliances during the 
next 4 months is shown in the following table along with the expected production 
costs and the expected capacity for producing these items.

Month

1 2 3 4

Demand 420 580 310 540
Production Cost $49.00 $45.00 $46.00 $47.00
Production Capacity 500 520 450 550

Acme estimates it costs $1.50 per month for each unit of this appliance carried in inventory 
at the end of each month. Currently, Acme has 120 units in inventory on hand for this 
product. To maintain a level workforce, the company wants to produce at least 400 units 
per month. They also want to maintain a safety stock of at least 50 units per month. Acme 
wants to determine how many of each appliance to manufacture  during each of the next 
4 months to meet the expected demand at the lowest possible total cost.

a. Draw a network flow model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?
d. How much money could Acme save if the company were willing to drop the 

restriction about producing at least 400 units per month?
 10. As rush coordinator for the Alpha Beta Chi (ABC) sorority, Kim Grant asked each 

pledge to identify five existing members of ABC whom she would most like to have 
as a big sister. Kim then asks the pledges to rank order these potential big sisters 
from 5 down to 1, where 5 represents the person they most want as a big sister, 
4 represents their next choice, and so on. These rankings are summarized in the 
following table:

Big Sisters

Pledges 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 5 3 1 2 4
2 5 2 1 4 3
3 2 3 4 5 1
4 5 4 1 2 3
5 3 5 2 4 1

After much consideration, Kim decides that this problem is similar to some of the 
problems she encountered in a business analytics class she took during her sophomore 
year. She knows that every pledge must be assigned a big sister, and each potential 
big sister can be assigned no more than one pledge. Ideally, Kim wants to assign each 
pledge to the big sister to whom she gave a ranking of 5. The sum of the rankings for 
such an assignment is 25 because each of the 5 pledges would be assigned to the big 
sister they ranked as number 5. But in the previous table, that would involve assigning 
pledges 2 and 4 to the same big sister, which is not allowable. Kim figures that the next 
best strategy is to determine the assignment that maximizes the sum of the rankings.

a. Create a spreadsheet model for Kim’s problem and solve it. 
b. Which pledges should be assigned to which big sisters?
c. Can you think of another objective that Kim might use to solve her problem?
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228 Chapter 5 Network Modeling

11. Sunrise Swimwear manufactures ladies swimwear in January through June of each 
year that is sold through retail outlets in March through August. The following 
table summarizes the monthly production capacity and retail demand (in 1,000s), 
and production and inventory carrying costs (per 1,000). 

Month Capacity Demand

Production Cost Carrying Cost per 1,000

Per 1,000 First Month Other Months

January 16 — $7,100 $110 $55
February 18 — $7,700 $110 $55
March 20 14 $7,600 $120 $55
April 28 20 $7,800 $135 $55
May 29 26 $7,900 $150 $55
June 36 33 $7,400 $155 $55
July — 28 — — —
August — 10 — — —

For instance, 1,000 units of swimwear made in January to meet demand in April would 
cost $7,100 in production cost plus $220 in carrying costs during February, March, and 
April ($110 for carrying into February, $55 for carrying into March, and $55 for carrying 
into April).

a. Draw a network flow representation of this problem.
b. Implement a spreadsheet model for this problem.
c. What is the optimal solution?

 12. Jacobs Manufacturing produces a popular custom accessory for pick-up trucks at 
plants in Huntington, West Virginia and Bakersfield, California, and ships them to 
distributors in Dallas, Texas; Chicago, Illinois; Denver, Colorado; and Atlanta, Georgia. 
The plants in Huntington and Bakersfield have, respectively, the capacity to produce 
3,000 and 4,000 units per month. For the month of October, costs of shipping a carton 
of 10 units from each plant to each distributor are summarized in the following table:

Shipping Cost per Container

Dallas Chicago Denver Atlanta

Huntington $19 $15 $14 $12
Bakersfield $16 $18 $11 $13

Jacobs has been notified that these shipping rates will each increase by $1.50 on 
November 1. Each distributor has ordered 1,500 units of Jacobs’ product for October 
and 2,000 units for November. In any month, Jacobs can send each distributor up to 
500 units more than they have ordered if Jacobs provides a $2 per unit discount on 
the excess (which the distributor must hold in inventory from 1 month to the next). In 
October, the per unit costs of production in Huntington and Bakersfield are $12 and 
$16, respectively. In November, Jacobs expects the cost of production at both plants to 
be $14 per unit. The company wants to develop a production and distribution plan 
for the months of October and November that would allow the company to meet the 
expected demand from each distributor at the minimum cost.

a. Draw a network flow model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?
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13. A construction company wants to determine the optimal replacement policy for the 
earth mover it owns. The company has a policy of not keeping an earth mover for 
more than 5 years, and has estimated the annual operating costs and trade-in values 
for earth movers during each of the 5 years they might be kept as shown in the 
following table:

Age in Years

0–1 1–2 2–3 3–4 4–5

Operating Cost $8,000 $9,100 $10,700 $9,200 $11,000
Trade-in Value $14,000 $9,000 $6,000 $3,500 $2,000

Assume that new earth movers currently cost $25,000 and are increasing in cost by 4.5% 
per year. The company wants to determine when it should plan on replacing its current, 
2-year-old earth mover . Use a 5-year planning horizon.

a. Draw the network representation of this problem.
b. Implement your model in a spreadsheet and solve it. What is the optimal 

solution?
c. What other aspects of this problem might an analyst want to consider?

 14. The Ortega Food Company needs to ship 100 cases of hot tamales from its 
warehouse in San Diego to a distributor in New York City at minimum cost. The 
costs associated with shipping 100 cases between various cities are listed in the 
following table:

From

To

Los Angeles Denver St. Louis Memphis Chicago New York

San Diego 5 13 — 45 — 105
Los Angeles — 27 19 50 — 95
Denver — — 14 30 32 —
St. Louis — 14 — 35 24 —
Memphis — — 35 — 18 25
Chicago — — 24 18 — 17

a. Draw the network representation of this problem.
b.  Write out the LP formulation of this problem.
c. Solve the problem using Solver. Interpret your solution.

 15.  A cotton grower in south Georgia produces cotton on farms in Statesboro and 
Brooklet, ships it to cotton gins in Claxton and Millen where it is processed, and 
then sends it to distribution centers in Savannah, Perry, and Valdosta where it 
is sold to customers for $60 per ton. Any surplus cotton is sold to a government 
warehouse in Hinesville for $25 per ton. The cost of growing and harvesting a 
ton of cotton at the farms in Statesboro and Brooklet is $20 and $22, respectively. 
There are presently 700 and 500 tons of cotton available in Statesboro and Brooklet, 
respectively. The cost of transporting the cotton from the farms to the gins and the 
government warehouse is shown in the following table:

Claxton Millen Hinesville

Statesboro $4.00 $3.00 $4.50
Brooklet $3.50 $3.00 $3.50
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230 Chapter 5 Network Modeling

The gin in Claxton has the capacity to process 700 tons of cotton at a cost of $10 per ton. 
The gin in Millen can process 600 tons at a cost of $11 per ton. Each gin must use at least 
one half of its available capacity. The cost of shipping a ton of cotton from each gin to 
each distribution center is summarized in the following table:

 Savannah Perry Valdosta

Claxton $10 $16 $15
Millen $12 $18 $17

  Assume the demand for cotton in Savannah, Perry, and Valdosta is 400, 300, and 450 
tons, respectively.
a. Draw a network flow model to represent this problem.
b. Implement your model in Excel and solve it.
c. What is the optimal solution?

16. The blood bank wants to determine the least expensive way to transport available 
blood donations from Pittsburgh and Staunton to hospitals in Charleston, 
Roanoke, Richmond, Norfolk, and Suffolk. The supply and demand for donated 
blood is shown in Figure 5.36 along with the unit cost of shipping along each 
possible arc.
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a. Create a spreadsheet model for this problem.
b.  What is the optimal solution?
c.  Suppose that no more than 1,000 units of blood can be transported over any one 

arc. What is the optimal solution to this revised problem?
17. A furniture manufacturer has warehouses in cities represented by nodes 1, 2, and 3 

in Figure 5.37. The values on the arcs indicate the per unit shipping costs required to 
transport living room suites between the various cities. The supply of living room 
suites at each warehouse is indicated by the negative number next to nodes 1, 2, 
and 3. The demand for living room suites is  indicated by the positive number next 
to the remaining nodes.

FIGURE 5.36

Network flow 
model for the blood 
bank problem
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a. Identify the supply, demand, and transshipment nodes in this problem.
b. Use Solver to determine the least costly shipping plan for this problem.

18. The graph in Figure 5.38 represents various flows that can occur through a sewage 
treatment plant with the numbers on the arcs representing the maximum flow (in 
tons of sewage per hour) that can be accommodated. Formulate an LP model to 
determine the maximum tons of sewage per hour that can be processed by this plant.
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FIGURE 5.37 

Network flow 
model for 
the furniture 
manufacturing 
problem

FIGURE 5.38

Network flow 
model for the 
sewage treatment 
plant
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232 Chapter 5 Network Modeling

19. A company has three warehouses that supply four stores with a given product. Each 
warehouse has 30 units of the product. Stores 1, 2, 3, and 4 require 20, 25, 30, and 35 
units of the product, respectively. The per unit shipping costs from each warehouse 
to each store are given in the following table:

Warehouse

Store

1 2 3 4

1 5 4 6 5
2 3 6 4 4
3 4 3 3 2

a. Draw the network representation of this problem. What kind of problem is 
this?

b. Formulate an LP model to determine the least expensive shipping plan to fill the 
demands at the stores.

c. Solve the problem using Solver.
d. Suppose that shipments are not allowed between warehouse 1 and store 2 

or between warehouse 2 and store 3. What is the easiest way to modify the 
spreadsheet so that you can solve this modified problem? What is the optimal 
solution to the modified problem?

 20.  A used-car broker needs to transport his inventory of cars from locations 1 and 2 
in Figure 5.39 to used-car auctions being held at locations 4 and 5. The costs of 
transporting cars along each of the routes are indicated on the arcs. The trucks used 
to carry the cars can hold a maximum of 10 cars. Therefore, the maximum number 
of cars that can flow over any arc is 10.
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a. Formulate an LP model to determine the least costly method of distributing the 
cars from locations 1 and 2 so that 20 cars will be available for sale at location 4, 
and 10 cars will be available for sale at location 5.

b. Use Solver to find the optimal solution to this problem.
 21. An information systems consultant who lives in Dallas must spend the majority of 

the month of March onsite with a client in San Diego. Her travel schedule for the 
month is as follows:

FIGURE 5.39

Network flow 
model for the used 
car problem
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Leave Dallas Leave San Diego

Monday, March 2 Friday, March 6
Monday, March 9 Thursday, March 12
Tuesday, March 17 Friday, March 20
Monday, March 23 Wednesday, March 25

The usual round-trip ticket price between Dallas and San Diego is $750. However, the 
airline offers a 25% discount if the dates on a round-trip ticket cover less than 7 nights 
and include a weekend. A 35% discount is offered for round-trip tickets covering 10 or 
more nights, and a 45% discount is available for round-trip tickets covering 20 or more 
nights. The consultant can purchase 4 round-trip tickets in any manner that allows her 
to leave Dallas and San Diego on the days indicated. 

a. Draw a network flow model for this problem. 
b. Implement the problem in a spreadsheet and solve it.
c. What is the optimal solution? How much does this save for 4 full-cost round-trip 

tickets?
 22.  The Conch Oil Company needs to transport 30 million barrels of crude oil from a 

port in Doha, Qatar in the Persian Gulf to three refineries throughout Europe. The 
refineries are in Rotterdam, Netherlands; Toulon, France; and Palermo, Italy, and 
they require 6 million, 15 million, and 9 million barrels, respectively. The oil can be 
transported to the refineries in three different ways. First, oil may be shipped from 
Qatar to Rotterdam, Toulon, and Palermo on supertankers traveling around Africa 
at costs of $1.20, $1.40, and $1.35 per barrel, respectively. Conch is contractually 
obligated to send at least 25% of its oil via these supertankers. Alternatively, oil can 
be shipped from Doha to Suez, Egypt at a cost of $0.35 per barrel, then through the 
Suez Canal to Port Said at a cost of $0.20 per barrel, then from Port Said to Rotterdam, 
Toulon, and Palermo at per barrel costs of $0.27, $0.28, and $0.19, respectively. 
Finally, up to 15 million barrels of the oil shipped from Doha to Suez can then be sent 
via pipeline to Damietta, Egypt at $0.16 per barrel. From Damietta, it can shipped to 
Rotterdam, Toulon, and Palermo at costs of $0.25, $0.20, and $0.15, respectively.
a. Draw a network flow model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

 23. Omega Airlines has several nonstop flights between Atlanta and Los Angeles every 
day. The schedules of these flights are shown in the following table.

Flight
Departs  
Atlanta

Arrives  
in L.A. Flight

Departs  
L.A.

Arrive 
in Atlanta

1 6 a.m. 8 a.m. 1 5 a.m. 9 a.m.
2 8 a.m. 10 a.m. 2 6 a.m. 10 a.m.
3 10 a.m. Noon 3 9 a.m. 1 p.m.
4 Noon 2 p.m. 4 Noon 4 p.m.
5 4 p.m. 6 p.m. 5 2 p.m. 6 p.m.
6 6 p.m. 8 p.m. 6 5 p.m. 9 p.m.
7 7 p.m. 9 p.m. 7 7 p.m. 11 p.m.

Omega wants to determine the optimal way of assigning flight crews to these different 
flights. The company wants to ensure that the crews always return to the city from 
which they left each day. FAA regulations require at least 1 hour of rest for flight crews 
between flights. However, flight crews become irritated if they are forced to wait for 
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234 Chapter 5 Network Modeling

extremely long periods of time between flights, so Omega wants to find an assignment 
of flight schedules that minimizes these waiting periods.

a. Draw a network flow model for this problem. 
b. Implement the problem in a spreadsheet and solve it.
c. What is the optimal solution? What is the longest period of time a flight crew has 

to wait between flights according to your solution? 
d. Are there alternate optimal solutions to this problem? If so, do any alternate 

optimal solutions result in a smaller maximum waiting period between flights?
24. A residential moving company needs to move a family from city 1 to city 12 in 

Figure 5.40 where the numbers on the arcs represents the driving distance in miles 
between cities. 
a. Create a spreadsheet model for this problem.
b.  What is the optimal solution?
c.  Suppose the moving company gets paid by the mile and, as a result, wants to 

determine the longest path from city 1 to city 12. What is the optimal solution?
d.  Now suppose travel is permissible in either direction between cities 6 and 9. 

Describe the optimal solution to this problem.

FIGURE 5.40 

Network flow 
model for the 
moving company 
problem
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25. Joe Jones wants to establish a construction fund (or sinking fund) to pay for a new 
bowling alley he is having built. Construction of the bowling alley is expected to take 
6 months and cost $300,000. Joe’s contract with the construction company requires 
him to make payments of $50,000 at the end of the second and fourth months, and 
a final payment of $200,000 at the end of the sixth month when the bowling alley 
is completed. Joe has identified four investments that he can use to establish the 
construction fund; these investments are summarized in the following table:
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Investment Available in Month Months to Maturity Yield at Maturity

A 1, 2, 3, 4, 5, 6 1 1.2%
B 1, 3, 5 2 3.5%
C 1, 4 3 5.8%
D 1 6 11.0%

The table indicates that investment A will be available at the beginning of each of the 
next 6 months, and funds invested in this manner mature in 1 month with a yield of 
1.2%. Similarly, funds can be placed in investment C only at the beginning of months 1 
and/or 4, and they mature at the end of 3 months with a yield of 5.8%. Joe would like to 
determine an investment plan whereby the amount he deposits in month 1 will ensure 
there is enough money to meet the required payments for this project. Of course, he 
would also like to minimize the required deposit amount in month 1. 

a. Draw a network flow model for this problem.
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

 26.  Telephone calls for the YakLine, a discount long distance carrier, are routed through 
a variety of switching devices that interconnect various network hubs in different 
cities. The maximum number of calls that can be handled by each segment of their 
network is shown in the following table:

Network Segments Calls (in 1,000s)

Washington, DC to Chicago 800
Washington, DC to Kansas City 650
Washington, DC to Dallas 700
Chicago to Dallas 725
Chicago to Denver 700
Kansas City to Denver 750
Kansas City to Dallas 625
Denver to San Francisco 900
Dallas to San Francisco 725

YakLine wants to determine the maximum number of calls that can go from its East Coast 
operations hub in Washington, DC to its West Coast operations hub in San Francisco.

a. Draw a network flow model for this problem.
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

 27. Union Express has 60 tons of cargo that needs to be shipped from Boston to Dallas. 
The shipping capacity on each of the routes Union Express planes fly each night is 
shown in the following table:

Nightly Flight Segments Capacity (in tons)

Boston to Baltimore 30
Boston to Pittsburgh 25
Boston to Cincinnati 35
Baltimore to Atlanta 10
Baltimore to Cincinnati 5
Pittsburgh to Atlanta 15
Pittsburgh to Chicago 20
Cincinnati to Chicago 15
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236 Chapter 5 Network Modeling

Nightly Flight Segments Capacity (in tons)

Cincinnati to Memphis 5
Atlanta to Memphis 25
Atlanta to Dallas 10
Chicago to Memphis 20
Chicago to Dallas 15
Memphis to Dallas 30
Memphis to Chicago 15

Will Union Express be able to move all 60 tons from Boston to Dallas in one night?
a. Draw a network flow model for this problem.
b. Create a spreadsheet model for the problem and solve it.
c. What is the maximum flow for this network?

28. Alaskan Railroad is an independent, stand-alone railroad operation not connected to 
any other rail service in North America. As a result, rail shipments between Alaska 
and the rest of North America must be shipped by truck for thousands of miles or 
loaded onto ocean-going cargo vessels and transported by sea. Alaskan Railroad 
recently began talks with the nation of Canada about expanding its railroad lines 
to connect with the North American railway system. Figure 5.41 summarizes the 
various rail segments (and associated costs in millions of U.S. dollars) that could 
be built. The North American railroad system currently provides service to New 
Hazelton and Chetwynd. Alaskan Railroad would like to expand its railway so as 
to be able to reach at least one of these cities from both Skagway and Fairbanks. 
a. Implement a network flow model to determine the least expensive way to 

connect the cities of Skagway and Fairbanks to the North American rail system.
b. What is the optimal solution?
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Questions and Problems 237

29. E-mail messages sent over the Internet are broken up into electronic packets 
that may take a variety of different paths to reach their destination where the 
original message is reassembled. Suppose the nodes in the graph shown in 
Figure 5.42 represents a series of computer hubs on the Internet and the arcs 
represent connections between them. Suppose the values on the arcs represent 
the number of packets per minute (in 1,000,000s) that can be transmitted over 
each arc.
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a. Implement a network flow model to determine the maximum number of packets 
that can flow from node 1 to node 12 in 1 minute.

b. What is the maximum flow?
30. The Britts & Straggon company manufactures small engines at three different 

plants. From the plants, the engines are transported to two different warehouse 
facilities before being distributed to three wholesale distributors. The per-unit 
manufacturing cost at each plant is shown in the following table in addition to the 
minimum required and maximum available daily production capacities.

Plant Manufacturing Cost
Minimum  

Required Production
Maximum  

Production Capacity

1 $13 150 400
2 $15 150 300
3 $12 150 600

FIGURE 5.42

Network hubs and 
interconnections 
for the e-mail 
problem
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238 Chapter 5 Network Modeling

The unit cost of transporting engines from each plant to each warehouse is shown in 
the following table:

Plant Warehouse 1 Warehouse 2

1 $4 $5
2 $6 $4
3 $3 $5

The unit cost of shipping engines from each warehouse to each distributor is shown in 
the following table along with the daily demand for each distributor.

Warehouse Distributor 1 Distributor 2 Distributor 3

1 $6 $4 $3
2 $3 $5 $2
Demand 300 600 100

Each warehouse can process up to 500 engines per day.
a. Draw a network flow model to represent this problem.
b. Implement your model in Excel and solve it.
c. What is the optimal solution?

 31. A new airport being built will have three terminals and two baggage pickup areas. 
An automated baggage delivery system has been designed to transport the baggage 
from each terminal to the two baggage pickup areas. This system is depicted 
graphically in Figure 5.43, where nodes 1, 2, and 3 represent the terminals, and 
nodes 7 and 8 represent the baggage pickup areas. The maximum number of bags 
per minute that can be handled by each part of the system is indicated by the value 
on each arc in the network.
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a. Formulate an LP model to determine the maximum number of bags per minute 
that can be delivered by this system.

b.  Use Solver to find the optimal solution to this problem.
32. The U.S. Department of Transportation (DOT) is planning to build a new interstate 

to run from Detroit, Michigan, to Charleston, South Carolina. A number of different 
routes have been proposed and are summarized in Figure 5.44, where node 1 
represents Detroit and node 12 represents Charleston. The numbers on the arcs 
indicate the estimated construction costs of the various links (in millions of dollars). 
It is estimated that all of the routes will require approximately the same total driving 
time to make the trip from Detroit to Charleston. Thus, the DOT is interested in 
identifying the least costly alternative.
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a. Formulate an LP model to determine the least costly construction plan.
b. Use Solver to determine the optimal solution to this problem.

33. A building contractor is designing the ductwork for the heating and air conditioning 
system in a new, single-story medical building. Figure 5.45 summarizes the possible 
connections between the primary air handling unit (node 1) and the various air 
outlets to be placed in the building (nodes 2 through 9). The arcs in the network 
represent possible ductwork connections, and the values on the arcs represent the 
feet of ductwork required.

FIGURE 5.44

Possible routes 
for the interstate 
construction 
problem
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Starting at node 1, use the minimal spanning tree algorithm to determine how much 
ductwork should be installed to provide air access to each vent while requiring the 
least amount of ductwork.
34. The manager of catering services for the Roanoker Hotel has a problem. The banquet 

hall at the hotel is booked each evening during the coming week for groups who 
have reserved the following numbers of tables:

Day Monday Tuesday Wednesday Thursday Friday

Tables Reserved 400 300 250 400 350

The hotel has 500 tablecloths that can be used for these banquets. However, the 
tablecloths used at each banquet will have to be cleaned before they can be used 
again. A local cleaning service will pick up the soiled tablecloths each evening after 
the banquet and offers overnight cleaning for $2 per tablecloth, or 2-day service for $1 
per tablecloth (i.e., a tablecloth picked up Monday night can be ready Tuesday for $2 
or ready for use Wednesday for $1). There are no tablecloth losses and all tablecloths 
must be cleaned. Due to the cleaner’s capacity restrictions, the overnight service can 
be performed only on up to 250 tablecloths, and overnight service is not available on 
tablecloths picked up Friday night. All cloths used on Friday must be ready for use 
again by Monday. The hotel wants to determine the least costly plan for having its 
tablecloths cleaned.

a. Draw a network flow model for this problem. (Hint: Express the supplies and 
demands as minimum required and maximum allowable flows over selected 
arcs.)

b.  Create a spreadsheet model for this problem and solve it. What is the optimal 
solution?

FIGURE 5.45

Network 
representation 
of the ductwork 
problem
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Hamilton & Jacobs
Hamilton & Jacobs (H&J) is a global investment company, providing start-up capital 
to promising new ventures around the world. Due to the nature of its business, H&J 
holds funds in a variety of countries and converts between currencies as needs arise in 
different parts of the world. Several months ago, the company moved $16 million into 
Japanese yen (JPY) when one U.S. dollar (USD) was worth 75 yen. Since that time, the 
value of the dollar has fallen sharply, where it now requires almost 110 yen to purchase 
1 dollar.

Besides its holdings of yen, H&J also currently owns 6 million European EUROs and 
30 million Swiss Francs (CHF). H&J’s chief economic forecaster is predicting that all of 
the currencies it is presently holding will continue to gain strength against the dollar 
for the rest of the year. As a result, the company would like to convert all its surplus 
currency holdings back to U.S. dollars until the economic picture improves. 

The bank H&J uses for currency conversions charges different transaction fees for 
converting between various currencies. The following table summarizes the transaction 
fess (expressed as a percentage of the amount converted) for US dollars (USD), 
Australian dollars (AUD), British pounds (GBP), European Euros (EURO), Indian 
Rupees (INR), Japanese yen (JPY), Singapore dollars (SGD), and Swiss Francs (CHF). 

Transaction Fee Table

FROM\TO USD AUD GBP EUR INR JPY SGD CHF

USD — 0.10% 0.50% 0.40% 0.40% 0.40% 0.25% 0.50%
AUD 0.10% — 0.70% 0.50% 0.30% 0.30% 0.75% 0.75%
GBP 0.50% 0.70% — 0.70% 0.70% 0.40% 0.45% 0.50%
EUR 0.40% 0.50% 0.70% — 0.05% 0.10% 0.10% 0.10%
INR 0.40% 0.30% 0.70% 0.05% — 0.20% 0.10% 0.10%
JPY 0.40% 0.30% 0.40% 0.10% 0.20% — 0.05% 0.50%
SGD 0.25% 0.75% 0.45% 0.10% 0.10% 0.05% — 0.50%
CHF 0.50% 0.75% 0.50% 0.10% 0.10% 0.50% 0.50% —

Because it costs differing amounts to convert between various currencies, H&J 
determined that converting existing holdings directly into US dollars may not be the 
best strategy. Instead, it might be less expensive to convert existing holdings to an 
intermediate currency before converting the result back to US dollars. The following 
table summarizes the current exchange rates for converting from one currency to 
another.

Exchange Rate Table

From\To USD AUD GBP EUR INR JPY SGD CHF

USD 1 1.29249 0.55337 0.80425 43.5000 109.920 1.64790 1.24870
AUD 0.77370 1 0.42815 0.62225 33.6560 85.0451 1.27498 0.96612
GBP 1.80710 2.33566 1 1.45335 78.6088 198.636 2.97792 2.25652
EUR 1.24340 1.60708 0.68806 1 54.0879 136.675 2.04900 1.55263
INR 0.02299 0.02971 0.01272 0.01849 1 2.5269 0.03788 0.02871
JPY 0.00910 0.01176 0.00503 0.00732 0.39574 1 0.01499 0.01136
SGD 0.60683 0.78433 0.33581 0.48804 26.3972 66.7031 1 0.75775
CHF 0.80083 1.03507 0.44316 0.64407 34.8362 88.0275 1.31969 1

CASE 5.1
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242 Chapter 5 Network Modeling

The exchange rate table indicates, for instance, that one Japanese yen can be 
converted into 0.00910 US dollars. So 100,000 yen would produce $910 US. However, 
the bank’s 0.40% fee for this transaction would reduce the net amount received to 
$910 3 11 2 0.004 2 5 $906.36. So H&J wants your assistance in determining the best 
way to convert all of its non-US currency holdings back into US dollars.

 1. Draw a network flow diagram for this problem.
 2. Create a spreadsheet model for this problem and solve it.
 3. What is the optimal solution?
 4. If H&J converted each non-US currency it owns directly into US dollars, how many 

US dollars would it have?
 5. Suppose H&J wants to perform the same conversion but also leave $5 million in 

Australian dollars. What is the optimal solution in this case?

Old Dominion Energy
The United States is the biggest consumer of natural gas, and the second largest natural 
gas producer in the world. According to the U.S. Energy Information Administration 
(EIA), the United States consumed 26.7 trillion cubic feet of natural gas in 2014. 
Stemming from phased deregulation, the transportation and delivery of natural gas 
from wellheads has grown since the 1980s and there are now more than 278,000 miles 
of gas pipeline nationwide. With more electric power companies turning to natural gas 
as a cleaner-burning fuel, natural gas is expected to grow even more quickly over the 
next 20 years. 

To ensure an adequate supply of natural gas, gas storage facilities have been built 
in numerous places along the pipeline. Energy companies can buy gas when prices 
are low and store it in these facilities for use or sale at a later date. Because energy 
consumption is influenced greatly by the weather (which is not entirely predictable), 
imbalances often arise in the supply and demand for gas in different parts of the 
country. Gas traders constantly monitor these market conditions and look for 
opportunities to sell gas from storage facilities when the price offered at a certain 
location is high enough. This decision is complicated by the fact that it costs different 
amounts of money to transport gas through different segments of the nationwide 
pipeline, and the capacity available in different parts of the pipeline is constantly 
changing. Thus, when a trader sees an opportunity to sell at a favorable price, he 
or she must quickly see how much capacity is available in the network and create 
deals with individual pipeline operators for the necessary capacity to move gas from 
storage to the buyer.

Bruce McDaniel is a gas trader for Old Dominion Energy (ODE), Inc. The network 
in Figure 5.45 represents a portion of the gas pipeline where ODE does business. 
The values next to each arc in this network are of the form (x,y) where x is the cost 
per thousand cubic feet (cf) of transporting gas along the arc, and y is the available 
transmission capacity of the arc in thousands of cubic feet. Note that the arcs in 
this network are bidirectional (i.e., gas can flow in either direction at the prices and 
capacities listed). 

Bruce currently has 100,000 cf of gas in storage at Katy. Industrial customers in Joliet 
are offering $4.35 per thousand cf for up to 35,000 cf of gas. Buyers in Leidy are offering 

CASE 5.2
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$4.63 per thousand cf for up to 60,000 cf of gas. Create a spreadsheet model to help 
Bruce answer the following questions.
a. Given the available capacity in the network, how much gas can be shipped from 

Katy to Leidy? From Katy to Joliet?
b. How much gas should Bruce offer to sell to Joliet and Leidy if he wants to maximize 

profits?
c. Is Bruce able to meet all the demand from both customers? If not, why not?
d. If Bruce wanted to try to pay more to obtain additional capacity on some of the 

pipelines, which ones should he investigate and why?

Case 5.3 243

FIGURE 5.46

Gas pipeline 
network for Old 
Dominion Energy
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US Express
US Express is an overnight package delivery company based in Atlanta, Georgia. Jet 
fuel is one of the largest operating costs incurred by the company, and the company 
wants your assistance in managing this cost. The price of jet fuel varies considerably 
at different airports around the country. As a result, it seems that it might be wise to 
“fill up” on jet fuel at airports where it is least expensive. However, the amount of fuel 
an airliner burns depends, in part, on the weight of the plane—and excess fuel makes 
an airplane heavier and, therefore, less fuel-efficient. Similarly, more fuel is burned on 
flights from the east coast to the west coast (going against the jet stream) than from the 
west coast to the east coast (going with the jet stream).

CASE 5.3
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244 Chapter 5 Network Modeling

The following table summarizes the flight schedule (or rotation) flown nightly by one 
of the company’s planes. For each flight segment, the table summarizes the minimum 
required and maximum allowable amount of fuel on board at takeoff and the cost of 
fuel at each point of departure. The final column provides a linear function relating fuel 
consumption to the amount of fuel on board at takeoff.

Segment Depart Arrive

Minimum 
Fuel Level 
at Takeoff  
(in 1,000s)

Maximum Fuel 
Level at Takeoff 
(in 1,000s)

Cost per 
Gallon

Fuel Used in Flight  
with G Gallons  
(in 1,000s) on Board  
at Takeoff

1 Atlanta San Francisco 21 31 $0.92 3.20 1 0.45 3 G
2 San 

Francisco
Los Angeles 7 20 $0.85 2.25 1 0.65 3 G

3 Los Angeles Chicago 18 31 $0.87 1.80 1 0.35 3 G
4 Chicago Atlanta 16 31 $1.02 2.20 1 0.60 3 G

For instance, if the plane leaves Atlanta for San Francisco with 25,000 gallons on board, 
it should arrive in San Francisco with approximately 25 2 13.2 1 0.45 3 25 2  5 10.55
thousand gallons of fuel. 

The company has many other planes that fly different schedules each night, so the 
potential cost savings from efficient fuel purchasing is quite significant. But before 
turning you loose on all of their flight schedules, the company wants you to create 
a spreadsheet model to determine the most economical fuel purchasing plan for the 
previous schedule. (Hint: Keep in mind that the most fuel you would purchase at 
any departure point is the maximum allowable fuel level for takeoff at that point. 
Also, assume that whatever fuel is on board when the plane returns to Atlanta at 
the end of the rotation will still be on board when the plane leaves Atlanta the next 
evening.)
a. Draw the network diagram for this problem.
b. Implement the model for this problem in your spreadsheet and solve it.
c. How much fuel should US Express purchase at each departure point and what is 

the cost of this purchasing plan?

The Major Electric Corporation
Henry Lee is the Vice President of Purchasing for the consumer electronics division of 
the Major Electric Corporation (MEC). The company recently introduced a new type 
of video camcorder that has taken the market by storm. Although Henry is pleased 
with the strong demand for this product in the market place, it has been a challenge 
to keep up with MEC’s distributors’ orders of this camcorder. His current challenge is 
how to meet requests from MEC’s major distributors in Pittsburgh, Denver, Baltimore, 
and Houston who have placed orders of 10,000, 20,000, 30,000, and 25,000 units, 
respectively, for delivery in 2 months (there is a 1-month manufacturing and one-
month shipping lead time for this product). 

MEC has contracts with companies in Hong Kong, Korea, and Singapore who 
manufacture camcorders for the company under the MEC label. These contracts require 
MEC to order a specified minimum number of units each month at a guaranteed per 
unit cost. The contracts also specify the maximum number of units that may be ordered 
at this price. The following table summarizes these contracts:

CASE 5.4
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Monthly Purchasing Contract Provisions

Supplier Unit Cost Minimum Required Maximum Allowed

Hong Kong $375 20,000 30,000
Korea $390 25,000 40,000
Singapore $365 15,000 30,000

MEC also has a standing contract with a shipping company to transport product 
from each of these suppliers to ports in San Francisco and San Diego. The cost of 
shipping from each supplier to each port is given in the following table along with 
the minimum required and maximum allowable number of shipping containers each 
month:

Monthly Shipping Contract Provisions

San Francisco Shipping Requirements San Diego Shipping Requirements

Supplier
Cost per 

Container
Minimum
Containers 

Maximum
Containers 

Cost per  
Container

Minimum
Containers 

Maximum
Containers 

Hong Kong $2,000 5 20 $2,300 5 20
Korea $1,800 10 30 $2,100 10 30
Singapore $2,400 5 25 $2,200 5 15

 Under the terms of this contract, MEC guarantees it will send at least 20 but no more 
than 65 shipping containers to San Francisco each month, and at least 30 but no more 
than 70 shipping containers to San Diego each month. 

Each shipping container can hold 1,000 video cameras and will ultimately be 
trucked from the seaports on to the distributors. Again, MEC has a standing contract 
with a trucking company to provide trucking services each month. The cost of 
trucking a shipping container from each port to each distributor is summarized in the 
following table.

Unit Shipping Cost per Container

Pittsburgh Denver Baltimore Houston

San Francisco $1,100 $850 $1,200 $1,000
San Diego $1,200 $1,000 $1,100 $900

As with the other contracts, to obtain the prices just given, MEC is required to use 
a certain minimum amount of trucking capacity on each route each month and may 
not exceed certain maximum shipping amounts without incurring cost penalties. These 
minimum and maximum shipping restrictions are summarized in the following table. 

Minimum Required and Maximum Allowable Number of Shipping 
Containers per Month

Pittsburgh Denver Baltimore Houston

Min Max Min Max Min Max Min Max

San Francisco 3 7 6 12 10 18 5 15
San Diego 4 6 5 14 5 20 10 20

Henry is left with the task of sorting through all this information to determine 
the least cost purchasing and distribution plan to fill the distributor’s requests. 

   Case 5.4 245
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246 Chapter 5 Network Modeling

But because he and his wife have tickets to the symphony for this evening, he has 
asked you to take a look at this problem and give him your recommendations at 9:00 
tomorrow morning.
a. Create a network flow model for this problem. (Hint: Consider inserting 

intermediate nodes in your network to assist in meeting the minimum monthly 
purchase restrictions for each supplier and the minimum monthly shipping 
requirements for each port.)

b. Implement a spreadsheet model for this problem and solve it.
c. What is the optimal solution?
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Chapter 6
Integer Linear Programming

6.0 Introduction
When some or all of the decision variables in an LP problem are restricted to assum-
ing only integer values, the resulting problem is referred to as an integer linear 
programming (ILP) problem. Many practical business problems need integer solutions. 
For example, when scheduling workers, a company needs to determine the optimal 
number of employees to assign to each shift. If we formulate this problem as an LP 
problem, its optimal solution could involve allocating fractional numbers of workers 
(e.g., 7.33 workers) to different shifts; but this is not an integer feasible solution. Simi-
larly, if an airline is trying to decide how many 767s, 757s, and A-300s to purchase for 
its fleet, it must obtain an integer solution because the airline cannot buy fractions of 
planes.

This chapter discusses how to solve optimization problems in which certain deci-
sion variables must assume only integer values. This chapter also shows how the use 
of integer variables allows us to build more accurate models for a number of business 
problems.

6.1 Integrality Conditions
To illustrate some of the issues involved in an ILP problem, let’s consider again the 
decision problem faced by Howie Jones, the owner of Blue Ridge Hot Tubs, described 
in chapters 2, 3, and 4. This company sells two models of hot tubs, the Aqua-Spa and 
the Hydro-Lux, which it produces by purchasing prefabricated fiberglass hot tub shells 
and installing a common water pump and an appropriate amount of tubing. Each 
Aqua-Spa produced requires 1 pump, 9 hours of labor, and 12 feet of tubing, and con-
tributes $350 to profits. Each Hydro-Lux produced requires 1 pump, 6 hours of labor, 
and 16 feet of tubing, and contributes $300 to profits. Assuming the company has 200 
pumps, 1,566 labor hours, and 2,880 feet of tubing available, we created the following 
LP formulation for this problem where X1 and X2 represent the number of Aqua-Spas 
and Hydro-Luxes to produce:

 MAX: 350X1 1 300X2 } pro�t
 Subject to: 1X1 1   1X2  #    200 } pump constraint
 9X1  1   6X2 # 1,566 } labor constraint
 12X1 1 16X2    # 2,880 } tubing constraint
             X1, X2   $        0 } nonnegativity conditions

47412_ch06_ptg01_247-325.indd   247 17/08/16   8:23 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



248 Chapter 6 Integer Linear Programming

Blue Ridge Hot Tubs is undoubtedly interested in obtaining the best possible integer 
solution to this problem because hot tubs can be sold only as discrete units. Thus, we 
can be sure the company wants to find the optimal integer solution to this problem. So, in 
addition to the constraints stated previously, we add the following integrality condition 
to the formulation of the problem:

X1 and X2 must be integers

An integrality condition indicates that some (or all) of the variables in the formu-
lation must assume only integer values. We refer to such variables as the integer vari-
ables in a problem. In contrast, variables that are not required to assume strictly integer 
values are referred to as continuous variables. Although it is easy to state integrality 
conditions for a problem, such conditions often make a problem more difficult (and 
sometimes impossible) to solve.

6.2 Relaxation
One approach to finding the optimal integer solution to a problem is to relax, or ignore, 
the integrality conditions and solve the problem as if it were a standard LP problem 
where all the variables are assumed to be continuous. This model is sometimes referred 
to as the LP relaxation of the original ILP problem. Consider the following ILP problem:

MAX:    2X1 1 3X2

Subject to:      X1 1 3X2 # 8.25
  2.5X1 1   X2 # 8.75
            X1, X2  $ 0
 X1, X2 must be integers

The LP relaxation for this problem is represented by:

 MAX:                2X1 1 3X2

Subject to:           X1 1 3X2 # 8.25
                     2.5X1 1   X2 # 8.75
                                X1, X2 $ 0

The only difference between the ILP and its LP relaxation is that all integrality 
conditions imposed by the ILP are dropped in the relaxation. However, as illustrated 
in Figure 6.1, this change has a significant impact on the feasible regions for the two 
problems.

As shown in Figure 6.1, the feasible region for the ILP consists of only 11 discrete 
points. On the other hand, the feasible region for its LP relaxation consists of an 
infinite number of points represented by the shaded area. This figure illustrates  
an important point about the relationship between the feasible region of an  
ILP and its LP relaxation. The feasible region of the LP relaxation of an ILP problem 
always encompasses all the feasible integer solutions to the original ILP problem. 
Although the relaxed feasible region might include additional noninteger solu-
tions, it will not include any integer solutions that are not feasible solutions to the  
original ILP.
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6.3 Solving the Relaxed Problem
The LP relaxation of an ILP problem is often easy to solve using the simplex method. 
As explained in chapter 2, an optimal solution to an LP problem occurs at one of the 
corner points of its feasible region (assuming that the problem has a bounded optimal 
solution). Thus, if we are extremely lucky, the optimal solution to the LP relaxation of 
an ILP problem might occur at an integer corner point of the relaxed feasible region. In 
this case, we find the optimal integer solution to the ILP problem simply by solving its 
LP relaxation. This is exactly what happened in chapters 2 and 3 when we originally 
solved the relaxed LP model for the hot tub problem. Figure 6.2 (and the file Fig6-2.
xlsm that accompanies this book) shows the solution to this problem.

The optimal solution to the relaxed LP formulation of the hot tub problem assigns 
integer values to the decision variables 1X1 5 122 and X2 5 78 2 . So in this case, the 
relaxed LP problem happens to have an integer-valued optimal solution. However, as 
you might expect, this will not always be the case.

Suppose, for example, that Blue Ridge Hot Tubs has only 1,520 hours of labor and 
2,650 feet of tubing available during its next production cycle. The company might be 
interested in solving the following ILP problem:

 MAX: 350X1 1 300X2                      } pro�t
 Subject to: 1X1 1     1X2 #    200        } pump constraint
 9X1 1     6X2 # 1,520        } labor constraint
 12X1 1   16X2 # 2,650        } tubing constraint
 X1, X2  $        0        } nonnegativity conditions
 X1, X2 must be integers        } integrality conditions

X1

X2

1

2

3

0
0 1 2 3 4

Feasible Integer Solutions

Figure 6.1

Integer feasible 
region vs. LP 
feasible region
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250 Chapter 6 Integer Linear Programming

If we relax the integrality conditions and solve the resulting LP problem, we obtain 
the solution shown in Figure 6.3. This solution indicates that producing 116.9444 Aqua-
Spas and 77.9167 Hydro-Luxes will generate a maximum profit of $64,306. But this 
solution violates the integrality conditions stated in the original problem. As a general 
rule, the optimal solution to the LP relaxation of an ILP problem is not guaranteed to 
produce an integer solution. In such cases, other techniques must be applied to find 
the optimal integer solution for the problem being solved. (There are some exceptions 
to this rule. In particular, the network flow problems discussed in chapter 5 often can 
be viewed as ILP problems. For reasons that go beyond the scope of this text, the LP 
relaxation of network flow problems will always have integer solutions if the supplies 
and/or demands at each node are integers and the problem is solved using the simplex 
method.)

6.4 Bounds
Before discussing how to solve ILP problems, an important point must be made about 
the relationship between the optimal solution to an ILP problem and the optimal solu-
tion to its LP relaxation: The objective function value for the optimal solution to the ILP 

Objective Cell

Constraint Cells

Variable Cells

Cell Formula Copied to

D6 5B6*$B$51C6*$C$5 D9:D11

Key Cell Formulas

Figure 6.2 Integer solution obtained as optimal solution to the Blue Ridge Hot Tubs LP problem
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Bounds 251

Although solving the LP relaxation of the revised hot tub problem might not pro-
vide the optimal integer solution to our original ILP problem, it does indicate that the 
objective function value of the optimal integer solution cannot possibly be greater than 

Figure 6.3 Noninteger solution obtained as optimal solution to the revised Blue Ridge Hot Tubs LP problem

K e y  C o n c e p t
For maximization problems, the objective function value at the optimal solution 
to the LP relaxation represents an upper bound on the optimal objective function 
value of the original ILP problem. For minimization problems, the objective func-
tion value at the optimal solution to the LP relaxation represents a lower bound on 
the optimal objective function value of the original ILP problem.

problem can never be better than the objective function value for the optimal solution to 
its LP relaxation.

For example, the solution shown in Figure 6.3 indicates that if the company could 
produce (and sell) fractional numbers of hot tubs, it could make a maximum profit of 
$64,306 by producing 116.9444 Aqua-Spas and 77.9167 Hydro-Luxes. No other feasible 
solution (integer or otherwise) could result in a better value of the objective function. 
If a better feasible solution existed, the optimization procedure would have identified 
this better solution as optimal because our aim was to maximize the value of the objec-
tive function.
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252 Chapter 6 Integer Linear Programming

Because rounding up does not always work, perhaps we should round down, or 
truncate, the values for the decision variables identified in the LP relaxation. As shown 
in Figure 6.5, this results in a feasible solution where 116 Aqua-Spas and 77 Hydro-
Luxes are manufactured for a total profit of $63,700. However, this approach presents 
two possible problems. First, rounding down could also result in an infeasible solution, 
as shown in Figure 6.6.

Another problem with rounding down is that even if it results in a feasible integer 
solution to the problem, there is no guarantee that it is the optimal integer solution. 
For example, the integer solution obtained by rounding down shown in Figure 6.5 
produced a total profit of $63,700. However, as shown in Figure 6.7, a better integer 
solution exists for this problem. If the company produces 118 Aqua-Spas and 76 Hydro-
Luxes, it can achieve a total profit of $64,100 (which is the optimal integer solution to 
this problem). Simply rounding the solution to the LP relaxation of an ILP problem 
is not guaranteed to provide the optimal integer solution. Although the integer solu-
tion obtained in this problem by rounding is very close to the optimal integer solution, 
rounding does not always work this well.

$64,306. This information can be important in helping us evaluate the quality of integer 
solutions we might discover during our search for the optimal solution.

6.5 Rounding
As mentioned earlier, the solution to the LP relaxation of an ILP problem might satisfy 
the ILP problem’s integrality conditions and, therefore, represent the optimal integer 
solution to the problem. But what should we do if this is not the case (as usually hap-
pens)? One frequently used technique involves rounding the relaxed LP solution.

When the solution to the LP relaxation of an ILP problem does not result in an inte-
ger solution, it is tempting to think that simply rounding this solution will generate the 
optimal integer solution. Unfortunately, this is not the case. For example, if the values 
for the decision variables shown in Figure 6.3 are manually rounded up to their closest 
integer values, as shown in Figure 6.4, the resulting solution is infeasible. The company 
cannot manufacture 117 Aqua-Spas and 78 Hydro-Luxes because this would involve 
using more labor and tubing than are available.

Figure 6.4

Infeasible integer 
solution obtained 
by rounding up
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Figure 6.5

Feasible integer 
solution obtained 
by rounding down

1

2

3

0
0 4321

Optimal relaxed solution
Infeasible solution obtained

by rounding down

X1

X2

Figure 6.6

How rounding 
down can result 
in an infeasible 
integer solution

47412_ch06_ptg01_247-325.indd   253 11/08/16   10:33 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



254 Chapter 6 Integer Linear Programming

As we have seen, the solution to the LP relaxation of an ILP is not guaranteed to 
produce an integer solution, and rounding the solution to the LP relaxation is not 
guaranteed to produce the optimal integer solution. Therefore, we need another way 
to find the optimal integer solution to an ILP problem. Various procedures have been 
developed for this purpose. The most effective and widely used of these procedures is 
the branch-and-bound (B&B) algorithm. The B&B algorithm theoretically allows us to 
solve any ILP problem by solving a series of LP problems called candidate problems. 
For those who are interested, a discussion of how the B&B algorithm works is given at 
the end of this chapter.

6.6 Stopping Rules
Finding the optimal solution for simple ILP problems can sometimes require the eval-
uation of hundreds of candidate problems. More complex problems can require the 
evaluation of thousands of candidate problems, which can be a very time-consuming 
task even for the fastest computers. For this reason, many ILP packages allow you to 
specify a suboptimality tolerance of X% (where X is some numeric value), which tells 
the B&B algorithm to stop when it finds an integer solution that is no more than X% 
worse than the optimal integer solution. This is another area where obtaining upper or 
lower bounds on the optimal integer solution can be helpful.

As noted earlier, if we relax all the integrality conditions in an ILP with a maxi-
mization objective and solve the resulting LP problem, the objective function value 
at the optimal solution to the relaxed problem provides an upper bound on the opti-
mal integer solution. For example, when we relaxed the integrality conditions for the 
revised Blue Ridge Hot Tubs problem and solved it as an LP, we obtained the solution 
shown earlier in Figure 6.3, which has an objective function value of $64,306. Thus, 
we know that the optimal integer solution to this problem cannot have an objective 
function value greater than $64,306. Now, suppose the owner of Blue Ridge Hot 
Tubs is willing to settle for any integer solution to its problem that is no more than 
5% below the optimal integer solution. It is easy to determine that 95% of $64,306 is 
$61,090 10.95 3 $64,306 5 $61,090 2 . Therefore, any integer solution with an objective 

Figure 6.7

Optimal integer 
solution to the 
revised Blue Ridge 
Hot Tubs problem
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Solving ILP Problems Using Solver 255

function value of at least $61,090 can be no worse than 5% below the optimal integer 
solution.

Specifying suboptimality tolerances can be helpful if you are willing to settle for a 
good but suboptimal solution to a difficult ILP problem. However, most B&B packages 
employ some sort of default suboptimality tolerance and, therefore, might produce a 
suboptimal solution to the ILP problem without indicating that a better solution might 
exist. (We will look at an example where this occurs shortly.) It is important to be aware 
of suboptimality tolerances because they can determine whether or not the true opti-
mal solution to an ILP problem is found.

6.7 Solving ILP Problems Using Solver
Now that you have some understanding of the effort required to solve ILP problems, 
you can appreciate how using Solver simplifies this process. This section shows how to 
use Solver with the revised Blue Ridge Hot Tubs problem.

Figure 6.8 shows the Solver settings required to solve the revised Blue Ridge Hot 
Tubs problem as a standard LP problem. However, none of these parameters indicate 
that the cells representing the decision variables (cells B5 and C5) must assume integer 
values. To communicate this to Solver, we need to add constraints to the problem as 
shown in Figure 6.9.

Figure 6.8 Solver parameters for the relaxed Blue Ridge Hot Tubs problem
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256 Chapter 6 Integer Linear Programming

In Figure 6.9, cells B5 through C5 are specified as the cell references for the additional 
constraints. Because we want these cells to assume only integer values, we need to select 
the “int” option from the drop-down menu, as shown in Figure 6.9, and click OK.

Figure 6.10 shows the Solver parameters and optimal solution with cells B5 and C5 
constrained to assume only integer values. The message at the bottom of the Analytic 
Solver Task Pane indicates that Solver found a solution “within tolerance” that satisfies 
all constraints. Thus, we might suspect that the optimal integer solution to this problem 
involves producing 117 Aqua-Spas and 77 Hydro-Luxes for a total profit of $64,050. 
However, if you refer back to Figure 6.7, you will recall that an even better integer 
solution to this problem can be obtained by producing 118 Aqua-Spas and 76 Hydro-
Luxes for a total profit of $64,100. So why did Solver select an integer solution with a 
total profit of $64,050 when a better integer solution exists? The answer lies in Solver’s 
suboptimality tolerance factor.

By default, Solver uses a suboptimality tolerance factor of 5%. So, when Solver found 
the integer solution with the objective function value of $64,050 shown in  Figure 6.10, 
it determined that this solution was within 5% of the optimal integer solution and 
abandoned its search. (Again, note the message in Figure 6.10, “Integer solution found 
within tolerance.”) To ensure that Solver finds the best possible solution to an ILP prob-
lem, we must change its suboptimality tolerance factor by clicking the Engine tab in the 
Analytic Solver Task Pane and then changing the Integer Tolerance value as shown in 
Figure 6.11.

Figure 6.9 Selecting integer constraints
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Figure 6.11

Changing the 
suboptimality 
tolerance factor
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258 Chapter 6 Integer Linear Programming

6.8 Other ILP Problems
Many decision problems encountered in business can be modeled as ILPs. As we have 
seen from the Blue Ridge Hot Tubs example, some problems that are initially formu-
lated as LP problems might turn into ILP formulations if they require integer solutions. 
However, the importance of ILP extends beyond simply allowing us to obtain integer 
solutions to LP problems.

The ability to constrain certain variables to assume only integer values enables us 
to model a number of important conditions more accurately. For example, up to this 
point, we have not considered the impact of quantity discounts, setup or lump-sum 
costs, or batch size restrictions on a given decision problem. Without ILP techniques, 
we could not model these decision issues. We now consider several examples that illus-
trate the expanded modeling capabilities available through the use of integer variables.

Figure 6.12 Optimal integer solution to the revised Blue Ridge Hot Tubs problem

As shown in Figure 6.11, you can set a number of options to control Solver’s opera-
tions. The Integer Tolerance option represents Solver’s suboptimality tolerance value. 
To make sure Solver finds the best possible solution to an ILP problem, we must change 
this setting from its default value of 0.05 to 0. If we do this and re-solve the current 
problem, we obtain the solution shown in Figure 6.12. This solution is the best possible 
integer solution to the problem.
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An Employee Scheduling Problem 259

6.9 An Employee Scheduling Problem
Anyone responsible for creating work schedules for a number of employees can appre-
ciate the difficulties in this task. It can be very difficult to develop a feasible schedule, 
much less an optimal schedule. Trying to ensure that a sufficient number of workers is 
available when needed is a complicated task when you must consider multiple shifts, 
rest breaks, and lunch or dinner breaks. However, some sophisticated ILP models have 
been devised to solve these problems. Although a discussion of these models is beyond 
the scope of this text, we will consider a simple example of an employee scheduling 
problem to give you an idea of how ILP models are applied in this area.

Air-Express is an express shipping service that guarantees overnight delivery of 
packages anywhere in the continental United States. The company has various 
operations centers, called hubs, at airports in major cities across the country. Pack-
ages are received at hubs from other locations and then shipped to intermediate 
hubs or to their final destinations.

The manager of the Air-Express hub in Baltimore, Maryland is concerned about 
labor costs at the hub and is interested in determining the most effective way to 
schedule workers. The hub operates seven days a week, and the number of pack-
ages it handles each day varies from one day to the next. Using historical data 
on the average number of packages received each day, the manager estimates 
the number of workers needed to handle the packages as shown in the following 
table:

Day of Week Workers required

Sunday 18
Monday 27
Tuesday 22
Wednesday 26
Thursday 25
Friday 21
Saturday 19

The package handlers working for Air-Express are unionized and are guaranteed 
a five-day work week with two consecutive days off. The base wage for the handlers 
is $655 per week. Because most workers prefer to have Saturday or Sunday off, the 
union has negotiated bonuses of $25 per day for its members who work on these days. 
The possible shifts and salaries for package handlers are given in the following table:

Shift Days Off Wage

1 Sunday and Monday $680
2 Monday and Tuesday $705
3 Tuesday and Wednesday $705
4 Wednesday and Thursday $705
5 Thursday and Friday $705
6 Friday and Saturday $680
7 Saturday and Sunday $655

The manager wants to keep the total wage expense for the hub as low as possi-
ble. With this in mind, how many package handlers should be assigned to each shift 
if the manager wants to have a sufficient number of workers available each day?
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260 Chapter 6 Integer Linear Programming

6.9.1 Defining the DeCision Variables
In this problem, the manager must decide how many workers to assign to each shift. 
Because there are seven possible shifts, we need the following seven decision variables:

X1 5 the number of workers assigned to shift 1
X2 5 the number of workers assigned to shift 2
X3 5 the number of workers assigned to shift 3
X4 5 the number of workers assigned to shift 4
X5 5 the number of workers assigned to shift 5
X6 5 the number of workers assigned to shift 6
X7 5 the number of workers assigned to shift 7

6.9.2 Defining the objeCtiVe funCtion
The objective in this problem is to minimize the total wages paid. Each worker on shift 
1 and 6 is paid $680 per week, and each worker on shift 7 is paid $655. All other work-
ers are paid $705 per week. Thus, the objective of minimizing the total wage expense is 
expressed as:

MIN: 680X1 1 705X2 1 705X3 1 705X4 1 705X5 1 680X6 1 655X7 } total wage expense

6.9.3 Defining the Constraints
The constraints for this problem must ensure that at least 18 workers are scheduled for 
Sunday, at least 27 are scheduled for Monday, and so on. We need one constraint for 
each day of the week.

To make sure that at least 18 workers are available on Sunday, we must deter-
mine which decision variables represent shifts that are scheduled to work on Sunday. 
Because shifts 1 and 7 are the only shifts that have Sunday scheduled as a day off, the 
remaining shifts, 2 through 6, all are scheduled to work on Sunday. The following con-
straint ensures that at least 18 workers are available on Sunday:

0X1 1 1X2 1 1X3 1 1X4 1 1X5 1 1X6 1 0X7 $ 18 } workers required on Sunday

Because workers on shifts 1 and 2 have Monday off, the constraint for Monday 
should ensure that the sum of the variables representing the number of workers on the 
remaining shifts, 3 through 7, is at least 27. This constraint is expressed as:

0X1 1 0X2 1 1X3 1 1X4 1 1X5 1 1X6 1 1X7 $ 27 } workers required on Monday

Constraints for the remaining days of the week are generated easily by applying the 
same logic used in generating the previous two constraints. The resulting constraints 
are stated as:

1X1 1 0X2 1 0X3 1 1X4 1 1X5 1 1X6 1 1X7 $ 22 } workers required on Tuesday
1X1 1 1X2 1 0X3 1 0X4 1 1X5 1 1X6 1 1X7 $ 26 } workers required on Wednesday
1X1 1 1X2 1 1X3 1 0X4 1 0X5 1 1X6 1 1X7 $ 25 } workers required on Thursday
1X1 1 1X2 1 1X3 1 1X4 1 0X5 1 0X6 1 1X7 $ 21 } workers required on Friday
1X1 1 1X2 1 1X3 1 1X4 1 1X5 1 0X6 1 0X7 $ 19 } workers required on Saturday
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An Employee Scheduling Problem 261

Finally, all our decision variables must assume nonnegative integer values. These 
conditions are stated as:

X1, X2, X3, X4, X5, X6, X7 $ 0
All Xi must be integers

6.9.4 a note about the Constraints
At this point, you might wonder why the constraints for each day are greater than or 
equal to rather than equal to constraints. For example, if Air-Express needs only 19 peo-
ple on Saturday, why do we have a constraint that allows more than 19 people to be 
scheduled? The answer to this question relates to feasibility. Suppose we restate the 
problem so that all the constraints are equal to constraints. There are two possible out-
comes for this problem: (1) it might have a feasible optimal solution, or (2) it might not 
have a feasible solution.

In the first case, if the formulation using equal to constraints has a feasible opti-
mal solution, this same solution also must be a feasible solution to our formulation 
using greater than or equal to constraints. Because both formulations have the same 
objective function, the solution to our original formulation could not be worse (in 
terms of the optimal objective function value) than a formulation using equal to 
constraints.

In the second case, if the formulation using equal to constraints has no feasible 
solution, there is no schedule where the exact number of employees required can be 
scheduled each day. To find a feasible solution in this case, we would need to make the 
constraints less restrictive by allowing for more than the required number of employ-
ees to be scheduled (i.e., using greater than or equal to constraints).

Therefore, using greater than or equal to constraints does not preclude a solution 
where the exact number of workers needed is scheduled for each shift, if such a sched-
ule is feasible and optimal. If such a schedule is not feasible or not optimal, the formu-
lation using greater than or equal to constraints also guarantees that a feasible optimal 
solution to the problem will be obtained.

6.9.5 implementing the moDel
The ILP model for the Air-Express scheduling problem is summarized as:

MIN: 680X1 1 705X2 1 705X3 1 705X4 1 705X5 1 680X6 1 655X7 } total wage expense

Subject to:
0X1 1 1X2 1 1X3 1 1X4 1 1X5 1 1X6 1 0X7 $ 18 } workers required on Sunday
0X1 1 0X2 1 1X3 1 1X4 1 1X5 1 1X6 1 1X7 $ 27 } workers required on Monday
1X1 1 0X2 1 0X3 1 1X4 1 1X5 1 1X6 1 1X7  $ 22 } workers required on Tuesday
1X1 1 1X2 1 0X3 1 0X4 1 1X5 1 1X6 1 1X7 $ 26 } workers required on Wednesday
1X1 1 1X2 1 1X3 1 0X4 1 0X5 1 1X6 1 1X7 $ 25 } workers required on Thursday
1X1 1 1X2 1 1X3 1 1X4 1 0X5 1 0X6 1 1X7 $ 21 } workers required on Friday
1X1 1 1X2 1 1X3 1 1X4 1 1X5 1 0X6 1 0X7  $ 19 } workers required on Saturday
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262 Chapter 6 Integer Linear Programming

X1, X2, X3, X4, X5, X6, X7 $ 0
All Xi must be integers

A convenient way of implementing this model is shown in Figure 6.13 (and in the 
file Fig6-13.xlsm that accompanies this book). Each row in the table shown in this 
spreadsheet corresponds to one of the seven shifts in the problem. For each day of the 
week, entries have been made to indicate which shifts are scheduled to be on or off. 
For example, shift 1 is scheduled off Sunday and Monday, and works on the remaining 
days of the week. Notice that the values for each day of the week in Figure 6.13 corre-
spond directly to the coefficients in the constraint in our ILP model for the same day of 
the week. The required number of workers for each day is listed in cells B13 through 
H13 and corresponds to the RHS values of each constraint. The wages to be paid to 
each worker on the various shifts are listed in cells J5 through J11 and correspond to the 
objective function coefficients in our model.

B12 5SUMPRODUCT(B5:B11,$I$5:$I$11) C12:H12 and J12

Key Cell Formulas

Cell Formula Copied to

Objective Cell

Constraint Cells

Variable Cells

Figure 6.13 Spreadsheet model for the Air-Express employee scheduling problem

Cells I5 through I11 indicate the number of workers assigned to each shift, and 
correspond to the decision variables X1 through X7 in our algebraic formulation of 
the LP model. The LHS formula for each constraint is implemented easily using the 
 SUMPRODUCT( ) function. For example, the formula in cell B12 implements the LHS 
of the constraint for the number of workers needed on Sunday as:

 Formula for cell B12:             5SUMPRODUCT(B5:B11,$I$5:$I$11)
(Copy to C12 through H12 and J12.)

This formula is then copied to cells C12 through H12 to implement the LHS formu-
las of the remaining constraints. With the coefficients for the objective function entered 
in cells J5 through J11, the previous formula is also copied to cell J12 to implement the 
objective function for this model.
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6.9.7 analyzing the solution
The solution shown in Figure 6.15 ensures that the available number of employees 
is at least as great as the required number of employees for each day. The minimum 
total wage expense associated with this solution is $22,540. (There are alternate optimal 
solutions to this problem.)

Figure 6.15 Optimal solution to the Air-Express employee scheduling problem

Solver Settings:

Objective: J12 (Min)
Variable cells: I5:I11
Constraints: 
 B12:H12 .5 B13:H13
 I5:I11 5 integer
 I5:I11 .5 0

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)
 Integer Tolerance 5 0

Figure 6.14

Solver settings and 
options for the  
Air-Express 
scheduling 
problem

6.9.6 solVing the moDel
Figure 6.14 shows the Solver parameters required to solve this problem. The optimal 
solution is shown in Figure 6.15.
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6.10 Binary Variables
As mentioned earlier, some LP problems naturally evolve into ILP problems when 
we realize that we need to obtain integer solutions. For example, in the Air-Express 
problem discussed in the previous section, we needed to determine the number of 
workers to assign to each of seven shifts. Because workers are discrete units, we 
needed to impose integrality conditions on the decision variables in this model rep-
resenting the number of workers scheduled for each shift. To do so, we changed the 
continuous variables in the model into general integer variables, or variables that 
could assume any integer value (provided that the constraints of the problem are not 
violated). In many other situations, we might want to use binary integer variables
(or binary variables), which can assume only two integer values: 0 and 1. Binary vari-
ables can be useful in a number of practical modeling situations, as illustrated in the 
following examples.

6.11 A Capital Budgeting Problem
In a capital budgeting problem, a decision maker is presented with several potential 
projects or investment alternatives and must determine which projects or investments 
to choose. The projects or investments typically require different amounts of vari-
ous resources (e.g., money, equipment, personnel) and generate different cash flows 
to the company. The cash flows for each project or investment are converted to a net 
present value (NPV). The problem is to determine which set of projects or invest-
ments to select in order to achieve the maximum possible NPV. Consider the following 
example.

In his position as vice president of research and development (R&D) for CRT Tech-
nologies, Mark Schwartz is responsible for evaluating and choosing which R&D 
projects to support. The company received more than a dozen R&D proposals from 
its scientists and engineers, and identified six projects as being consistent with the 
company’s mission. However, the company does not have the funds available to 
undertake all six projects. Mark must determine which of the projects to select. The 
funding requirements for each project are summarized in the following table along 
with the NPV the company expects each project to generate.

Capital (in $1,000s) required in

Project
expected NPV
(in $1,000s) Year 1 Year 2 Year 3 Year 4 Year 5

1 $141 $  75 $25 $20 $15 $10
2 $187 $  90 $35 $  0 $  0 $30
3 $121 $  60 $15 $15 $15 $15
4 $  83 $  30 $20 $10 $  5 $  5
5 $265 $100 $25 $20 $20 $20
6 $127 $  50 $20 $10 $30 $40

The company currently has $250,000 available to invest in new projects. It has 
budgeted $75,000 for continued support for these projects in year 2 and $50,000 per 
year for years 3, 4, and 5. Surplus funds in any year are reappropriated for other 
uses within the company and may not be carried over to future years.
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A Capital Budgeting Problem 265

6.11.1 Defining the DeCision Variables
Mark must decide which of the six projects to select. Thus, we need six variables to rep-
resent the alternatives under consideration. We will let X1, X2, c, X6 represent the six 
decision variables for this problem and assume they operate as:

Xi 5 e1, if project i is selected
0, otherwise

 i 5 1, 2, c, 6

Each decision variable in this problem is a binary variable that assumes the value 1 if 
the associated project is selected, or the value 0 if the associated project is not selected. 
In essence, each variable acts like an “on/off switch” to indicate whether or not a given 
project has been selected.

6.11.2 Defining the objeCtiVe funCtion
The objective in this problem is to maximize the total NPV of the selected projects. This 
is stated mathematically as:

MAX:         141X1 1 187X2 1 121X3 1 83X4 1 265X5 1 127X6

Notice that this objective function simply sums the NPV figures for the selected projects.

6.11.3 Defining the Constraints
We need one capital constraint for each year to ensure that the selected projects do not 
require more capital than is available. This set of constraints is represented by:

75X1 1 90X2 1 60X3 1 30X4 1 100X5 1 50X6 # 250 } year 1 capital constraint
 25X1 1 35X2 1 15X3 1 20X4 1   25X5 1 20X6 #   75 } year 2 capital constraint
 20X1 1   0X2 1 15X3 1 10X4 1   20X5 1 10X6 #   50 } year 3 capital constraint
 15X1 1   0X2 1 15X3 1   5X4 1   20X5 1 30X6 #   50 } year 4 capital constraint
 10X1 1 30X2 1 15X3 1   5X4 1   20X5 1 40X6 #   50 } year 5 capital constraint

6.11.4 setting up the binary Variables
In our formulation of this problem, we assume that each decision variable is a binary 
variable. We must include this assumption in the formal statement of our model by 
adding the constraints:

 All Xi must be binary

6.11.5 implementing the moDel
The ILP model for the CRT Technologies project selection problem is summarized as:

 MAX: 141X1 1 187X2 1 121X3 1 83X4 1 265X5 1 127X6

 Subject to: 75X1 1   90X2 1   60X3 1 30X4 1 100X5 1   50X6 # 250
 25X1 1   35X2 1   15X3 1 20X4 1   25X5 1   20X6 #   75
 20X1 1     0X2 1   15X3 1 10X4 1   20X5 1   10X6 #   50
 15X1 1     0X2 1   15X3 1   5X4 1   20X5 1   30X6 #   50
 10X1 1   30X2 1   15X3 1   5X4 1   20X5 1   40X6 #   50

 All Xi must be binary
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266 Chapter 6 Integer Linear Programming

Cells B6 through B11 contain values of 0 to indicate that they are reserved 
for representing the six variables in our algebraic model. The LHS formula for 
the capital constraint is entered in cell D12 and then copied to cells E12 through 
H12, as:

Formula for cell D12:          5SUMPRODUCT(D6:D11,$B$6:$B$11) 
(Copy to E12 through H12.)

The RHS values for the constraints are listed in cells D13 through H13. Finally, the 
objective function of the model is implemented in cell D15 as:

Formula for cell D15:           =SUMPRODUCT(C6:C11,$B$6:$B$11)

6.11.6 solVing the moDel
To solve this model, we must tell Solver where we have implemented our objective 
function, decision variables, and constraints. The Solver settings and options shown in 
Figure 6.17 indicate that the objective function is implemented in cell D15 and that the 
decision variables are represented by cells B6 through B11. Also, notice that only two 
sets of constraints are specified for this problem.

Key Cell Formulas

Cell Formula Copied to

D12 5SUMPRODUCT(D6:D11,$B$6:$B$11) E12:H12
D15 5SUMPRODUCT(C6:C11,$B$6:$B$11) --

Objective Cell

Constraint Cells

Variable Cells

Figure 6.16 Spreadsheet model for the CRT Technologies project selection problem

This model is implemented in the spreadsheet shown in Figure 6.16 (and in the file 
Fig6-16.xlsm that accompanies this book). In this spreadsheet, the data for each project 
are listed in separate rows.

47412_ch06_ptg01_247-325.indd   266 11/08/16   10:33 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



A Capital Budgeting Problem 267

The first set of constraints ensures that cells B6 through B11 will operate as binary 
variables. We implemented these constraints by referring to the cells in the spreadsheet 
that represent our decision variables and selecting the “bin” (for binary) option in the 
Add Constraint dialog box (see Figure 6.9). The last set of constraints shown indicates 
that the values in cells D12 through H12 must be less than or equal to the values in cells 
D13 through H13 when the problem is solved. These conditions correspond to the cap-
ital constraints in the problem.

Because this model contains six decision variables and each variable can assume 
only one of two values, at most 26 5 64 possible integer solutions exist for this prob-
lem. Some of these integer solutions will not fall in the feasible region, so we might 
suspect that this problem will not be too difficult to solve optimally. If we set the 
Integer Tolerance factor to 0 and solve the problem, we obtain the solution shown in 
Figure 6.18.

Solver Settings:

Objective: D15 (Max)
Variable cells: B6:B11
Constraints: 
 B6:B11 5 binary
 D12:H12 ,5 D13:H13

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)
 Integer Tolerance 5 0

Figure 6.17

Solver settings 
and options for the 
CRT Technologies 
project selection 
problem

Figure 6.18 Optimal integer solution to the CRT Technologies project selection problem
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268 Chapter 6 Integer Linear Programming

6.12 Binary Variables and Logical 
Conditions
Binary variables can be used to model a number of logical conditions that might apply 
in a variety of problems. For example, in the CRT Technologies problem, several of 
the projects under consideration (e.g., projects 1, 3, and 6) might represent alternative 
approaches for producing a certain part for a product. The company might want to 
limit the solution to include no more than one of these three alternatives. The following 
type of constraint accomplishes this restriction:

X1 1 X3 1 X6 # 1

Because X1, X3, and X6 represent binary variables, no more than one of them can 
assume the value 1 and still satisfy the previous constraint. If we want to ensure that 
the solution includes exactly one of these alternatives, we could include the following 
constraint in our model:

 X1 1 X3 1 X6 5 1

As an example of another type of logical condition, suppose that project 4 involves 
a cellular communications technology that will not be available to the company unless 
it undertakes project 5. In other words, the company cannot select project 4 unless it 

Figure 6.19

A suboptimal 
heuristic solution 
to the CRT 
Technologies 
project selection 
problem

6.11.7 Comparing the optimal solution  
to a heuristiC solution
The optimal solution shown in Figure 6.18 indicates that if CRT Technologies selects 
projects 1, 4, and 5, it can achieve a total NPV of $489,000. Although this solution does 
not use all of the capital available in each year, it is still the best possible integer solu-
tion to the problem.

Another approach to solving this problem is to create a ranked list of the projects in 
decreasing order by NPV and then select projects from this list, in order, until the capital 
is depleted. As shown in Figure 6.19, if we apply this heuristic to the current problem, we 
would select projects 5 and 2, but we could not select any more projects due to a lack of 
capital in year 5. This solution would generate a total NPV of $452,000. Again, we can see 
the potential benefit of optimization techniques over heuristic solution techniques.

47412_ch06_ptg01_247-325.indd   268 11/08/16   10:33 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



The Line Balancing Problem 269

also selects project 5. This type of relationship can be imposed on the solution with the 
constraint:

 X4 2 X5 # 0

The four possible combinations of values for X4 and X5 and their relationships to the 
previous constraint are summarized as in the following table:

Value of

X4 X5 Meaning Feasible?

0 0 Do not select either project Yes
1 1 Select both projects Yes
0 1 Select 5, but not 4 Yes
1 0 Select 4, but not 5 No

As indicated in this table, the previous constraint prohibits any solution in which 
project 4 is selected and project 5 is not selected.

As these examples illustrate, you can model certain logical conditions using binary 
variables. Several problems at the end of this chapter allow you to use binary variables 
(and your own creativity) to formulate models for decision problems that involve these 
types of logical conditions.

6.13 The Line Balancing Problem
Assembling a product or delivering a service is often a multi-step process in which sev-
eral tasks are required to complete the product or service. To keep operations flowing 
smoothly and efficiently, the tasks are usually grouped into packages of work that can 
be completed by a workstation within a set amount of time, known as the cycle time. 
During each cycle, the work package assigned to each workstation is completed and 
made ready for the next station in the process. Because some tasks must be completed 
before others can be performed, the creation of work packages must carefully consider 
the task precedence requirements. The following example illustrates this.

Colpitts Control Devices manufactures hand operated steering mechanisms for 
powered wheelchairs used by people who are unable to walk. Creating one steering 
mechanism requires eight assembly tasks. Figure 6.20 summarizes the precedence 
relations among these tasks as well as the time required to perform each task (in min-
utes). For instance, task A must be completed before task B, task C must be completed 
before task F, and so on. The company would like to group the tasks into the mini-
mum number of workstations required to achieve a cycle time of 0.5 minutes.

6.13.1 Defining the DeCision Variables
There are eight tasks in this problem so, in the worst case, each task might need to be 
assigned to its own unique workstation. Thus, we should allow for up to eight work-
stations. Ignoring the precedence relations (that we will enforce with constraints), any 
task may be assigned to any of the workstations. This leads to the following set of 
binary decision variables for the problem:

Xij 5 e1, if task i is assigned to workstation j
0, otherwise

, i 5 A, B, c, H, j 5 1, 2, c, 8

One additional decision variable is required for this problem and will be introduced 
below.
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270 Chapter 6 Integer Linear Programming

6.13.2 Defining the Constraints
A number of different constraints apply to this problem. First, we must ensure that 
each of the eight tasks is assigned to exactly one workstation. This is accomplished as 
follows:

XA1 1 XA2 1 XA3 1 XA4 1 XA5 1 XA6 1 XA7 1 XA8  5 1 } Task A assignment constraint

XB1   1 X B 2   1 XB 3  1 XB 4   1 X B 5   1 XB 6   1 X B 7  1 XB 8 5 1 }   Task B assignment constraint

and so on to…
XH1 1 XH2  1 XH3   1 XH4  1  XH5  1 XH6  1 XH7  1 XH8   5 1 }  Task H assignment constraint

Next, we must ensure that the time required to complete the tasks assigned to each 
workstation does not exceed the desired cycle time of 0.5 minutes. This is accomplished 
via:

0.2XA1 1 0.27XB1 1 0.21XC1 1 0.18XD1 1 0.18XE1 1 0.19XF1 1 0.29XG1 
 1 0.26XH1 # 0.5

0.2XA2 1 0.27XB2 1 0.21XC2 1 0.18XD2 1 0.18XE2 1 0.19XF2 1 0.29XG2

 1 0.26XH2 # 0.5
and so on to…
0.2XA8 1 0.27XB8 1 0.21XC8 1 0.18XD8 1 0.18XE8 1 0.19XF8 1 0.29XG8

 1 0.26XH8 # 0.5

The arrows in Figure 6.20 summarize the required precedence conditions for this 
problem. For instance, task A must be completed before task B. This may be accom-
plished by task A being assigned to a workstation that precedes the workstation to 
which task B is assigned. Alternatively, this may also be accomplished by assigning 
tasks A and B to the same workstation (assuming both tasks can be accomplished 

C F G HA

D

B
E

0.20 0.21

0.18

0.19

0.18

0.29 0.26

0.27
Figure 6.20

Task precedence 
and times for the 
line balancing 
problem

 Task time for 
workstation 1

 Task time for 
workstation 2

 Task time for 
workstation 8
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The Line Balancing Problem 271

within the specified cycle time). In general, the workstation 11, 2, c, 8 2  that task i is 
assigned to may be computed from the decision variables as:

WSi 5 1Xi1 1 2Xi2 1 3Xi3 1 4Xi4 1 5Xi5 1 6Xi6 1 7Xi7 1 8Xi8

For example, if task C is assigned to workstation 3 (i.e., XC3 5 1) then WSC 5 3XC3 5 3.
Using this definition of WSi the precedence constraints may be stated as follows:

WSA # WSB  (implement as WSA 2 WSB # 0) } Task B is stationed with or after A
WSA # WSC  (implement as WSA 2 WSC # 0) } Task C is stationed with or after A
WSA # WSD  (implement as WSA 2 WSD # 0) } Task D is stationed with or after A
WSB # WSE  (implement as WSB 2 WSE # 0) } Task E is stationed with or after B
WSC # WSF  (implement as WSC 2 WSF # 0) } Task F is stationed with or after C
WSD # WSF (implement as WSD 2 WSF # 0) } Task F is stationed with or after D
WSE # WSG  (implement as WSE 2 WSG # 0) } Task G is stationed with or after E
WSF # WSG  (implement as WSF 2 WSG # 0) } Task G is stationed with or after F
WSG # WSH  (implement as WSG 2 WSH # 0) } Task H is stationed with or after G

Notice that the first of these precedence constraints ensures that task B is assigned to 
either the same workstation as task A (if WSA 5 WSB) or one following it (if WSA , WSB). 
Similar interpretations apply to the other precedence constraints.

6.13.3 Defining the objeCtiVe
Recall that the objective in this problem is to determine the minimum number of work-
stations required to achieve a cycle time of 0.5 minutes. Because WSi represents the 
workstation number to which task i is assigned and we want to use as few worksta-
tions as possible, we would like to minimize the maximum assigned workstation num-
ber. That is, we would like to use the objective:

MIN: MAX 1WSA, WSB, WSC, WSD, WSE, WSF, WSG, WSH 2

Unfortunately, this objective function is not a linear combination of the decision 
variables. However, we can express the same objective in a linear fashion by introduc-
ing an additional variable (Q) and eight additional constraints as follows:

MIN: Q
WSA # Q
WSB # Q
and so on to…
WSH # Q

Because the variable Q must be greater than or equal to the values of all the assigned 
workstation numbers, and because we are trying to minimize it, Q will always be set 
equal to the maximum assigned workstation number. At the same time, this objective 
function tries to find a solution where the maximum assigned workstation number 
(and the value of Q) is as small as possible. Therefore, this technique allows us to min-
imize the maximum assigned workstation number (and also minimizes the number of 
workstations used). (Note that this technique for minimizing the maximum of several 
computed values proves useful in a number of optimization modeling situations.)
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272 Chapter 6 Integer Linear Programming

6.13.4 implementing the moDel
The ILP model for the Colpitts Control Devices workload balancing problem is 
summarized as:
MIN: Q

Subject to:

XA1 1 XA2 1 XA3 1 XA4 1 XA5 1 XA6 1 XA7 1 XA8 5 1 } Assignment constraint for task A
XB1  1 XB2  1 XB3  1 XB4  1 XB5  1 XB6  1 XB7  1 XB8  5 1 } Assignment constraint for task B

and so on to…
XH1 1 XH2 1 XH3 1 XH4 1 XH5 1 XH6 1 XH7 1 XH8 5 1   Assignment constraint  
 for task H

0.2XA1 1 0.27XB1 1 0.21XC1 1 0.18XD1 1 0.18XE1 1 0.19XF1 1 0.29XG1 

 1 0.26XH1 # 0.5

0.2XA2 1 0.27XB2 1 0.21XC2 1 0.18XD2 1 0.18XE2 1 0.19XF2 1 0.29XG2 
 1 0.26XH2 # 0.5
and so on to…
0.2XA8 1 0.27XB8 1 0.21XC8 1 0.18XD8 1 0.18XE8 1 0.19XF8 1 0.29XG8 
 1 0.26XH8 # 0.5

WSA # Q } Objective constraint for task A’s workstation number 
WSB # Q } Objective constraint for task B’s workstation number 
and so on to…
WSH # Q } Objective constraint for task H’s workstation number
WSA 2 WSB # 0  } Task B is stationed with or after A
WSA 2 WSC # 0 } Task C is stationed with or after A
WSA 2 WSD # 0 } Task D is stationed with or after A
WSB 2 WSE # 0 } Task E is stationed with or after B
WSC 2 WSF # 0 } Task F is stationed with or after C
WSD 2 WSF # 0 } Task F is stationed with or after D
WSE 2 WSG # 0 } Task G is stationed with or after E
WSF 2 WSG # 0 } Task G is stationed with or after F
WSG 2 WSH # 0 } Task H is stationed with or after G

Where:

WSA 5 1XA1 1 2XA2 1 3XA3 1 4XA4 1 5XA5 1 6XA6 1 7XA7 1 8XA8   Task A’s work-
station number

WSB 5 1XB1  1 2XB2  1 3XB3  1 4XB4  1 5XB5  1 6XB6  1 7XA7 1 8XB8    Task B’s work-
station number 

and so on to…
WSH 5 1XH1 1 2XH2 1 3XH3 1 4XH4 1 5XH5 1 6XH6 1 7XH7 1 8XH8   Task H’s work-

station number 
All Xij are binary
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The Line Balancing Problem 273

A convenient way of implementing this model is shown in Figure 6.21 (and in the 
file Fig6-21.xlsm that accompanies this book). Cells D6 through K13 in this workbook 
represent the binary decision variables indicating to what workstation each task is 
assigned. An arbitrary starting solution is shown in Figure 6.21 with each task being 
assigned to a unique workstation.

The LHS formulas for the task assignment constraints are implemented in cells L6 
through L13, containing formulas summing the decision variables in their respective 
rows. Each of these cells will be constrained to equal 1.

Formula for cell L6:    =SUM(D6:K6)
(Copy to L7 through L13.)

Formulas computing the total task time assigned to each workstation are imple-
mented in cells D14 through K14 and will be constrained not to exceed the desired 
cycle time specified in cell M16.

Formula for cell D14:    =SUMPRODUCT(D6:D13,$C$6:$C$13)
(Copy to E14 through K14.)

The workstation number to which each task is assigned is computed in cells M6 
through M13 as:

Formula for cell M6:    =SUMPRODUCT(D6:K6,$D$5:$K$5)
(Copy to M7 through M13.)

Key Cell Formulas

Cell Formula Copied to

D14 5SUMPRODUCT(D6:D13,$C$6:$C$13) E14:K14
L6 5SUM(D6:K6) L7:L13
M6 5SUMPRODUCT(D6:K6,$D$5:$K$5) M7:M13
D18 5VLOOKUP(B18,$B$6:$M$13,12) – D19:D26
    VLOOKUP(C18,$B$6:$M$13,12)

Objective And Variable Cell

Constraint Cells

Variable Cells

Figure 6.21

Spreadsheet 
model for the line 
balancing problem
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274 Chapter 6 Integer Linear Programming

The predecessor and successor tasks for each required precedence relation are listed 
in cells B18 through C26. Recall that each successor task must be stationed with or after 
its associated predecessor task. The LHS formula for each of these constraints is imple-
mented in cells D18 through D26 and will be constrained to be less than or equal to zero.

Formula for cell D18: =VLOOKUP(B18,$B$6:$M$13,12)-VLOOKUP(C18,$B$6:$M$13,12)
(Copy to D19 through D26.)

The first VLOOKUP( ) function in this formula “looks up” the value in cell B18 in the 
first column of the range B6 through M13 and, when it finds the matching value, returns 
the value in the 12th column of the matching row (as specified by the value 12 as the 
third argument in the VLOOKUP( ) function). So, for cell D18, the first VLOOKUP( ) 
function looks for the letter A (from B18) in the first column of the range B6 through 
M13, and locates this value in the first row of the range. It then returns the value 1 found 
in the 12th column on that same row (cell M6) in the range B6 through M13. The second 
VLOOKUP( ) performs the identical operation for the value in cell C18 (i.e., the letter B) 
and returns the value 2 found cell M7. Copying this formula to cells D19 through D26 
computes the differences between the assigned workstation number for each predeces-
sor and successor pairing. (By default, the VLOOKUP( ) function assumes the values 
in the first column of the given range appear in ascending order. If that’s not the case, 
an optional fourth argument should be should be passed to the VLOOKUP( ) function 
with a Boolean value of False.)

Finally, the objective function for this problem is implemented in cell M14. While 
it seems intuitive and tempting to use the formula MAX(M6:M13) in this cell, recall 
that this is not a linear function of the decision variables. Instead, cell M14 should be 
defined to be both a decision variable cell and the objective cell. As with any other vari-
able cell, Solver will determine the optimal value for the cell so no formula should be 
placed in the cell. (The value 8 shown in cell M14 in Figure 6.21 was entered manually.) 
We will instruct Solver to choose and minimize the value in cell M14 while keeping its 
value greater than or equal to the values in cells M6 through M13. This, in turn, will 
minimize the number of workstations required.

6.13.5 analyzing the solution
The Solver parameters and options used to solve this problem are shown in Figure 6.22. 
Again, note that cell M14 is both a variable cell and the objective cell we wish to mini-
mize. The optimal solution to the problem is shown in Figure 6.23.

Solver Settings:

Objective: M14 (Min)
Variable cells: D6:K13, M14
Constraints: 
 D14:K14 ,5 M16
 D18:D26 ,5 0
 L6:L13 5 1
 M6:M13 ,5 M14
 D6:K13 5 binary

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)
 Integer Tolerance 5 0

Figure 6.22

Solver settings and 
options for the line 
balancing problem
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The Line Balancing Problem 275

This solution indicates that five workstations are required. Tasks A and C are 
assigned to workstation 1, tasks B and D to workstation 2, task E to workstation 3, tasks 
F and G to workstation 4, and task H to workstation 5. Note that the task times assigned 
to all workstations vary and are all less than the required cycle time of 0.5 minutes.

6.13.6 eXtension
Up to this point, we have approached the line balancing problem from the perspective 
of determining the minimum number of workstations required to achieve a specified 
cycle time. Another approach to the problem involves determining the minimum cycle 
time associated with a particular number of workstations. In the present example, if 
there is a single workstation (with all tasks assigned to that workstation) the minimum 
cycle time is 1.78 minutes – or the sum of the task times for all of the tasks. Similarly, 
if there are eight workstations (with each job assigned to a unique workstation) the 
minimum cycle time is 0.29 minutes—or the maximum individual task time. But what 
if there were 2, 3, 4, 5, 6, or 7 workstations? What is the minimum cycle time associated 
with each of those configurations? Fortunately, with a few easy changes, we can run a 
parameterized optimization on our existing model to answer these questions.

Figure 6.24 (and the file Fig6-24.xlsm that accompanies this book) illustrates the 
required changes to the model. First, notice that cell M16 (representing the cycle time) 
is now a decision variable cell and the objective cell we wish to minimize. Also, cell 
M14 now simply represents the RHS value for the constraints in cells M6 through M13 
which compute the assigned workstation number for each task. Figure 6.24 shows the 
solution we would obtain if only one workstation is allowed. However, the formula in 
cell M14 allows us to “parameterize” or specify several values for this cell.

Formula for cell M14: =PsiOptParam(1, 8)

Figure 6.23 Optimal solution to the line balancing problem
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276 Chapter 6 Integer Linear Programming

The PsiOptParam( ) function in cell M14 tells Analytic Solver Platform that we want 
to consider values between 1 and 8 for this cell. (Though not needed in this example, 
a third argument for the PsiOptParam( ) function can be specified to indicate a default 
value for the cell and is useful when using more than one PsiOptParam( ) functions 
in the same model.) As shown in Figure 6.25, the Platform tab in the Analytic Solver 
Platform task pane allows us to indicate that we want to run 8 optimizations. When we 
run the model using the settings shown in Figure 6.26, Analytic Solver Platform will 
run eight optimizations, changing the value in cell M14 from 1 to 8 in equal increments.

As shown in Figure 6.27, we may view the results for any of the eight optimizations 
using the displayed dropdown on the Analytic Solver Platform tab. Note that when 
we allow four workstations the minimum cycle time is 0.55 minutes. Assuming that 
more workstations require more staffing, there is a trade-off between labor costs and 
cycle time; lower cycle times involve higher labor costs and vice versa. After running 
a parameterized optimization, Analytic Solver Platform provides options to graph key 
results. As an example, the graph in Figure 6.27 shows the minimum cycle time (optimal 
objective value) for each of the eight parameterized optimizations. This sort of graph is 
very helpful for assisting management in determining where the benefit of additional 
reductions in cycle time is not worth the cost of manning additional workstations.

Key Cell Formulas

Cell Formula Copied to

M14 5PsiOptParam(1,8) --
D14 5SUMPRODUCT(D6:D13,$C$6:$C$13) E14:K14
L6 5SUM(D6:K6) L7:L13
M6 5SUMPRODUCT(D6:K6,$D$5:$K$5) M7:M13
D18  5VLOOKUP(B18,$B$6:$M$13,12) – D19:D26
    VLOOKUP(C18,$B$6:$M$13,12)

Objective And
Variable Cell

Constraint Cells

Variable Cells

Figure 6.24 Spreadsheet model for the parameterized line balancing problem
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The Line Balancing Problem 277

Figure 6.25

Analytic Solver 
Platform setting 
for running 
multiple 
optimizations

Solver Settings:

Objective: M16 (Min)
Variable cells: D6:K13, M16
Constraints:
 L6:L13 = 1
 D14:K14 <= M16
 D18:D26 <= 0
 M6:M13 <= M14
 D6:K13 = binary

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)
 Integer Tolerance = 0
 Optimizations to Run = 8

Figure 6.26

Solver settings and 
options for the  
parameterized line 
balancing problem

To create the graph shown in Figure 6.27, first run the eight parameterized optimiza-
tions. After Solver performs the optimizations, you can easily construct a graph like the 
one shown in Figure 6.27 by following these steps:

1. Click the Charts icon on the Analytic Solver Platform tab.
2. Select Multiple Optimizations, Monitored Cells.
3. Expand the Objective option, select $M$16, and click the “>” button.
4. Click OK.

Analytic Solver Platform then produces a basic graph of the optimization results and 
offers a variety of options that allow you to edit and customize its appearance.

47412_ch06_ptg01_247-325.indd   277 11/08/16   10:33 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



278 Chapter 6 Integer Linear Programming

Figure 6.27 Exploring results for the parameterized line balancing problem

6.14 The Fixed-Charge Problem
In most of the LP problems discussed in earlier chapters, we formulated objective func-
tions to maximize profits or minimize costs. In each of these cases, we associated a per-
unit cost or per-unit profit with each decision variable to create the objective function. 
However, in some situations, the decision to produce a product results in a lump-sum 
cost, or fixed-charge, in addition to a per-unit cost or profit. These types of problems 
are known as fixed-charge or fixed-cost problems. The following are some examples of 
fixed-costs:

•	 the cost to lease, rent, or purchase a piece of equipment or a vehicle that will be 
required if a particular action is taken

•	 the setup cost required to prepare a machine or production line to produce a  different 
type of product

•	 the cost to construct a new production line or facility that will be required if a 
particular decision is made

•	 the cost of hiring additional personnel that will be required if a particular decision is 
made

In each of these examples, the fixed costs are new costs that will be incurred if a par-
ticular action or decision is made. In this respect, fixed costs are different from sunk 
costs, which are costs that will be incurred regardless of what decision is made. Sunk 
costs are irrelevant for decision-making purposes because, by definition, decisions 
do not influence these costs. On the other hand, fixed costs are important factors in 
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decision making because the decision determines whether or not these costs will be 
incurred. The following example illustrates the formulation and solution of a fixed-
charge problem.

Remington Manufacturing is planning its next production cycle. The company can 
produce three products, each of which must undergo machining, grinding, and 
assembly operations. The following table summarizes the hours of machining, 
grinding, and assembly required by each unit of each product, and the total hours 
of capacity available for each operation.

Hours required By

Operation Product 1 Product 2 Product 3 Total Hours Available

Machining 2 3 6 600
Grinding 6 3 4 300
Assembly 5 6 2 400

The cost accounting department has estimated that each unit of product 1 man-
ufactured and sold will contribute $48 to profit, and each unit of products 2 and 3 
contributes $55 and $50, respectively. However, manufacturing a unit of product 1 
requires a setup operation on the production line that costs $1,000. Similar setups 
are required for products 2 and 3 at costs of $800 and $900, respectively. The mar-
keting department believes it can sell all the products produced. Therefore, the man-
agement of Remington wants to determine the most profitable mix of products to 
produce.

6.14.1 Defining the DeCision Variables
Although only three products are under consideration in this problem, we need six 
variables to formulate the problem accurately. We can define these variables as:

Xi 5 the number of units of product i to be produced, i 5 1, 2, 3

Yi 5 e1, if Xi . 0
0, if Xi 5 0

 , i 5 1, 2, 3

We need three variables, X1, X2, and X3, to correspond to the units of products 1, 2, 
and 3 produced. Each of the Xi variables has a corresponding binary variable, Yi, that 
will equal 1 if Xi assumes any positive value, or will equal 0 if Xi is 0. For now, do not 
be concerned about how this relationship between the Xi and Yi is enforced. We will 
explore that soon.

6.14.2 Defining the objeCtiVe funCtion
Given our definition of the decision variables, the objective function for our model is 
stated as:

MAX:  48X1 1 55X2 1 50X3 2 1,000Y1 2 800Y2 2 900Y3

The first three terms in this function calculate the marginal profit generated by 
the number of products 1, 2, and 3 sold. The last three terms in this function subtract 
the fixed costs for the products produced. For example, if X1 assumes a positive value, 
we know from our definition of the Yi variables that Y1 should equal 1. And if Y1 5 1,
the value of the objective function will be reduced by $1,000 to reflect payment of the 
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280 Chapter 6 Integer Linear Programming

setup cost. On the other hand, if X1 5 0, we know that Y1 5 0. Therefore, if no units 
of X1 are produced, the setup cost for product 1 will not be incurred in the objective. 
Similar relationships exist between X2 and Y2 and between X3 and Y3.

6.14.3 Defining the Constraints
Several sets of constraints apply to this problem. Capacity constraints are needed to 
ensure that the number of machining, grinding, and assembly hours used does not 
exceed the number of hours available for each of these resources. These constraints are 
stated as:

2X1 1 3X2 1 6X3 # 600  } machining constraint
6X1 1 3X2 1 4X3 # 300  } grinding constraint
5X1 1 6X2 1 2X3 # 400  } assembly constraint

We also need to include integer and nonnegativity conditions on the Xi variables as:

 Xi $ 0 and integer, i 5 1, 2, 3

The following constraint on the Yi variables is needed to ensure that they operate as 
binary variables:

 All Yi must be binary

As mentioned earlier, we must ensure that the required relationship between 
the Xi and Yi variables is enforced. In particular, the value of the Yi variables can be 
determined from the Xi variables. Therefore, we need constraints to establish this link 
between the value of the Yi variables and the Xi variables. These linking constraints are 
represented by:

 X1 # M1Y1

 X2 # M2Y2

 X3 # M3Y3

In each of these constraints, the Mi is a numeric constant that represents an upper 
bound on the optimal value of the Xi. Let’s assume that all the Mi are arbitrarily large 
numbers; for example, Mi 5 10,000. Then each constraint sets up a link between the 
value of the Xi and the Yi. For example, if any Xi variables in the previous constraints 
assume a value greater than 0, the corresponding Yi variable must assume the value 
1 or the constraint will be violated. On the other hand, if any of the Xi variables are 
equal to 0, the corresponding Yi variables could equal 0 or 1 and still satisfy the con-
straint. However, if we consider the objective function to this problem, we know that 
when given a choice, Solver will always set the Yi equal to 0 (rather than 1) because this 
results in a better objective function value. Therefore, we can conclude that if any Xi 
variables are equal to 0, Solver will set the corresponding Yi variable equal to 0 because 
this is feasible and results in a better objective function value.

6.14.4 Determining Values for “big m”
The Mi values used in the linking constraints are sometimes referred to as “Big M” val-
ues because they can be assigned arbitrarily large values. However, for reasons that go 
beyond the scope of this text, these types of problems are easier to solve if the Mi values 
are kept as small as possible. As indicated earlier, the Mi values impose upper bounds 
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The Fixed-Charge Problem 281

on the values of the Xi. So, if a problem indicates that a company could manufacture 
and sell no more than 60 units of X1, for example, we could let M1 5 60. However, even 
if upper bounds for the Xi are not explicitly indicated, it is sometimes easy to derive 
implicit upper bounds for these variables.

Let’s consider the variable X1 in the Remington problem. What is the maximum 
number of units of X1 that can be produced in this problem? Referring back to our 
capacity constraints, if the company produces 0 units of X2 and X3, it would run out of 
machining capacity after producing 600/2 5 300 units of X1. Similarly, it would run 
out of grinding capacity after producing 300/6 5 50 units of X1, and it would run out 
of assembly capacity after producing 400/5 5 80 units of X1. Therefore, the maximum 
number of units of X1 the company can produce is 50. Using similar logic, we can deter-
mine that the maximum units of X2 the company can produce is MIN(600/3, 300/3, 
400/6) 5 66.67, and the maximum units of X3 is MIN 1600/6, 300/4, 400/2 2 5 75.
Thus, for this problem reasonable upper bounds for X1, X2, and X3 are represented by 
M1 5 50, M2 5 66.67, and M3 5 75, respectively. (Note that the method illustrated here 
for obtaining reasonable values for the Mi does not apply if any of the coefficients in the 
machining, grinding, or assembly constraints are negative. Why is this?) When possi-
ble, you should determine reasonable values for the Mi in this type of problem. How-
ever, if this is not possible, you can assign arbitrarily large values to the Mi.

6.14.5 implementing the moDel
Using the values for the Mi calculated earlier, our ILP formulation of Remington’s pro-
duction planning model is summarized as:

 MAX: 48X1 1 55X2 1 50X3 2 1,000Y1 2 800Y2 2 900Y3

Subject to: 2X1 1 3X2 1 6X3 # 600          } machining constraint
 6X1 1 3X2 1 4X3 # 300 } grinding constraint
 5X1 1 6X2 1 2X3 # 400 } assembly constraint
 X1 2 50Y1 # 0 } linking constraint
 X2 2 67Y2 # 0 } linking constraint
 X3 2 75Y3 # 0 } linking constraint
 All Yi must be binary } binary constraints
 All Xi must be integer } integrality conditions
 Xi $ 0, i 5 1, 2, 3 } nonnegativity conditions

This model expresses the linking constraints in a slightly different (but algebraically 
equivalent) manner in order to follow our convention of having all the variables on the 
LHS of the inequality and a constant on the RHS. This model is implemented in the 
spreadsheet shown in Figure 6.28 (and in the file Fig6-28.xlsm that accompanies this 
book).

In the spreadsheet in Figure 6.28, cells B5, C5, and D5 represent the variables X1, X2,
and X3, and cells B15, C15, and D15 represent Y1, Y2, and Y3. The coefficients for the 
objective function are in cells B7 through D8. The objective function is implemented in 
cell F8 with the formula:

Formula for cell F8:  = SUMPRODUCT(B7:D7,B5:D5) –  
SUMPRODUCT(B8:D8,B15:D15)
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282 Chapter 6 Integer Linear Programming

Cells B11 through D13 contain the coefficients for the machining, grinding, and 
assembly constraints. The LHS formulas for these constraints are implemented in 
cells E11 through E13, and cells F11 through F13 contain the RHS values for these con-
straints. Finally, the LHS formulas for the linking constraints are entered in cells B16 
through D16 as:

Formula for cell B16:  =B5 - MIN($F$11/B11,$F$12/B12,$F$13/B13)*B15
(Copy to cells C16 through D16.)

Instead of entering the values for Mi in these constraints, we implemented formu-
las that would automatically calculate correct Mi values if the user of this spreadsheet 
changed any of the coefficients or RHS values in the capacity constraints.

6.14.6 solVing the moDel
The required Solver settings and options for this problem are shown in Figure 6.29. 
Notice that the ranges B5 through D5 and B15 through D15, which correspond to the Xi

and Yi variables, are both listed as ranges of cells that Solver can change. Also, notice 
the necessary binary constraint is imposed on cells B15 through D15.

Because so few integer variables exist in this problem, we should be able to obtain an 
optimal integer solution easily. If we set the Integer Tolerance to 0, we obtain the opti-
mal solution to this problem shown in Figure 6.30.

Key Cell Formulas

Cell Formula Copied to

B16 5B5-MIN($F$11/B11,$F$12/B12,$F$13/B13)*B15 C16:D16
E11 5SUMPRODUCT(B11:D11,$B$5:$D$5) C23:E23
F8 5SUMPRODUCT(B7:D7,B5:D5)

2SUMPRODUCT(B8:D8,B15:D15)
--

Constraint Cells

Objective Cell

Variable Cells

Figure 6.28

Spreadsheet model 
for Remington’s 
�xed-charge 
problem
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6.14.7 analyzing the solution
The solution shown in Figure 6.30 indicates that the company should pro-
duce 0 units of product 1, 56 units of product 2, and 32 units of product 
3 1X1 5 0, X2 5 56, and X3 5 32 2 . Solver assigned values of 0, 1, and 1, respectively, 
to cells B15, C15, and D15 1Y1 5 0, Y2 5 1, and Y3 5 1 2 . Thus, Solver maintained the 
proper relationship between the Xi and Yi because the linking constraints were speci-
fied for this problem.

Solver Settings:

Objective: F8 (Max)
Variable cells: B5:D5, B15:D15
Constraints:
 E11:E13 <= F11:F13
 B16:D16 <= 0
 B5:D5 >= 0
 B5:D5 = integer
 B15:D15 = binary

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)
 Integer Tolerance = 0

Figure 6.29

Solver settings 
and options for 
Remington’s �xed-
charge problem

Figure 6.30 Optimal integer solution to Remington’s fixed-charge problem
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284 Chapter 6 Integer Linear Programming

The values in B16, C16, and D16 indicate the amounts by which the values for X1, X2,
and X3 (in cells B5, C5, and D5) fall below the upper bounds imposed by their respective 
linking constraints. Thus, the optimal value of X2 is approximately 10.67 units below its 
upper bound of 66.67 and the optimal value of X3 is 43 units below its upper bound of 75.  
Because the optimal value of Y1 is zero, the linking constraint for X1 and Y1 imposes an 
upper bound of 0 on X1. Thus, the value in cell B16 indicates that the optimal value of 
X1 is 0 units below its upper bound of 0.

6.14.8 a Comment on if( ) funCtions
In Figure 6.30 it is important to note that we are treating cells B15, C15, and D15, which 
represent the binary variables Y1, Y2, and Y3, just like any other cells representing decision 
variables. We simply entered values of 0 into these cells to indicate that they represent deci-
sion variables. We then let Solver determine what values should be placed in these cells so 
that all the constraints are satisfied and the objective function is maximized. Some people 
try to make Solver’s job (or their own life) “easier” by using an alternate approach with IF( )  
functions in the objective to turn on or off the fixed costs depending on the values of cells 
B5, C5, and D5, which correspond to the variables X1, X2, and X3. For example, consider the 
model in Figure 6.31 (and Fig6-31.xlsm in the files accompanying this book) where we have 
eliminated the binary variables and linking constraints and replaced them with IF( ) func-
tions in the objective (cell F8) to model the fixed costs in this problem as follows:

 Formula for cell F8: =  SUMPRODUCT(B7:D7,B5:D5)-IF(B5>0,B8,0)- 
IF(C5>0,C8,0)-IF(D5>0,D8,0)

Figure 6.31 An alternate implementation of Remington’s fixed-charge problem with IF( ) functions replacing 
the binary variables and linking constraints
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Although this approach seems to make sense, it can produce unwanted results. 
Using IF( ) functions in this way introduces discontinuities in the spreadsheet model 
that make it more difficult for Solver (particularly Excel’s built-in Solver) to find the 
optimal solution. One of the rather amazing features of Analytic Solver Platform is its 
ability to automatically transform a model containing certain types of IF( ) functions 
into an equivalent integer programming model without IF( ) functions.

When you solve this problem, the diagnostic information on the Output tab in the 
Analytic Solver task pane (not shown) indicates that this model is diagnosed as a non-
smooth problem and Solver automatically transforms it into an “LP Convex” problem. 
Note that this transformation is not made on your worksheet but, instead, refers to how 
Analytic Solver is handling the model internally. Now, although the solution shown in 
Figure 6.31 matches the optimal solution shown in Figure 6.30, note that the number 
of variables (Vars), functions (Fcns), and dependencies (Dpns) listed in the bottom of 
the Analytic Solver task pane in Figure 6.31 are significantly higher than those listed in 
Figure 6.30. That is, Analytic Solver Platform’s automatic transformation of the model 
in Figure 6.31 (with IF( ) functions) resulted in a problem with 9 variables, 22 functions, 
and 51 dependencies, whereas our original model in Figure 6.30 (using binary vari-
ables and linking constraints) has only 6 variables, 7 functions, and 21 dependencies. 
Thus, while the same solution was obtained using IF( ) functions, it required Analytic 
Solver to formulate and solve a significantly more complicated model. In this case, the 
added complexity was not an issue. However, it is easy to see how the complications 
caused by IF( ) functions could become problematic as problem size increases. Addi-
tionally, Analytic Solver cannot always successfully transform a model containing IF( ) 
functions. Thus, for a variety of reasons, it is best to avoid IF( ) functions when possi-
ble and not rely on Analytic Solver Platform’s ability to automatically transform some 
models containing them. (If desired, you can disable this type of automatic transforma-
tion in Analytic Solver by setting the “Nonsmooth Model Transformation” property to 
“Never” on the Platform tab in the task pane.)

6.15 Minimum Order/Purchase Size
Many investment, production, and distribution problems have minimum purchase 
amounts or minimum production lot size requirements that must be met. For example, 
a particular investment opportunity might require a minimum investment of $25,000. 
Or, a supplier of a given part used in a production process might require a minimum 
order of 10 units. Similarly, many manufacturing companies have a policy of not pro-
ducing any units of a given item unless a certain minimum lot size will be produced.

To see how these types of minimum order/purchase requirements can be modeled, 
suppose that in the previous problem, Remington Manufacturing did not want to pro-
duce any units of product 3 1X3 2  unless it produced at least 40 units of this product. 
This type of restriction is modeled as:

 X3 # M3Y3

X3 $ 40Y3

The first constraint is the same type of linking constraint described earlier, in which 
M3 represents an upper bound on X3 (or an arbitrarily large number) and Y3 represents 
a binary variable. If X3 assumes any positive value, Y3 must equal 1 (if X3 . 0, then 
Y3 5 1). However, according to the second constraint, if Y3 equals 1, then X3 must be 
greater than or equal to 40 (if Y3 5 1, then X3 $ 40). On the other hand, if X3 equals 0, 
Y3 must also equal 0 in order to satisfy both constraints. Together, these two constraints 
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ensure that if X3 assumes any positive value, that value must be at least 40. This exam-
ple illustrates how binary variables can be used to model a practical condition that is 
likely to occur in a variety of decision problems.

6.16 Quantity Discounts
In all the LP problems considered to this point, we have assumed that the profit or cost 
coefficients in the objective function were constant. For example, consider our revised 
Blue Ridge Hot Tubs problem, which is represented by:

MAX: 350X1 1 300X2 } pro�t
 Subject to: 1X1 1   1X2 # 200 } pump constraint
 9X1 1   6X2 # 1,520 } labor constraint
 12X1 1 16X2 # 2,650 } tubing constraint
 X1, X2 $         0 } nonnegativity conditions
 X1, X2 must be integers          } integrality conditions

This model assumes that every additional Aqua-Spa 1X1 2  manufactured and sold 
results in a $350 increase in profit. It also assumes that every additional Hydro-Lux 
1X2 2  manufactured and sold results in a $300 increase in profit. However, as the pro-
duction of these products increases, quantity discounts might be obtained on compo-
nent parts that would cause the profit margin on these items to increase.

For example, suppose that if the company produces more than 75 Aqua-Spas, it will 
be able to obtain quantity discounts and other economies of scale that would increase 
the profit margin to $375 per unit for each unit produced in excess of 75. Similarly, 
suppose that if the company produces more than 50 Hydro-Luxes, it will be able to 
increase its profit margin to $325 for each unit produced in excess of 50. That is, each 
of the first 75 units of X1 and the first 50 units of X2 would produce profits of $350 and 
$300 per unit, respectively, and each additional unit of X1 and X2 would produce profits 
of $375 and $325 per unit, respectively. How do we model this type of problem?

6.16.1 formulating the moDel
To accommodate the different profit rates that can be generated by producing Aqua-
Spas and Hydro-Luxes, we need to define new variables for the problem, where

X11 5 the number of Aqua-Spas produced at $350 profit per unit
 X12 5 the number of Aqua-Spas produced at $375 profit per unit
 X21 5 the number of Hydro-Luxes produced at $300 profit per unit
 X22 5 the number of Hydro-Luxes produced at $325 profit per unit

Using these variables, we can begin to reformulate our problem as:

 MAX: 350X11 1 375X12 1 300X21  1 325X22

Subject to: 1X11 1     1X12 1     1X21  1     1X22 #    200            } pump constraint
 9X11 1     9X12 1     6X21 1     6X22  # 1,520 } labor constraint
 12X11 1   12X12 1   16X21  1   16X22  # 2,650 } tubing constraint
 All Xij $ 0 } simple lower bounds
 All Xij must be integers } integrality conditions
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This formulation is not complete. Notice that the variable X12 would always be pre-
ferred over X11 because X12 requires exactly the same resources as X11 and generates a 
larger per-unit profit. The same relationship holds between X22 and X21. Thus, the opti-
mal solution to the problem is X11 5 0, X12 5 118, X21 5 0, and X22 5 76. However, this 
solution is not allowable because we cannot produce any units of X12 until we have pro-
duced 75 units of X11; and we cannot produce any units of X22 until we have produced 
50 units of X21. Therefore, we must identify some additional constraints to ensure that 
these conditions are met.

6.16.2 the missing Constraints
To ensure that the model does not allow any units of X12 to be produced unless we have 
produced 75 units of X11, consider the constraints:

 X12 # M12Y1

X11 $ 75Y1

In the first constraint, M12 represents some arbitrarily large numeric constant and 
Y1 represents a binary variable. The first constraint requires that Y1 5 1 if any units 
of X12 are produced (if X12 . 0, then Y1 5 1). However, if Y1 5 1, then the second con-
straint would require X11 to be at least 75. According to the second constraint, the only 
way that fewer than 75 units of X11 can be produced is if Y1 5 0, which, by the first 
constraint, implies X12 5 0. These two constraints do not allow any units of X12 to be 
produced unless at least 75 units of X11 have been produced. The following constraints 
ensure that the model does not allow any units of X22 to be produced unless we have 
produced 50 units of X21:

 X22 # M22Y2

 X21 $ 50Y2

If we include these new constraints in our previous formulation (along with the con-
straints necessary to make Y1 and Y2 operate as binary variables), we would have an 
accurate formulation of the decision problem. The optimal solution to this problem is 
X11 5 75, X12 5 43, X21 5 50, X22 5 26.

6.17 A Contract Award Problem
Other conditions often arise in decision problems that can be modeled effectively using 
binary variables. The following example, which involves awarding contracts, illustrates 
some of these conditions.

B&G Construction is a commercial building company located in Tampa, Florida. 
The company has recently signed contracts to construct four buildings in differ-
ent locations throughout southern Florida. Each building project requires large 
amounts of cement to be delivered to the building sites. At B&G’s request, three 
cement companies have submitted bids for supplying the cement for these jobs. 
The following table summarizes the prices the three companies charge per deliv-
ered ton of cement and the maximum amount of cement that each company can 
provide.
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Cost per Delivered Ton of Cement

Project 1 Project 2 Project 3 Project 4 Max. Supply

Company 1 $120 $115 $130 $125 525
Company 2 $100 $150 $110 $105 450
Company 3 $140 $  95 $145 $165 550
Total Tons Needed   450   275   300   350

For example, company 1 can supply a maximum of 525 tons of cement, and each 
ton delivered to projects 1, 2, 3, and 4 will cost $120, $115, $130, and $125, respec-
tively. The costs vary primarily because of the different distances between the 
cement plants and the construction sites. The numbers in the last row of the table 
indicate the total amount of cement (in tons) required for each project.

In addition to the maximum supplies listed, each cement company placed spe-
cial conditions on its bid. Specifically, company 1 indicated that it will not supply 
orders of less than 150 tons for any of the construction projects. Company 2 indi-
cated that it can supply more than 200 tons to no more than one of the projects. 
Company 3 indicated that it will accept only orders that total 200 tons, 400 tons, or 
550 tons.

B&G can contract with more than one supplier to meet the cement requirements 
for a given project. The problem is to determine what amounts to purchase from 
each supplier to meet the demands for each project at the least total cost.

This problem seems like a transportation problem in which we want to determine 
how much cement should be shipped from each cement company to each construc-
tion project in order to meet the demands of the projects at a minimum cost. How-
ever, the special conditions imposed by each supplier require side constraints, which 
are not usually found in a standard transportation problem. First, we’ll discuss the 
formulation of the objective function and the transportation constraints. Then, we’ll 
consider how to implement the side constraints required by the special conditions in 
the problem.

6.17.1 formulating the moDel: the objeCtiVe 
funCtion anD transportation Constraints
To begin formulating this problem, we need to define our decision variables as:

Xij 5 tons of cement purchased from company i for construction project j

The objective function to minimize total cost is represented by:

MIN:         120X11 1 115X12 1 130X13 1 125X14

1100X21 1 150X22 1 110X23 1 105X24

1140X31 1   95X32 1 145X33 1 165X34

To ensure that the maximum supply of cement from each company is not exceeded, 
we need the following constraints:

X11 1 X12 1 X13 1 X14 # 525         } supply from company 1
X21 1 X22 1 X23 1 X24 # 450         } supply from company 2
X31 1 X32 1 X33 1 X34 # 550         } supply from company 3
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To ensure that the requirement for cement at each construction project is met, we 
need the following constraints:

X11 1 X21 1 X31 5 450         } demand for cement at project 1
 X12 1 X22 1 X32 5 275         } demand for cement at project 2
 X13 1 X23 1 X33 5 300         } demand for cement at project 3
 X14 1 X24 1 X34 5 350         } demand for cement at project 4

6.17.2 implementing the transportation 
Constraints
The objective function and the constraints of this problem are implemented in the 
spreadsheet model shown in Figure 6.32 (and in the file Fig6-32.xlsm that accompanies 
this book).

Key Cell Formulas

Cell Formula Copied to

B15 5SUM(B12:B14) C15:E15
F12 5SUM(B12:E12) F13:F14
G17 5SUMPRODUCT(B6:E8,B12:E14) --

Objective Cell

Constraint Cells

Variable Cells

Figure 6.32 Spreadsheet model for the transportation portion of B&G’s contract award problem

In this spreadsheet, the costs per delivered ton of cement are shown in cells B6 through E8. Cells B12 
through E14 represent the decision variables in the model. The objective function is entered in cell G17 as:

Formula for cell G17:  =SUMPRODUCT(B6:E8,B12:E14)
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290 Chapter 6 Integer Linear Programming

The LHS formulas of the supply constraints are entered in cells F12 through F14 as:

Formula for cell F12:          5SUM(B12:E12) 
(Copy to F13 through F14.)

Cells G12 through G14 contain the RHS values for these constraints. The LHS formu-
las for the demand constraints are entered in cells B15 through E15 as:

Formula for cell B15:         5SUM(B12:B14)
(Copy to C15 through E15.)

Cells B16 through E16 contain the RHS values for these constraints.

6.17.3 formulating the moDel: the siDe Constraints
Company 1 indicated that it will not accept orders for less than 150 tons for any of the 
construction projects. This minimum-size order restriction is modeled by the following 
eight constraints, where the Yij represent binary variables:

X11 # 525Y11         (implement as X11 2 525Y11 # 0)
X12 # 525Y12         (implement as X12 2 525Y12 # 0)
X13 # 525Y13         (implement as X13 2 525Y13 # 0)
X14 # 525Y14         (implement as X14 2 525Y14 # 0)
X11 $ 150Y11         (implement as X11 2 150Y11 $ 0)
X12 $ 150Y12         (implement as X12 2 150Y12 $ 0)
X13 $ 150Y13         (implement as X13 2 150Y13 $ 0)
X14 $ 150Y14         (implement as X14 2 150Y14 $ 0)

Each constraint has an algebraically equivalent constraint, which will ultimately be 
used in implementing the constraint in the spreadsheet. The first four constraints rep-
resent linking constraints that ensure if X11, X12, X13, or X14 is greater than 0, then its 
associated binary variable 1Y11, Y12, Y13, or Y14 2  must equal 1. (These constraints also 
indicate that 525 is the maximum value that can be assumed by X11, X12, X13, and X14.) 
The next four constraints ensure that if X11, X12, X13, or X14 is greater than 0, it must be 
at least 150. We include these constraints in the formulation of this model to ensure that 
any order given to company 1 is for at least 150 tons of cement.

Company 2 indicated that it can supply more than 200 tons to no more than one of 
the projects. This type of restriction is represented by the following set of constraints 
where, again, the Yij represent binary variables:

 X21 # 200 1 250Y21  (implement as X21 2 200 2 250Y21 # 0)
 X22 # 200 1 250Y22  (implement as X22 2 200 2 250Y22 # 0)
 X23 # 200 1 250Y23  (implement as X23 2 200 2 250Y23 # 0)
 X24 # 200 1 250Y24  (implement as X24 2 200 2 250Y24 # 0)
 Y21 1 Y22 1 Y23 1 Y24 # 1 (implement as is)

The first constraint indicates that the amount supplied from company 2 for project 1 
must be less than 200 if Y21 5 0, or less than 450 (the maximum supply from company 2)  
if Y21 5 1. The next three constraints have similar interpretations for the amount sup-
plied from company 2 to projects 2, 3, and 4, respectively. The last constraint indicates 
that at most, one of Y21, Y22, Y23, and Y24 can equal 1. Therefore, only one of the projects 
can receive more than 200 tons of cement from company 2.
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The final set of constraints for this problem addresses company 3’s stipulation that it 
will accept only orders totaling 200, 400, or 550 tons. This type of condition is modeled 
using binary Yij variables as:

 X31 1 X32 1 X33 1 X34 5 200Y31 1 400Y32 1 550Y33

(implement as X31 1 X32 1 X33 1 X34 2 200Y31 2 400Y32 2 550Y33 5 0)
 Y31 1 Y32 1 Y33 # 1 (implement as is)

These constraints allow for the total amount ordered from company 3 to assume 
four distinct values. If Y31 5 Y32 5 Y33 5 0, then no cement will be ordered from com-
pany 3. If Y31 5 1, then 200 tons must be ordered. If Y32 5 1, then 400 tons must be 
ordered. Finally, if Y33 5 1, then 550 tons must be ordered from company 3. These two 
constraints enforce the special condition imposed by company 3.

6.17.4 implementing the siDe Constraints
Although the side constraints in this problem allow us to impose important restrictions on 
the feasible solutions that can be considered, these constraints serve more of a “mechanical” 
purpose—to make the model work—but are not of primary interest to management. Thus, 
it is often convenient to implement side constraints in an out-of-the-way area of the spread-
sheet so that they do not detract from the primary purpose of the spreadsheet, in this case, 
to determine how much cement to order from each potential supplier. Figure 6.33 shows 
how the side constraints for the current problem can be implemented in a spreadsheet.

To implement the side constraints for company 1, we enter the batch-size restriction 
of 150 in cell B20 and reserve cells B21 through E21 to represent the binary variables 
Y11, Y12, Y13, and Y14. The LHS formulas for the linking constraints for company 1 are 
implemented in cells B22 through E22 as:

Formula for cell B22:         5B122$G$12*B21
(Copy to C22 through E22.)

Cell F22 contains a reminder for us to tell Solver that these cells must be less than or 
equal to 0. The LHS formulas for the batch-size constraints for company 1 are imple-
mented in cells B23 through E23 as:

Formula for cell B23:         5B122$B$20*B21
(Copy to C23 through E23.)

Cell F23 contains a reminder for us to tell Solver that these cells must be greater than 
or equal to 0.

To implement the side constraints for company 2, we enter the maximum supply 
value of 200 in cell B25 and reserve cells B26 through E26 to represent the binary vari-
ables Y21, Y22, Y23, and Y24. The LHS formulas for the maximum supply constraints are 
implemented in cells B27 through E27 as:

Formula for cell B27:         5B132$B$252($G$132$B$25)*B26
 (Copy to C27 through E27.)

Cell F27 reminds us to tell Solver that these cells must be less than or equal to 0. As 
discussed earlier, to ensure that no more than one order from company 2 exceeds 200 
tons, the sum of the binary variables for company 2 cannot exceed 1. The LHS formula 
for this constraint is entered in cell E28 as:

 Formula for cell E28:            =SUM(B26:E26)

Cell F28 reminds us to tell Solver that this cell must be less than or equal to 1.
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292 Chapter 6 Integer Linear Programming

To implement the side constraints for company 3, the three possible total order 
amounts are entered in cells B30 through D30. Cells B31 through D31 are reserved to 
represent the binary variables Y31, Y32, and Y33. The LHS formula for company 3’s total 
supply side constraint is entered in cell D32 as:

Formula for cell D32:       =SUM(B14:E14)–SUMPRODUCT(B30:D30,B31:D31)

Cell E32 reminds us to tell Solver that cell D32 must equal 0. Finally, to ensure that 
no more than one of the binary variables for company 3 is set equal to 1, we enter the 
sum of these variables in cell D33 as:

 Formula for cell D33:       =SUM(B31:D31)

Cell E33 reminds us to tell Solver that this cell must be less than or equal to 1.

6.17.5 solVing the moDel
The Solver parameters required for this problem are shown in Figure 6.34. Note that all 
of the cells representing binary variables must be identified as variable cells and must 
be constrained to assume only integer values of 0 or 1.

Key Cell Formulas

Cell Formula Copied to

B22 5B122$G$12*B21 C22:E22
B23 5B122$B$20*B21 C23:E23
B27 5B132$B$252($G$132$B$25)*B26 C27:E27
E28 5SUM(B26:E26) --
D32 5SUM(B14:E14)2SUMPRODUCT(B30:D30,B31:D31) --
D33 5SUM(B31:D31) --

Constraint Cells

Variable Cells

Figure 6.33 Spreadsheet model for the side constraints in B&G’s contract award problem
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6.17.6 analyzing the solution
An optimal solution to this problem is shown in Figure 6.35 (there are alternate opti-
mal solutions to this problem). In this solution, the amounts of cement required by 
each construction project are met exactly. Also, each condition imposed by the side 
constraints for each company is met. Specifically, the orders awarded to company 1 
are for at least 150 tons; a maximum of one of the orders awarded to company 2 
exceeds 200 tons; and the sum of the orders awarded to company 3 is exactly equal to 
400 tons.

6.18 The Branch-and-Bound  
Algorithm (Optional)
As mentioned earlier, a special procedure, known as the branch-and-bound (B&B) algo-
rithm, is required to solve ILPs. Although we can easily indicate the presence of integer 
variables in a model, it usually requires quite a bit of effort on Solver’s part to actually 
solve an ILP problem using the B&B algorithm. To better appreciate and understand 
what is involved in the B&B algorithm, let’s consider how it works.

The B&B algorithm starts by relaxing all the integrality conditions in an ILP and 
solving the resulting LP problem. As noted earlier, if we are lucky, the optimal solution 
to the relaxed LP problem might happen to satisfy the original integrality conditions. 
If this occurs, then we are done—the optimal solution to the LP relaxation is also the 
optimal solution to the ILP. However, it is more likely that the optimal solution to the 
LP will violate one or more of the original integrality conditions. For example, consider 

Solver Settings:

Objective: G17 (Min)
Variable cells: B12:E14, B21:E21, B26:E26, B31:D31
Constraints: 
 B12:E14 $ 0
 B21:E21 5 binary
 B26:E26 5 binary
 B31:D31 5 binary
 F12:F14 # G12:G14
 B15:E15 5 B16:E16
 B22:E22 # 0
 B23:E23 $ 0
 B27:E27 # 0
 E28 # 1
 D32 5 0
 D33 # 1

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)
 Integer Tolerance 5 0

Figure 6.34

Solver settings and 
options for B&G’s 
contract award 
problem
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294 Chapter 6 Integer Linear Programming

Figure 6.35 Optimal solution to B&G’s contract award problem

the problem whose integer and relaxed feasible regions were shown in Figure 6.1 and 
are repeated in Figure 6.36:

MAX:    2X1 1 3X2

Subject to:      X1 1 3X2 # 8.25
 2.5X1 1   X2 # 8.75
 X1, X2 $ 0
 X1, X2 must be integers

If we relax the integrality conditions in this problem and solve the resulting LP prob-
lem, we obtain the solution X1 5 2.769, X2 5 1.826 shown in Figure 6.36. This solution 
clearly violates the integrality conditions stated in the original problem. Part of the dif-
ficulty here is that none of the corner points of the relaxed feasible region are integer 
feasible (other than the origin). We know that the optimal solution to an LP problem 
will occur at a corner point of its feasible region but, in this case, none of those corner 
points (except the origin) correspond to integer solutions. Thus, we need to modify the 
problem so that the integer feasible solutions to the problem occur at corner points of 
the relaxed feasible region. This is accomplished by branching.
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6.18.1 branChing
Any integer variable in an ILP that assumes a fractional value in the optimal solution 
to the relaxed problem can be designated as a branching variable. For example, the 
variables X1 and X2 in the previous problem should assume only integer values but 
were assigned the values X1 5 2.769 and X2 5 1.826 in the optimal solution to the LP 
relaxation of the problem. Either of these variables could be selected as branching 
variables.

Let’s arbitrarily choose X1 as our branching variable. Because the current value of 
X1 is not integer feasible, we want to eliminate this solution from further consider-
ation. Many other solutions in this same vicinity of the relaxed feasible region can be 
eliminated as well. That is, X1 must assume a value less than or equal to 2 1X1 # 2 2
or greater than or equal to 3 1X1 $ 3 2  in the optimal integer solution to the ILP. 
Therefore, all other possible solutions where X1 assumes values between 2 and 3  
(such as the current solution where X1 5 2.769) can be eliminated from consideration. 

Optimal relaxed solution
(X1 5 2.769, X2 5 1.826)

Feasible integer solutions

1

2

3

0
0 1 2 3 4 X1

X2

Figure 6.36

Solution to LP 
relaxation at 
noninteger corner 
point
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296 Chapter 6 Integer Linear Programming

By branching on X1, our original ILP problem can be subdivided into the following 
two candidate problems:

 Problem I: MAX:    2X1 1 3X2

Subject to:      X1 1 3X2 # 8.25
  2.5X1 1   X2 # 8.75
      X1 # 2
  X1, X2 $ 0
 X1, X2 must be integers

 Problem II: MAX:    2X1 1 3X2

Subject to:      X1 1 3X2 # 8.25
 2.5X1 1   X2 # 8.75
       X1 $ 3
  X1, X2 $ 0
 X1, X2 must be integers

The integer and relaxed feasible regions for each candidate problem are shown in  
Figure 6.37. Notice that a portion of the relaxed feasible region shown in Figure 6.36 
has been eliminated in Figure 6.37, but none of the feasible integer solutions shown in 
 Figure 6.36 have been eliminated. This is a general property of the branching operation 
in the B&B algorithm. Also notice that several feasible integer solutions now occur on 
the boundary lines of the feasible regions shown in Figure 6.37. More importantly, one of 
these feasible integer solutions occurs at an extreme point of the relaxed feasible region for 
problem I (at the point X1 5 2, X2 5 0). If we relax the integrality conditions in problem I 
and solve the resulting LP, we could obtain an integer solution because one of the corner 
points of the relaxed feasible region corresponds to such a point. (However, this integer 
feasible extreme point still might not be the optimal solution to the relaxed LP problem.)

6.18.2 bounDing
The next step in the B&B algorithm is to select one of the existing candidate problems 
for further analysis. Let’s arbitrarily select problem I. If we relax the integrality condi-
tions in problem I and solve the resulting LP, we obtain the solution X1 5 2, X2 5 2.083
and an objective function value of 10.25. This value represents an upper bound on the 
best possible integer solution that can be obtained from problem I. That is, because the 
relaxed solution to problem I is not integer feasible, we have not yet found the best 
possible integer solution for this problem. However, we do know that the objective 
function value of the best possible integer solution that can be obtained from problem I 
can be no greater than 10.25. As you will see, this information can be useful in reducing 
the amount of work required to locate the optimal integer solution to an ILP problem.

6.18.3 branChing again
Because the relaxed solution to problem I is not entirely integer feasible, the B&B algo-
rithm proceeds by selecting X2 as a branching variable and creating two additional can-
didate problems from problem I. These problems are represented as:

 Problem III: MAX:    2X1 1 3X2

Subject to:       X1 1 3X2 # 8.25
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2.5X1 1     X2 # 8.75
       X1 # 2
       X2 # 2
 X1, X2  $ 0
 X1, X2 must be integers
 Problem IV: MAX:    2X1 1 3X2

Subject to:      X1 1 3X2 # 8.25
 2.5X1 1   X2 # 8.75
       X1 # 2
       X2 $ 3
 X1, X2 $ 0
 X1, X2 must be integers

Problem III is created by adding the constraint X2 # 2 to problem I. Problem IV is 
created by adding the constraint X2 $ 3 to problem I. Thus, our previous solution to 
problem I (where X2 5 2.083) will be eliminated from consideration as a possible solu-
tion to the LP relaxations of problems III and IV.

Problem I

Problem II

1

2

3

0
0 1 2 3 4 X1

X2

Figure 6.37

Feasible solutions 
to the candidate 
problems after the 
first branch
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298 Chapter 6 Integer Linear Programming

Problem IV is infeasible because there are no feasible solutions where X2 $ 3.
The integer and relaxed feasible regions for problems II and III are summarized in 
Figure 6.38.

All of the corner points to the relaxed feasible region of problem III correspond to 
integer feasible solutions. Thus, if we relax the integrality conditions in problem III and 
solve the resulting LP problem, we must obtain an integer feasible solution. The solu-
tion to problem III is represented by X1 5 2, X2 5 2 and has an objective function value 
of 10.

6.18.4 bounDing again
Although we have obtained an integer feasible solution to our problem, we won’t 
know if it is the optimal integer solution until we evaluate the remaining candidate 
problem (i.e., problem II). If we relax the integrality conditions in problem II and solve 
the resulting LP problem, we obtain the solution X1 5 3, X2 5 1.25 with an objective 
function value of 9.75.

Problem III

Problem II

1

2

3

0
0 1 2 3 4

X2

X1

Figure 6.38

Feasible solutions 
to the candidate 
problems after the 
second branch
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Because the solution to problem II is not integer feasible, we might be inclined to 
branch on X2 in a further attempt to determine the best possible integer solution for 
problem II. However, this is not necessary. Earlier we noted that for maximization ILP 
problems, the objective function value at the optimal solution to the LP relaxation of 
the problem represents an upper bound on the optimal objective function value of the 
original ILP problem. This means that even though we do not yet know the optimal 
integer solution to problem II, we do know that its objective function value cannot be 
greater than 9.75. And because 9.75 is worse than the objective function value for the 
integer solution obtained from problem III, we cannot find a better integer solution by 
continuing to branch problem II. Therefore, problem II can be eliminated from further 
consideration. Because we have no more candidate problems to consider, we can con-
clude that the optimal integer solution to our problem is X1 5 2, X2 5 2 with an opti-
mal objective function value of 10.

6.18.5 summary of b&b eXample
The steps involved in the solution to our example problem can be represented 
graphically in the form of a branch-and-bound tree, as shown in Figure 6.39. Although 
Figure 6.36 indicates that 11 integer solutions exist for this problem, we do not have 
to locate all of them in order to prove that the integer solution we found is the optimal 
solution. The bounding operation of the B&B algorithm eliminated the need to explic-
itly enumerate all the integer feasible solutions and select the best of those as the opti-
mal solution.

If the relaxed solution to problem II was greater than 10 (say 12.5), then the B&B algo-
rithm would have continued branching from this problem in an attempt to find a better 
integer solution (an integer solution with an objective function value greater than 10). 

Infeasible

Optimal

X1 $ 3

X2 $ 3

X1 # 2

X2 # 2

Problem IIProblem I

Original problem

Problem IVProblem III

X1 5 2.769
X2 5 1.826

Obj 5 11.019

X1 5 2
X2 5 2.083
Obj 5 10.25

X1 5 2
X2 5 2

Obj 5 10

X1 5 3
X2 5 1.25
Obj 5 9.75

Figure 6.39

Branch-and-
bound tree for the 
example problem
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Similarly, if problem IV had a feasible noninteger solution, we would have needed to 
perform further branching from that problem if its relaxed objective value was better 
than that of the best known integer feasible solution. Thus, the first integer solution 
obtained using B&B will not always be the optimal integer solution. A more detailed 
description of the operations of the B&B algorithm is given in Figure 6.40.

6.19 Summary
This chapter discussed the issues involved in formulating and solving ILP problems. 
In some cases, acceptable integer solutions to ILP problems can be obtained by round-
ing the solution to the LP relaxation of the problem. However, this procedure can lead 
to suboptimal solutions, which might still be viable if you can show that the solu-
tion obtained by rounding is within an acceptable distance from the optimal integer 

the branCh-anD-bounD algorithm
 1. Relax all the integrality conditions in ILP and solve the resulting LP problem. 

If the optimal solution to the relaxed LP problem happens to satisfy the original 
integrality conditions, stop2this is the optimal integer solution. Otherwise, pro-
ceed to step 2.

 2. If the problem being solved is a maximization problem let Zbest 5 2in�nity. 
If it is a minimization problem, let Zbest 5 1in�nity. (In general Zbest represents 
the objective function value of the best known integer solution as the algorithm  
proceeds.)

 3. Let Xj represent one of the variables that violated the integrality conditions 
in the solution to the problem that was solved most recently and let bj repre-
sent its noninteger value. Let INT( bj) represent the largest integer that is less 
than bj. Create two new candidate problems: one by appending the constraint 
Xj # INT( bj) to the most recently solved LP problem, and the other by append-
ing the constraint Xj $ INT( bj) 1 1 to the most recently solved LP problem. Place 
both of these new LP problems in a list of candidate problems to be solved.

 4. If the list of candidate problems is empty, proceed to step 9. Otherwise, remove 
a candidate problem from the list, relax any integrality conditions in the prob-
lem, and solve it.

 5. If there is not a solution to the current candidate problem (i.e., it is infeasible), 
proceed to step 4. Otherwise, let Zcp denote the optimal objective function value 
for the current candidate problem.

 6. If Zcp is not better than Zbest (for a maximization problem Zcp # Zbest or for a 
 minimization problem Zcp $ Zbest), proceed to step 4.

 7. If the solution to the current candidate problem does not satisfy the original 
 integrality conditions, proceed to step 3.

 8. If the solution to the current candidate problem does satisfy the original integral-
ity conditions, a better integer solution has been found. Thus, let Zbest 5 Zcp and 
save the solution obtained for this candidate problem. Then go back to step 4. 

 9. Stop. The optimal solution has been found and has an objective function value 
given by the current value of Zbest.

Figure 6.40

Detailed 
description of the 
B&B algorithm 
for solving ILP 
problems

47412_ch06_ptg01_247-325.indd   300 11/08/16   10:33 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



References 301

solution. This approach might be the only practical way to obtain integer solutions for 
some ILP problems.

The B&B algorithm is a powerful technique for solving ILP problems. A great deal 
of skill and creativity are involved in formulating ILPs so that they can be solved effi-
ciently using the B&B technique. Binary variables can be useful in overcoming a num-
ber of the simplifying assumptions often made in the formulation of LP models. Here 
again, quite a bit of creativity might be required on the part of the model builder to 
identify the constraints to implement various logical conditions in a given problem.
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the WorlD of business analytiCs

Who Eats the Float— Maryland National Improves  
Check Clearing Operations and Cuts Costs

Maryland National Bank (MNB) of Baltimore typically processes about 500,000 
checks worth over $250,000,000 each day. Those checks not drawn on MNB or 
a local bank must be cleared via the Federal Reserve System, a private clearing 
bank, or a “direct send” by courier service to the bank on which they were drawn.

Because funds are not available until the check clears, banks try to maximize 
the availability of current funds by reducing the float—the time interval required 
for a check to clear. Banks publish an availability schedule listing the number of 
days before funds from a deposited check are available to the customer. If clear-
ing time is longer than the schedule, the bank must “eat the float.” If the check is 
cleared through the Federal Reserve and clearing takes longer than the Federal 
Reserve availability schedule, then the Federal Reserve “eats the float.” If clearing 
time is actually less than the local bank’s availability schedule, the customer “eats 
the float.” The cost of float is related to the daily cost of capital.

MNB uses a system based on binary integer LP to decide the timing and 
method to be used for each bundle of checks of a certain type (called a cash letter). 

(Continued)
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302 Chapter 6 Integer Linear Programming

Total clearing costs (the objective function) include float costs, clearing charges 
from the Federal Reserve or private clearing banks, and transportation costs for 
direct sends. Constraints ensure that exactly one method is chosen for each check 
type and that a method can be used only at a time that method is available. Use of 
this system saves the bank $100,000 annually.

Source: Markland, Robert E., and Robert M. Nauss, “Improving Transit Check Clearing Operations at 
 Maryland National Bank,” Interfaces, vol. 13, no. 1, February 1983, pp. 1-9.

Questions and Problems
1. As shown in Figure 6.1, the feasible region for an ILP consists of a relatively small, 

finite number of points, whereas the feasible region of its LP relaxation consists of 
an infinite number of points. Why, then, are ILPs so much harder to solve than LPs?

2. Identify reasonable values for M12 and M22 in the example on quantity discounts 
presented in section 6.16.2 of this chapter.

 3. Consider the following optimization problem:

 MIN:                    X1 1 X2

Subject to:
24X1 1   4X2 #   1
28X1 1 10X2 $ 15
               X1, X2 $   0

a. What is the optimal solution to the problem?
b. Now suppose that X1 and X2 must be integers. What is the optimal solution?
c. What general principle of integer programming is illustrated by this question?

 4.  The following questions refer to the CRT Technologies project selection exam-
ple presented in this chapter. Formulate a constraint to implement the conditions 
described in each of the following statements.
a. Out of projects 1, 2, 4, and 6, CRT’s management wants to select exactly two 

projects.
b. Project 2 can be selected only if project 3 is selected and vice-versa.
c. Project 5 cannot be undertaken unless both projects 3 and 4 are also undertaken.
d. If projects 2 and 4 are undertaken, then project 5 must also be undertaken.

 5. In the CRT Technologies project selection example in this chapter, the problem indi-
cates that surplus funds in any year are reappropriated and cannot be carried over 
to the next year. Suppose this is no longer the case and surplus funds may be car-
ried over to future years. 
a. Modify the spreadsheet model given for this problem to reflect this change in 

assumptions.
b. What is the optimal solution to the revised problem?

 6.  The following questions refers to the Blue Ridge Hot Tubs example discussed in 
this chapter.
a. Suppose Howie Jones has to purchase a single piece of equipment for $1,000 in 

order to produce any Aqua-Spas or Hydro-Luxes. How will this affect the formu-
lation of the model of his decision problem?

b. Suppose Howie must buy one piece of equipment that costs $900 in order to produce 
any Aqua-Spas and a different piece of equipment that costs $800 in order to produce 
any Hydro-Luxes. How will this affect the formulation of the model for his problem?
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7. In the Colpitts Control Devices workload balancing problem presented in this chap-
ter a successor task could be assigned to the same workstation as an immediate pre-
decessor task. Suppose we change that assumption so that a successor task cannot 
be assigned to a workstation containing an immediate predecessor task.
a. What change is required to enforce this new restriction?
b. With that new restriction in force, solve Colpitts’ workload balancing problem to 

determine the minimum cycle time with 1, 2, 3, 4, 5, 6, 7, and 8 workstations and 
produce a graph of the results like the one shown in Figure 6.27. 

c.  Explain how and why your results differ from those shown in the graph in 
Figure 6.27.  

8. Bowden Transport provides dispatching services for independent truckers who 
specialize in transporting cars purchased online from the seller to the buyer. At 
present, there are four cars needing to be picked up and delivered and five trucks in 
the vicinity of these cars. The following table summarizes the marginal cost of each 
truck picking up and delivering each of the cars along with the current number of 
available car carrying spots available on each truck.

Marginal Cost to Pick up and Deliver

Car 1 Car 2 Car 3 Car 4 Capacity 

Truck 1 $276 $497 $251 $364 2 cars

Truck 2 $179 $375 $298 $190 1 car 

Truck 3 $150 $475 $344 $492 1 car

Truck 4 $  97 $163 $285 $185 1 car

Truck 5 $305 $150 $225 $165 2 cars

  Bowden charges the car buyer a flat fee of $600 to pick up and deliver each car and 
keeps 50% of the profit earned.
a. Formulate an ILP model for this problem.
b. Implement your ILP model in a spreadsheet and solve it.
c. What is the optimal solution? 

 9. Eric Brown is responsible for upgrading the wireless network for his employer. He 
has identified seven possible locations to install new nodes for the network. Each 
node can provide service to different regions within his employer’s corporate cam-
pus. The cost of installing each node and the regions that can be served by each 
node are summarized below.

Node 1: Regions 1, 2, 5; Cost: $700
Node 2: Regions 3, 6, 7; Cost  $600
Node 3: Regions 2, 3, 7, 9; Cost $900
Node 4: Regions 1, 3, 6, 10; Cost $1,250
Node 5: Regions 2, 4, 6, 8; Cost $850
Node 6: Regions 4, 5, 8, 10; Cost $1,000
Node 7: Regions 1, 5, 7, 8, 9; Cost $100

a. Formulate an ILP for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

 10. Garden City Beach is a popular summer vacation destination for thousands of people. 
Each summer, the city hires temporary lifeguards to ensure the safety of the vacation-
ing public. Garden City’s lifeguards are assigned to work five consecutive days each 
week and then have two days off. However, the city’s insurance company requires 
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304 Chapter 6 Integer Linear Programming

them to have at least the following number of lifeguards on duty each day of the 
week:

Minimum Number of Lifeguards required each Day

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

Lifeguards 18 17 16 16 16 14 19

The city manager would like to determine the minimum number of lifeguards that 
will have to be hired.
a. Formulate an ILP for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?
d. Several lifeguards have expressed a preference to be off on Saturdays and 

Sundays. What is the maximum number of lifeguards that can be off on the 
weekend without increasing the total number of life guards required?

11.  Joni Wu manages the GoldRush Casino in New Orleans. She would like to adjust 
the assortment of gaming machines in the casino to ensure they are operating in the 
most profitable manner. The following table summarizes the current assortment of 
gaming machines in the casino. Joni is willing to increase or decrease the number 
of each type of gaming machine by as much as 10% (rounded to the closet inte-
ger). However, due to space limitations the total number of gaming machines must 
remain the same. 

Machine Type units on Floor Avg Daily Profit per unit

$0.01 Reel Slots 243 $123
$0.05 Reel Slots 9 $46
$0.25 Reel Slots 45 $82
$0.50 Reel Slots 16 $76
$1.00 Reel Slots 40 $89
$5.00 Reel Slots 12 $205
$0.01 Video Slots 658 $316
$0.05 Video Slots 8 $108
$0.01 Video Poker 8 $207
$0.05 Video Slots 67 $137
$0.25 Video Slots 84 $133
$1.00 Video Slots 6 $115
$0.01Multi-Game 75 $117
$0.05Multi-Game 257 $70
$0.25Multi-Game 232 $90
$1.00Multi-Game 18 $266
$5.00Multi-Game 8 $114
$10.00Multi-Game 6 $776
$0.05 Video Keno 30 $47

a. How much does the casino currently make in profit on average each day?
b. Create an optimization model in a spreadsheet to solve Joni’s problem.
c. What is the optimal solution and how much profit should the casino expect to 

make on average each day under the optimal assortment of gaming machines?
12. Snookers Restaurant is open from 8:00 a.m. to 10:00 p.m. daily. Besides the hours 

they are open for business, workers are needed an hour before opening and an hour 
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after closing for setup and clean up activities. The restaurant operates with both 
full-time and part-time workers on the following shifts:

Shift Daily Pay rate

7:00 a.m. –  11:00 a.m. $32
7:00 a.m. –    3:00 p.m. $80

11:00 a.m. –    3:00 p.m. $32
11:00 a.m. –    7:00 p.m. $80
3:00 p.m. –   7:00 p.m. $32
3:00 p.m. – 11:00 p.m. $80
7:00 p.m. – 11:00 p.m. $32

The following numbers of workers are needed during each of the indicated time 
blocks.

Hours Workers Needed

7:00 a.m. –  11:00 a.m. 11
11:00 a.m. –    1:00 p.m. 24
1:00 p.m. –   3:00 p.m. 16
3:00 p.m. –   5:00 p.m. 10
5:00 p.m. –   7:00 p.m. 22
7:00 p.m. –   9:00 p.m. 17
9:00 p.m. – 11:00 p.m. 6

  At least one full time worker must be available during the hour before opening 
and after closing. Additionally, at least 30% of the employees should be full-time 
(8-hour) workers during the restaurant’s busy periods from 11:00 a.m. – 1:00 p.m. 
and 5:00 p.m. – 7:00 p.m.
a. Formulate an ILP for this problem with the objective of minimizing total daily 

labor costs.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

 13. A manufacturer of industrial motors has identified ten new prospective customers 
for its products with estimated each customer’s annual sales potential as follows:

Customer 1 2 3 4 5 6 7 8 9 10

Sales Potential
(in $1,000,000s)

$113 $106 $84 $52 $155 $103 $87 $91 $128 $131

  The company would like to allocate these ten prospective customers to five of its 
current salespeople in the most equitable way possible. (Each customer may be 
assigned to only one sales person.)  To do this, ideally, the customers assigned to 
each of the five salespeople would have exactly the same sales potential. If such 
a solution is not possible, the company would like to minimize the total amount 
by which the actual sales potentials for the customers assigned to each salesperson 
deviate from the ideal allocation. 
a. Ideally, what sales potential should be assigned to each salesperson?
b. Formulate a mathematical programming model for this problem. (Hint: For each 

salesperson, create two decision variables to represent the amount by which his or 
her assigned sales potential is, respectively, under or over the ideal sales potential.)

c. Implement your model in a spreadsheet and solve it.
d. What is the optimal solution?
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14. A power company is considering how to increase its generating capacity to meet 
expected demand in its growing service area. Currently, the company has 750 mega-
watts (MW) of generating capacity but projects it will need the following minimum 
generating capacities in each of the next five years:

Year

1 2 3 4 5

Minimum Capacity 
in Megawatts (MW)

780 860 950 1060 1180

The company can increase its generating capacity by purchasing four different 
types of generators: 10 MW, 25 MW, 50 MW, and/or 100 MW. The cost of acquiring 
and installing each of the four types of generators in each of the next five years is 
summarized in the following table:

Cost of generator (in $1,000s) in Year
generator Size 1 2 3 4 5

10 MW $300 $250 $200 $170 $145
25 MW $460 $375 $350 $280 $235
50 MW $670 $558 $465 $380 $320

100 MW $950 $790 $670 $550 $460

a. Formulate a mathematical programming model to determine the least costly way 
of expanding the company’s generating assets to the minimum required levels.

b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

15. Health Care Systems of Florida (HCSF) is planning to build a number of new emer-
gency-care clinics in central Florida. HCSF management has divided a map of the 
area into seven regions. They want to locate the emergency centers so that all seven 
regions will be conveniently served by at least one facility. Five possible sites are 
available for constructing the new facilities. The regions that can be served conve-
niently by each site are indicated by X in the following table:

Possible Building Sites

region Sanford Altamonte Apopka Casselberry Maitland

1 X X
2 X X X X
3 X X
4 X X
5 X X
6 X X
7 X X

Cost ($1,000s) $450 $650 $550 $500 $525

a.  Formulate an ILP problem to determine which sites should be selected in order 
to provide convenient service to all locations in the least costly manner.

b.  Implement your model in a spreadsheet and solve it.
c.  What is the optimal solution?

16.  Charles McKeown is an acquisitions editor for a college textbook publisher. The file 
Books.xlsx that accompanies this book contains a list of 151 textbooks that Charles 
has an opportunity to acquire from another publisher. For each title, the file lists 
the price (acquisition cost) and net present value of expected future sales. Assume 
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that Charles may select up to 20 tiles from this list and spend $12 million on these 
acquisitions.
a. Create an optimization model in a spreadsheet to solver Charles’ problem.
b. Which titles should Charles acquire, how much of the budget would be used, 

and what is the expected NPV of these titles?
17. Radford Castings can produce brake shoes on six different machines. The follow-

ing table summarizes the manufacturing costs associated with producing the brake 
shoes on each machine along with the available capacity on each machine. If the 
company has received an order for 1,800 brake shoes, how should it schedule these 
machines?

Machine Fixed Cost Variable Cost Capacity

1 $1,000 $21 500
2 $   950 $23 600
3 $   875 $25 750
4 $   850 $24 400
5 $   800 $20 600
6 $   700 $26 800

a. Formulate an ILP model for this problem. 
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

 18.  The teenage daughter of a recently deceased movie star inherited a number of items 
from her famous father’s estate. Rather than convert these assets to cash imme-
diately, her financial advisor has recommended that she let some of these assets 
appreciate in value before disposing of them. An appraiser has given the following 
estimates of the assets’ worth (in $1,000s) for each of the next five years.

Year 1 Year 2 Year 3 Year 4 Year 5

Car $  35 $  37 $  39 $  42 $  45
Piano $  16 $  17 $  18 $  19 $  20
Necklace $125 $130 $136 $139 $144
Desk $  25 $  27 $  29 $  30 $  33
Golf Clubs $  40 $  43 $  46 $  50 $  52
Humidor $    5 $   7 $    8 $  10 $  11

Knowing this teenager’s propensity to spend money, her financial advisor would 
like to develop a plan to dispose of these assets that will maximize the amount of 
money received and ensure that at least $30,000 of new funds become available 
each year to pay her college tuition.
a. Formulate an ILP model for this problem. 
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

19. A developer of video game software has seven proposals for new games. Unfortu-
nately, the company cannot develop all the proposals because its budget for new 
projects is limited to $950,000 and it has only 20 programmers to assign to new proj-
ects. The financial requirements, returns, and the number of programmers required 
by each project are summarized in the following table. Projects 2 and 6 require spe-
cialized programming knowledge that only one of the programmers has. Both of 
these projects cannot be selected because the programmer with the necessary skills 
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can be assigned to only one of the projects. (Note:  All dollar amounts represent 
thousands.)

Project Programmers required Capital required estimated NPV

1 7 $250 $650
2 6 $175 $550
3 9 $300 $600
4 5 $150 $450
5 6 $145 $375
6 4 $160 $525
7 8 $325 $750

a. Formulate an ILP model for this problem.
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

20. Tropicsun is a leading grower and distributor of fresh citrus products with three 
large citrus groves scattered around central Florida in the cities of Mt. Dora, Eustis, 
and Clermont. Tropicsun currently has 275,000 bushels of citrus at the grove in Mt. 
Dora, 400,000 bushels at the grove in Eustis, and 300,000 at the grove in  Clermont. 
Tropicsun has citrus processing plants in Ocala, Orlando, and Leesburg with pro-
cessing capacities to handle 200,000, 600,000, and 225,000 bushels, respectively. 
Tropicsun contracts with a local trucking company to transport its fruit from the 
groves to the processing plants. The trucking company charges a flat rate of $8 per 
mile regardless of how many bushels of fruit are transported. The following table 
summarizes the distances (in miles) between each grove and processing plant:

Distances (in Miles) Between groves and Plants

Processing Plant

grove Ocala Orlando Leesburg

Mt. Dora 21 50 40
Eustis 35 30 22
Clermont 55 20 25

Tropicsun wants to determine how many bushels to ship from each grove to each 
processing plant in order to minimize the total transportation cost.
a. Formulate an ILP model for this problem.
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

21. A real estate developer is planning to build an apartment building specifically for 
graduate students on a parcel of land adjacent to a major university. Four types 
of apartments can be included in the building: efficiencies, and one-, two-, or 
three-bedroom units. Each efficiency requires 500 square feet; each one-bedroom 
apartment requires 700 square feet; each two-bedroom apartment requires 800 
square feet; and each three-bedroom unit requires 1,000 square feet. The developer 
believes that the building should include no more than 15 one-bedroom units, 
22 two-bedroom units, and 10 three-bedroom units. Local zoning ordinances do 
not allow the developer to build more than 40 units in this particular building 
location, and restrict the building to a maximum of 40,000 square feet. The developer 
has already agreed to lease 5 one-bedroom units and 8 two-bedroom units to a local 
rental agency that is a “silent partner” in this endeavor. Market studies indicate that 
efficiencies can be rented for $350 per month, one-bedrooms for $450 per month, 
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two-bedrooms for $550 per month, and three-bedrooms for $750 per month. How 
many rental units of each type should the developer include in the building plans in 
order to maximize the potential rental income from the building?
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?
d. Which constraint in this model limits the builder’s potential rental income from 

increasing any further?
22. Bellows Lumber Yard, Inc. stocks standard length, 25-foot boards, which it cuts to 

custom lengths to fill individual customer orders. An order has just come in for 
5,000 7-foot boards, 1,200 9-foot boards, and 300 11-foot boards. The lumber yard 
manager has identified six ways to cut the 25-foot boards to fill this order. The six 
cutting patterns are summarized in the following table.

Number of Boards Produced

Cutting Pattern 7 ft 9 ft 11 ft

1 3 0 0
2 2 1 0
3 2 0 1 
4 1 2 0
5 0 1 1
6 0 0 2

  One possibility (cutting pattern 1) is to cut a 25-foot board into three 7-foot 
boards, and not to cut any 9- or 11-foot boards. Note that cutting pattern 1 uses 
a total of 21 feet of board and leaves a 4-foot piece of scrap. Another possibility 
(cutting pattern 4) is to cut a 25-foot board into one 7-foot board and two 9-foot 
boards (using all 25 feet of the board). The remaining cutting patterns have similar 
interpretations. The lumber yard manager wants to fill this order using the fewest 
number of 25-foot boards as possible. To do this, the manager needs to determine 
how many 25-foot boards to run through each cutting pattern.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?
d. Suppose the manager wants to minimize waste. Would the solution change?

 23. Howie’s Carpet World has just received an order for carpets for a new office build-
ing. The order is for 4,000 yards of carpet 4-feet wide, 20,000 yards of carpet 9-feet 
wide, and 9,000 yards of carpet 12-feet wide. Howie can order two kinds of carpet 
rolls, which he will then have to cut to fill this order. One type of roll is 14-feet wide, 
100-yards long, and costs $1,000 per roll; the other is 18-feet wide, 100-yards long, 
and costs $1,400 per roll. Howie needs to determine how many of the two types of 
carpet rolls to order and how they should be cut. He wants to do this in the least 
costly way possible.
a. Formulate an LP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution?
d. Suppose Howie wants to minimize waste. Would the solution change?

24.  A manufacturer is considering alternatives for building new plants in order to be 
located closer to three of its primary customers with whom it intends to develop 
long-term relationships. The net cost of manufacturing and transporting each unit 
of the product to its customers will vary depending on where the plant is built and 
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the production capacity of the plant. These costs are summarized in the following 
table:

Net Cost per unit
to Supply Customer

Plant X Y Z

1 35 30 45
2 45 40 50
3 70 65 50
4 20 45 25
5 65 45 45

  The annual demand for products from customers X, Y, and Z is expected to be 
40,000, 25,000, and 35,000 units, respectively. The annual production capacity and 
construction costs for each plant are:

Plant Production Capacity Construction Cost (in $1,000s)

1 40,000 $1,325
2 30,000 $1,100
3 50,000 $1,500
4 20,000 $1,200
5 40,000 $1,400

  The company wants to determine which plants to build in order to satisfy customer 
demand at a minimum total cost.
a. Formulate an ILP model for this problem.
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

25.  Refer to the previous question. Suppose plants 1 and 2 represent different building 
alternatives for the same site (i.e., only one of these plants can be built).  Similarly, 
suppose plants 4 and 5 represent different building alternatives for another site.
a. What additional constraints are required to model these new conditions?
b. Revise the spreadsheet to reflect these additional constraints and solve the result-

ing problem.
c. What is the optimal solution?

 26. GLMH Shipping is a start-up company that plans to offer same-day shipping ser-
vices between 20 major cities in the U.S. In order to provide this service, GLMH 
needs to build hubs at airports in several of these cities. GLMH wants to select hub 
locations in a way that ensures each of the 20 cities is within 500 miles of at least one 
of the hub locations. The file Airports.xlsx contains data describing the estimated 
cost of establishing a hub in each city as well as a matrix summarizing the distances 
in miles between each of the cities.
a. Create a spreadsheet model to determine where hubs should be located in order 

to achieve GLMH’s objectives in the most cost effective manner.
b. In what cities should GLMH create hubs and what is the total cost of this plan?

27. A company manufactures three products: A, B, and C. The company currently has 
an order for 3 units of product A, 7 units of product B, and 4 units of product C. 
There is no inventory for any of these products. All three products require special 
processing that can be done on one of two machines. The cost of producing each 
product on each machine is summarized in the following table:

Cost of Producing a unit of Product

Machine A B C

1 $13 $  9 $10
2 $11 $12 $  8
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The time required to produce each product on each machine is summarized in the 
following table:

Time (Hours) Needed to
Produce a unit of Product

Machine A B C

1 0.4 1.1 0.9
2 0.5 1.2 1.3

  Assume machine 1 can be used for 8 hours and machine 2 can be used for 6 hours. 
Each machine must undergo a special setup operation to prepare it to produce each 
product. After completing this setup for a product, any number of that product type 
can be produced. The setup costs for producing each product on each machine are 
summarized in the following table:

Setup Costs for Producing

Machine A B C

1 $55 $93 $60
2 $65 $58 $75

a. Formulate an ILP model to determine how many units of each product to pro-
duce on each machine in order to meet demand at a minimum cost.

b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

 28. Clampett Oil purchases crude oil products from suppliers in Texas (TX), Oklahoma 
(OK), Pennsylvania (PA), and Alabama (AL), from which it refines four end- 
products: gasoline, kerosene, heating oil, and asphalt. Because of differences in 
the quality and chemical characteristics of the oil from the different suppliers, the 
amount of each end-product that can be refined from a barrel of crude oil varies 
depending on the source of the crude. Additionally, the amount of crude available 
from each source varies, as does the cost of a barrel of crude from each supplier. 
These values are summarized in the following table. For example, the first line of 
this table indicates that a barrel of crude oil from Texas can be refined into 2 barrels 
of gasoline, 2.8 barrels of kerosene, 1.7 barrels of heating oil, or 2.4 barrels of asphalt. 
Each supplier requires a minimum purchase of at least 500 barrels.

raw Material Characteristics 

Possible Production per Barrel

Crude 
Oils

Barrels
Available gas Kero. Heat Asphalt

Cost
per Barrel

Trucking 
Cost

TX 1,500 2.00 2.80 1.70 2.40 $22 $1,500
OK 2,000 1.80 2.30 1.75 1.90 $21 $1,700
PA 1,500 2.30 2.20 1.60 2.60 $22 $1,500
AL 1,800 2.10 2.60 1.90 2.40 $23 $1,400

  The company owns a tanker truck that picks up whatever crude oil it purchases. 
This truck can hold 2,000 barrels of crude. The cost of sending the truck to pick 
up oil from the various locations is shown in the column labeled “Trucking Cost.” 
The company’s plans for its next production cycle specify 750 barrels of gasoline, 
800 barrels of kerosene, 1,000 barrels of heating oil, and 300 barrels of asphalt to be 
produced.
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312 Chapter 6 Integer Linear Programming

a. Formulate an ILP model that can be solved to determine the purchasing plan that 
will allow the company to implement its production plan at the least cost.

b. Implement this model in a spreadsheet and solve it.
c. What is the optimal solution?

29. The Clampett Oil Company has a tanker truck that it uses to deliver fuel to cus-
tomers. The tanker has five different storage compartments with capacities to hold 
2,500, 2,000, 1,500, 1,800 and 2,300 gallons, respectively. The company has an order 
to deliver 2,700 gallons of diesel fuel; 3,500 gallons of regular unleaded gasoline; 
and 4,200 gallons of premium unleaded gasoline. If each storage compartment can 
hold only one type of fuel, how should Clampett Oil load the tanker?  If it is impos-
sible to load the truck with the full order, the company wants to minimize the total 
number of gallons by which the order is short. (Hint: Consider using slack variables 
to represent shortage amounts.)
a. Formulate an ILP model for this problem.
b. Implement this model in a spreadsheet and solve it.
c. What is the optimal solution?

30. Dan Boyd is a financial planner trying to determine how to invest $100,000 for one 
of his clients. The cash flows for the five investments under consideration are sum-
marized in the following table:

Summary of Cash in-Flows and Out-Flows
(at Beginning of Year)

A B C D e

Year 1 21.00 0.00 21.00 0.00 21.00
Year 2 10.45 21.00 0.00 0.00 0.00
Year 3 11.05 0.00 0.00 21.00 1.25
Year 4      0.00 11.30 11.65 11.30 0.00

  For example, if Dan invests $1 in investment A at the beginning of  year 1, he will 
receive $0.45 at the beginning of  year 2 and another $1.05 at the beginning of year 
3. Alternatively, he can invest $1 in investment B at the beginning of year 2 and 
receive $1.30 at the beginning of year 4. Entries of “0.00” in the preceding table indi-
cate times when no cash in-flows or out-flows can occur. The minimum required 
investment for each of the possible investments is $50,000. Also, at the beginning of 
each year, Dan may also place any or all of the available money in a money market 
account that is expected to yield 5% per year. How should Dan plan his investments 
if he wants to maximize the amount of money available to his client at the end of 
year 4?
a. Formulate an ILP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

31. Bavarian Motor Company (BMC) manufacturers cars and SUVs in Europe and 
ships them to distributors in the U.S. Presently, BMC has an inventory of 200 cars 
and 140 SUVs in Newark, NJ and 300 cars and 180 SUVs in Jacksonville, FL. These 
vehicles need to be transported by rail to meet the demand for BMC distributors in 
the cities summarized in the following table:

Vehicles 
Needed

City Cars SuVs

Boston 100 75
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Columbus 60 40

Richmond 80 55

Atlanta 170 95

Mobile 70 50

BMC rents rail cars to move its inventory of vehicles between these cities. Each rail 
car can hold up to 12 vehicles and are readily available in any quantity needed. The 
cost of renting a rail car and having it moved among these cities is summarized in 
Figure 6.41.
a. Formulate an ILP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

32. The Mega-Bucks Corporation is planning its production schedule for the next 
4 weeks and is forecasting the following demand for compound X—a key raw 
material used in its production process:

Forecasted Demand of Compound X

Week 1 2 3 4

Demand 400 lbs. 150 lbs. 200 lbs. 350 lbs.

The company currently has no compound X on hand. The supplier of this product 
delivers only in batch sizes that are multiples of 100 pounds (0, 100, 200, 300, etc.). 
The price of this material is $125 per 100 pounds. Deliveries can be arranged weekly, 
but there is a delivery charge of $50. Mega-Bucks estimates that it costs $15 for each 
100 pounds of compound X held in inventory from one week to the next. Assuming 
Mega-Bucks does not want more than 50 pounds of compound X in inventory at 
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$990$1,110

$860
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Costs per rail car 
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vehicle distribution 
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314 Chapter 6 Integer Linear Programming

the end of week 4, how much should it order each week so that the demand for this 
product will be met in the least costly manner?
a. Formulate an ILP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver.
c. What is the optimal solution?

33. An automobile manufacturer is considering mechanical design changes in one of its 
top-selling cars to reduce the weight of the car by at least 400 pounds to improve its 
fuel efficiency. Design engineers have identified 10 changes that could be made in 
the car to make it lighter (e.g., using composite body pieces rather than metal). The 
weight saved by each design change and the estimated costs of implementing each 
change are summarized in the following table:

Design Change

  1 2 3 4 5 6 7 8 9 10

Weight Saved (lbs)     50 75 25 150 60 95 200 40 80 30
Cost (in $1,000s) $150 $350 $50 $450 $90 $35 $650 $75 $110 $30

Changes 4 and 7 represent alternate ways of modifying the engine block and, there-
fore, only one of these options could be selected. The company wants to determine 
which changes to make in order to reduce the total weight of the car by at least 400 
pounds in the least costly manner.
a. Formulate an ILP model for this problem.
b. Create a spreadsheet model for this problem and solve it.
c. What is the optimal solution?

34. Darten Restaurants owns and operates several different restaurant chains including 
Red Snapper and the Olive Grove. The company is considering opening a number 
of new units in Ohio. There are 10 different sites available for the company to build 
new restaurants and the company can build either type of restaurant at a given site. 
The following table summarizes the estimated net present value (NPV) of the cash 
flows (in millions) resulting from locating each type of restaurant at each of the sites 
and also indicates which sites are within 15 miles of each other.

Site
red Snapper

NPV
Olive grove

NPV
Other Sites within 

15 miles

1 $11.8 $16.2 2, 3, 4
2 13.3 13.8 1, 3, 5
3 19.0 14.6 1, 2, 4, 5
4 17.8 12.4 1, 3
5 10.0 13.7 2, 3, 9
6 16.1 19.0 7
7 13.3 10.8 6, 8
8 18.8 15.2 7
9 17.2 15.9 5, 10

10 14.4 16.8 9

a. Suppose the company does not want to build two units from the same chain 
within 15 miles of each other (e.g., it does not want to build two Red Snappers 
within 15 miles of each other nor is it willing to build two Olive Groves within 
15 miles of each other). Create a spreadsheet model to determine which (if any) 
restaurant it should build at each site in order to maximize total NPV.
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b. What is the optimal solution?
c. Now additionally suppose the company does not want to build a Red Snapper 

unless it also builds an Olive Grove at another site within 15 miles. Modify your 
spreadsheet model to determine which (if any) restaurant it should build at each 
site in order to maximize total NPV.

d. What is the optimal solution?
35. Paul Bergey is in charge of loading cargo ships for International Cargo Company 

(ICC) at the port in Newport News, Virginia. Paul is preparing a loading plan for an 
ICC freighter destined for Ghana. An agricultural commodities dealer would like to 
transport the following products aboard this ship.

Commodity
Amount Available 

(Tons)
Volume per Ton 

(cubic feet)
Profit per Ton 

($)

1 4,800 40 70
2 2,500 25 50
3 1,200 60 60
4 1,700 55 80

Paul can elect to load any and/or all of the available commodities. However, the 
ship has three cargo holds with the following capacity restrictions:

Cargo Hold Weight capacity (tons) Volume Capacity (cubic Feet)

Forward 3,000 145,000
Center 6,000 180,000
Rear 4,000 155,000

Only one type of commodity can be placed into any cargo hold. However, because 
of balance considerations, the weight in the forward cargo hold must be within 10% 
of the weight in the rear cargo hold and the center cargo hold must be between 40% 
and 60% of the total weight on board.
a. Formulate an ILP model for this problem.
b. Create a spreadsheet model for this problem and solve it using Solver. 
c. What is the optimal solution? 

36. KPS Communications is planning to bring wireless internet access to the town of 
Ames, Iowa. Using a geographic information system, KPS has divided Ames into 
the following 5 by 5 grid. The values in each block of the grid indicate the expected 
annual revenue (in $1,000s) KPS will receive if wireless internet service is provided 
to the geographic area represented by each block.

expected Annual revenue By Area (in $1,000s)

$34 $43 $62 $42 $34
$64 $43 $71 $48 $65
$57 $57 $51 $61 $30
$32 $38 $70 $56 $40
$68 $73 $30 $56 $44

KPS can build wireless towers in any block in the grid at a cost of $150,000 per 
tower. Each tower can provide wireless service to the block it is in and to all adja-
cent blocks. (Blocks are considered to be adjacent if they share a side. Blocks touch-
ing only at cornerpoint are not considered adjacent.)   KPS would like to determine 
how many towers to build and where to build them in order to maximize profits in 
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316 Chapter 6 Integer Linear Programming

the first year of operations. (Note: If a block can receive wireless service from two 
different towers, the revenue for that block should only be counted once.)
a. Create a spreadsheet model for this problem and solve it.
b. What is the optimal solution and how much money will KPS make in the first 

year?
c. Suppose KPS is required to provide wireless service to all of the blocks. What is 

the optimal solution and how much money will KPS make in the first year?
37. The emergency services coordinator for Dade County, Tallys DeCampinas , is inter-

ested in locating the county’s two ambulances to maximize the number of residents 
that can be reached within 4 minutes in emergency situations. The county is divided 
into six regions, and the average times required to travel from one region to the next 
are summarized in the following table:

To region

From region 1 2 3 4 5 6

1 0 4 3 6 6 5
2 4 0 7 5 5 6
3 3 7 0 4 3 5
4 6 5 4 0 7 5
5 6 5 3 7 0 2
6 5 6 5 5 2 0

The population (in 1,000s) in regions 1 through 6 are estimated, respectively, as 21, 
35, 15, 60, 20, and 37. In which two regions should the ambulances be placed?
a. Formulate an ILP model for this problem.
b.  Implement your model in a spreadsheet and solve it.
c.  What is the optimal solution?
d. How many ambulances would be required to provide coverage within 4 minutes 

to all residents?
e. Suppose the county wants to locate three ambulances in such a way to provide 

coverage to all residents within 4 minutes and maximize the redundancy in the 
system. (Assume redundancy means being able to provide service by one or 
more ambulances within 4 minutes.) Where should the ambulances be located? 

38. Ken Stark is an operations analyst for an insurance company in Muncie, Indiana. 
Over the next 6 weeks the company needs to send 2,028,415 pieces of marketing 
literature to customers in the following 16 states:  

State Mailing Pieces

AZ 82,380 
CA 212,954 
CT 63,796 
GA 136,562 
IL 296,479 
MA 99,070 
ME 38,848 
MN 86,207 
MT 33,309 
NC 170,997 
NJ 104,974 
NV 29,608 
OH 260,858 
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State Mailing Pieces

OR 63,605 
TX 214,076 
VA 134,692 

TOTAL 2,028,415 

In order to coordinate with other marketing efforts, all the mailings for a given state 
must go out the same week (i.e., if Ken decides to schedule mailings for Georgia in 
week 2, then all of the 136,562 pieces of mail for Georgia must be sent that week). 
Ken would like to balance the work load in each week as much as possible and, in 
particular, would like to minimize the maximum amount of mail to be processed in 
any given week during the 6-week period.
a. Create a spreadsheet model to determine which states should be processed each 

week in order to achieve Ken’s objective.
b. What is the optimal solution?

39. The CoolAire Company manufactures air conditioners that are sold to five differ-
ent retail customers across the United States. The company is evaluating its man-
ufacturing and logistics strategy to ensure that it is operating in the most efficient 
manner possible. The company can produce air conditioners at six plants across the 
country and stock these units in any of four different warehouses. The cost of  man-
ufacturing and shipping a unit between each plant and warehouse is summarized 
in the following table along with the monthly capacity and fixed cost of operating 
each plant.

Warehouse 
1

Warehouse 
2

Warehouse 
3

Warehouse 
4

Fixed 
Cost Capacity

Plant 1 $700 $1,000 $900 $1,200 $55,000 300
Plant 2 $800 $   500 $600 $   700 $40,000 200
Plant 3 $850 $   600 $700 $   500 $45,000 300
Plant 4 $600 $   800 $500 $   600 $50,000 250
Plant 5 $500 $   600 $450 $   700 $42,000 350
Plant 6 $700 $   600 $750 $   500 $40,000 400

Similarly, the per-unit cost of shipping units from each warehouse to each customer 
is given in the following table, along with the monthly fixed cost of operating each 
warehouse.

Customer 
1

Customer 
2

Customer 
3

Customer 
4

Customer 
5

Fixed 
Cost

Warehouse 1 $40 $80 $60 $90 $50 $40,000
Warehouse 2 $60 $50 $75 $40 $35 $50,000
Warehouse 3 $55 $40 $65 $60 $80 $35,000
Warehouse 4 $80 $30 $80 $50 $60 $60,000

  The monthly demand from each customer is summarized next:

Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Demand 200 300 200 150 250

  CoolAire would like to determine which plants and warehouses it should operate 
to meet demand in the most cost-effective manner. 
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318 Chapter 6 Integer Linear Programming

a. Create a spreadsheet model for this problem and solve it.
b. Which plants and warehouses should CoolAire operate?
c. What is the optimal shipping plan?

40. A blood bank wants to determine the least expensive way to transport available 
blood donations from Pittsburgh and Staunton to hospitals in Charleston, Roanoke, 
Richmond, Norfolk, and Suffolk. Figure 6.42 shows the possible shipping paths 
between cities along with the per unit cost of shipping along each possible arc. 
Additionally, the courier service used by the blood bank charges a flat rate of $125 
any time it makes a trip across any of these arcs, regardless of how many units of 
blood are transported. Also assume that each arc may be traversed only once. The 
van used by the courier service can carry a maximum of 800 units of blood.

Assume Pittsburgh has 600 units of blood type O positive (O1) and 800 units of 
blood type AB available. Assume Staunton has 500 units of (O1) and 600 units of 
AB available. The following table summarizes the number of units of each blood 
type needed at the various hospitals:

units Needed

Hospital O1 AB

Charleston 100 200
Roanoke 100 100
Richmond 500 300
Norfolk 200 500
Suffolk 150 250

a. Create a spreadsheet model for this problem.
b. What is the optimal solution?
c. Suppose that the courier services switches to a new type of van that can carry no 

more than 1,000 units of blood between any two cities. What is the optimal solu-
tion to this revised problem?

41. Alaskan Railroad is an independent, stand-alone railroad operation not connected 
to any other rail service in North America. As a result, rail shipments between 
Alaska and the rest of North America must be shipped by truck for thousands of 
miles or loaded onto ocean-going cargo vessels and transported by sea. Alaskan 
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Railroad recently began talks with the nation of Canada about expanding its rail-
road lines to connect with the North American railway system. Figure 6.43 summa-
rizes the various rail segments (and associated costs in millions of U.S. dollars) that 
could be built. The North American railroad system currently provides service to 
New Hazelton and Chetwynd. Alaskan Railroad would like to expand its railway 
so as to be able to reach both of these cities from Skagway and Fairbanks. 
a. Implement an optimization model to determine the least expensive way to con-

nect the city of Skagway to New Hazelton and Chetwynd and also connect Fair-
banks to these same cities.

b. What is the optimal solution?

42. CaroliNet is a satellite TV service provider for residential customers in the state of 
North Carolina. The company is planning to expand and offer satellite TV service 
in South Carolina as well. The company wants to establish a set of service hubs 
throughout the state in such a way to ensure that all residents of the state have a 
service hub either in their own country or in an adjacent county. Figure 6.44 (and 
the file CaroliNet.xlsm that accompanies this book) show an Excel spreadsheet with 
a matrix indicating county adjacencies throughout the state. That is, values of 1 in 
the matrix indicate counties that are adjacent to one another while values of 0 indi-
cate counties that are not adjacent to one another. (Note that a county is also consid-
ered to be adjacent to itself.)
a. Assume CaroliNet wants to minimize the number of hubs they must install. In 

what counties should the hubs be installed?
b. Suppose CaroliNet is willing to install hubs in exactly 10 different counties. In 

what counties should the hubs be installed if the company wants to maximize its 
service coverage?
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320 Chapter 6 Integer Linear Programming

43. Solve the following problem manually using the B&B algorithm. You can use the 
computer to solve the individual problems generated. Create a branch-and-bound 
tree to display the steps you complete.

MAX: 6X1 1 8X2

Subject to:          6X1 1 3X2 # 18
 2X1 1 3X2 # 9
         X1, X2 $ 0
 X1, X2 must be integers

44. During the execution of the B&B algorithm, many candidate problems are likely to 
be generated and awaiting further analysis. In the B&B example in this chapter, we 
chose the next candidate problem to analyze in a rather arbitrary way. What other, 
more structured ways might we use to select the next candidate problem? What are 
the pros and cons of these techniques?

Figure 6.44 County adjacency matrix for the CaroliNet ISP location problem
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Optimizing a Timber Harvest
The state of Virginia is one of the largest producers of wood furniture in the United 
States, with the furniture industry accounting for 50% of value added to wood mate-
rials. Over the past 40 years the inventory volume of wood in Virginia’s forests has 
increased by 81%. Today, 15.4 million acres, which is well over half of the state, are 
covered in forest. Private owners hold 77% of this land. When making decisions about 
which trees to harvest, forestry professionals consider many factors and must follow 
numerous laws and regulations. 

Figure 6.45 depicts a tract of forested land that has been section off into 12 harvest-
able areas, indicated by dashed lines. Area 2 provides the only access to the forest via a 
paved road, so any timber cut must ultimately be transported out of the forest through 
area 2. Currently, there are no roads through this forest. So to harvest the timber, for-
est roads will need to be built. The allowable routes for these roads are also shown in 
Figure 6.45 and are determined largely on the geography of the land and location of 
streams and wildlife habitats. 

CASe 6.1

Not all areas of the forest have to be harvested. However, to harvest any area, a for-
est road must be built to that area. The cost of building each section of forest road (in 
$1,000s) is indicated in the figure. Finally, the net value of the harvestable timber in 
each area is estimated as follows:

Harvested Value (in $1,000s)

Area 1 2 3 4 5 6 7 8 9 10 11 12

Value $15 $7 $10 $12 $8 $17 $14 $18 $13 $12 $10 $11

  Which areas should be harvested and what roads should be built to make the most 
profitable use of this forest?
1. Create a spreadsheet model for this problem.
2. What is the optimal solution?
3. Suppose the cost of building the road connecting areas 4 and 5 dropped to 

$12,000. What impact does this have on the optimal solution?

   Case 6.1 321
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322 Chapter 6 Integer Linear Programming

Power Dispatching at Old Dominion
The demand for electricity varies greatly during the day. Because large amounts of 
electricity cannot be stored economically, electric power companies cannot manufac-
ture electricity and hold it in inventory until it is needed. Instead, power companies 
must balance the production of power with the demand for power in real time. One 
of the greatest uncertainties in forecasting the demand for electricity is the weather. 
Most power companies employ meteorologists who constantly monitor weather pat-
terns and update computer models that predict the demand for power over a rolling, 
seven-day planning horizon. This forecasted seven-day window of demand is referred 
to as the company’s load-profile and is typically updated every hour basis.

Every power company has a base-load demand that is relatively constant. To satisfy 
this base-load demand, a power company uses its most economical, low-cost power gen-
erating assets and keeps them running continuously. To meet additional demands for 
power above the base-load, a power company must dispatch (or turn on) other genera-
tors. These other generators are sometimes called “peakers” as they help the power com-
pany meet the highest demands or peak-loads. It costs different amounts of money to 
bring different types of peakers online. And because different peakers use different types 
of fuel (e.g., coal, gas, bio-mass) their operating costs per megawatt (MW) generated also 
differ. Thus, dispatchers for a power company continually have to decide which genera-
tor to bring online or turn off to meet their load profile in the least costly manner.

The Old Dominion Power (ODP) Company provides electrical power throughout 
Virginia and the Carolinas. Suppose ODP’s peak-load profile (that is the estimated load 
above base-load) in MWs is currently estimated as follows:

Day

1 2 3 4 5 6 7

Load (in MWs) 4,300 3,700 3,900 4,000 4,700 4,800 3,600

ODP currently has three peaking generators offline that are available to help meet 
this load. The generators have the following operating characteristics:

generator 
Location Startup Cost Cost per Day

Maximum MW  
Capacity per Day

New River $   800 $200 1 $5 per MW 2,100
Galax $1,000 $300 1 $4 per MW 1,900
James River $   700 $250 1 $7 per MW 3,000

To get an offline generator up and running, a startup cost must be paid. After a gen-
erator is running, it can continue to run indefinitely without having to pay this startup 
cost again. However, if the generator is turned off at any point, the setup cost must be 
paid again to get it back up and running. Each day that a generator runs there is both 
a fixed and variable cost that must be paid. For example, any day that the New River 
generator is online, it incurs a fixed cost of $200 plus $5 per MW generated. So even if 
this generator is not producing any MWs, it still costs $200 per day to keep it running 
(so as to avoid a restart). When they are running, each generator can supply up to the 
maximum daily MWs listed in the final column of the table.

1. Formulate a mathematical programming model for ODP’s power dispatching 
problem.

2. Implement your model in a spreadsheet and solve it.

CASe 6.2
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3. What is the optimal solution?
4. Suppose ODP can sometimes buy power from a competitor. How much should 

ODP be willing to pay to acquire 300 MW of power on day 1?  Explain your answer. 
5. What concerns, if any, would you have about implementing this plan?

The MasterDebt Lockbox Problem
MasterDebt is a national credit card company with thousands of card holders located across 
the United States. Every day throughout the month, MasterDebt sends out statements to 
different customers summarizing their charges for the previous month. Customers then 
have 30 days to remit a payment for their bills. MasterDebt includes a pre-addressed enve-
lope with each statement for customers to use in making their payments.

One of the critical problems facing MasterDebt involves determining what address 
to put on the pre-addressed envelopes sent to various parts of the country. The amount 
of time that elapses between when a customer writes his check and when MasterDebt 
receives the cash for the check is referred to as float. Checks can spend several days 
floating in the mail and in processing before being cashed. This float time represents 
lost revenue to MasterDebt because if they could receive and cash these checks imme-
diately, they could earn additional interest on these funds. 

To reduce the interest being lost from floating checks, MasterDebt would like to 
implement a lockbox system to speed the processing of checks. Under such a system, 
MasterDebt might have all its customers on the West Coast send their payments to a 
bank in Sacramento which, for a fee, processes the checks and deposits the proceeds in 
a MasterDebt account. Similarly, MasterDebt might arrange for a similar service with 
a bank on the East Coast for its customers there. Such lockbox systems are a common 
method companies use to improve their cash flows.

MasterDebt has identified six different cities as possible lockbox sites. The annual fixed 
cost of operating a lockbox in each of the possible locations is given in the following table.

Annual Lockbox Operating Costs (in $1,000s)

Sacramento Denver Chicago Dallas New York Atlanta

$25 $30 $35 $35 $30 $35

An analysis was done to determine the average number of days a check floats when 
sent from seven different regions of the country to each of these six cities. The results of 
this analysis are summarized in the following table. This table indicates, for instance, 
that a check sent from the central region of the country to New York spends an average 
of three days in the mail and in processing before MasterDebt actually receives the cash 
for the check.

Average Days of Float Between regions and Possible Lockbox Locations

Sacramento Denver Chicago Dallas New York Atlanta

Central 4 2 2 2 3 3
Mid-Atlantic 6 4 3 4 2 2
Midwest 3 2 3 2 5 4
Northeast 6 4 2 5 2 3
Northwest 2 3 5 4 6 7
Southeast 7 4 3 2 4 2
Southwest 2 3 6 2 7 6

CASe 6.3
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324 Chapter 6 Integer Linear Programming

Further analysis was done to determine the average amount of payments being sent 
from each region of the country. These results are given next:

Average Daily Payments  
(in $1,000s) by region

Payments

Central $45
Mid-Atlantic $65
Midwest $50
Northeast $90
Northwest $70
Southeast $80
Southwest $60

Thus, if payments from the Central Region are sent to New York, on any given day, 
there is an average of  $135,000 in undeposited checks from the Central Region. Because 
MasterDebt can earn 15% on cash deposits, it would be losing $20,250 per year in 
potential interest on these checks alone. 

1. Which of the six potential lockbox locations should MasterDebt use and to which 
lockbox location should each region be assigned?

2. How would your solution change if a maximum of four regions could be assigned 
to any lockbox location?

Removing Snow in Montreal
Based on: Campbell, J. and Langevin, A. “The Snow Disposal Assignment Problem.” Journal of the 
Operational Research Society, 1995, pp. 919-929.

Snow removal and disposal are important and expensive activities in Montreal and 
many northern cities. While snow can be cleared from streets and sidewalks by plow-
ing and shoveling, in prolonged sub-freezing temperatures, the resulting banks of accu-
mulated snow can impede pedestrian and vehicular traffic and must be removed. 

To allow timely removal and disposal of snow, a city is divided up into several  sectors 
and snow removal operations are carried out concurrently in each sector. In Montreal, 
accumulated snow is loaded onto trucks and hauled away to disposal sites (e.g., rivers, 
quarries, sewer chutes, surface holding areas). For contractual reasons, each sector may 
be assigned to only a single disposal site. (However, each disposal site may receive 
snow from multiple sectors.)  The different types of disposal sites can accommodate 
different amounts of snow due to either the physical size of the disposal facility or envi-
ronmental restrictions on the amount of snow (often contaminated by salt and de-icing 
chemicals) that can be dumped into rivers. The annual capacities for five different snow 
disposal sites are given in the following table (in 1,000s of cubic meters).

Disposal Site
1 2 3 4 5

Capacity 350 250 500 400 200

CASe 6.4
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The cost of removing and disposing of snow depends mainly on the distance it must 
be trucked. For planning purposes, the city of Montreal uses the straight-line distance 
between the center of each sector to each of the various disposal sites as an approxima-
tion of the cost involved in transporting snow between these locations. The following 
table summarizes these distances (in kilometers) for ten sectors in the city.

Disposal Site

Sector 1 2 3 4 5

 1 3.4 1.4 4.9 7.4 9.3
 2 2.4 2.1 8.3 9.1 8.8
 3 1.4 2.9 3.7 9.4 8.6
 4 2.6 3.6 4.5 8.2 8.9
 5 1.5 3.1 2.1 7.9 8.8
 6 4.2 4.9 6.5 7.7 6.1
 7 4.8 6.2 9.9 6.2 5.7
 8 5.4 6.0 5.2 7.6 4.9
 9 3.1 4.1 6.6 7.5 7.2
10 3.2 6.5 7.1 6.0 8.3

Using historical snowfall data, the city is able to estimate the annual volume of snow 
requiring removal in each sector as four times the length of streets in the sectors in 
meters (i.e., it is assumed each linear meter of street generates four cubic meters of 
snow to remove over an entire year). The following table estimates the snow removal 
requirements (in 1,000s of cubic meters) for each sector in the coming year.

estimated Annual Snow removal requirements

1 2 3 4 5 6 7 8 9 10

153 152 154 138 127 129 111 110 130 135

1. Create a spreadsheet that Montreal could use to determine the most efficient snow 
removal plan for the coming year. Assume it costs $0.10 to transport 1 cubic meter 
of snow 1 kilometer. 

2. What is the optimal solution?
3. How much will it cost Montreal to implement your snow disposal plan?
4. Ignoring the capacity restrictions at the disposal sites, how many different assign-

ments of sectors to disposal sites are possible? 
5. Suppose Montreal can increase the capacity of a single disposal site by 100,000 cubic 

meters. Which disposal site’s capacity (if any) should be increased and how much 
should the city be willing to pay to obtain this extra disposal capacity?

Case 6.4 325
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Chapter 7
Goal Programming and Multiple  
Objective Optimization

7.0 Introduction
Chapter 6 discussed the modeling techniques that apply to optimization problems that 
require integer solutions. This chapter presents two other modeling techniques that are 
sometimes helpful in solving optimization problems. The first technique—goal pro-
gramming—involves solving problems containing not one specific objective function, 
but rather a collection of goals that we would like to achieve. As you will see, a goal can 
be viewed as a constraint with a flexible, or soft, RHS value.

The second technique—multiple objective optimization—is closely related to goal 
programming and applies to problems containing more than one objective function. In 
business and government, different groups of people frequently pursue different objec-
tives. Therefore, it is quite possible that a variety of objective functions can be proposed 
for the same optimization problem.

Both techniques require an iterative solution procedure in which the decision 
maker investigates a variety of solutions to find one that is most satisfactory. Thus, 
unlike the LP and ILP procedures presented earlier, we cannot formulate a multiple 
objective or goal programming problem and solve one optimization problem to iden-
tify the  optimal solution. In these problems, we might need to solve several varia-
tions of the problem before we find an acceptable solution.

We will begin with the topic of goal programming. Then, we will investigate multi-
ple objective optimization and see how the concepts and techniques of goal program-
ming can be applied to these problems as well.

7.1 Goal Programming
The optimization techniques presented in the preceding chapters have always assumed 
that the constraints in the model are hard constraints, or constraints that cannot be  violated. 
For example, labor constraints indicated that the amount of labor used to produce a vari-
ety of products could not exceed some fixed amount (such as 1,566 hours). As another 
example, monetary constraints indicated that the amount of money invested in a number 
of projects could not exceed some budgeted amount (such as $850,000).

Hard constraints are appropriate in many situations; however, these constraints might 
be too restrictive in other situations. For example, when you buy a new car, you probably 
have in mind a maximum purchase price that you do not want to exceed. We might call 
this your goal. However, you will probably find a way to spend more than this amount 
if it is impossible to acquire the car you really want for your goal amount. So, the goal 
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A Goal Programming Example 327

you have in mind is not a hard constraint that cannot be violated. We might view it more 
accurately as a soft constraint—representing a target you would like to achieve.

Numerous managerial decision-making problems can be modeled more accurately 
using goals rather than hard constraints. Often, such problems do not have one explicit 
objective function to be maximized or minimized over a constraint set but, instead, can 
be stated as a collection of goals that might also include hard constraints. These types of 
problems are known as goal programming (GP) problems.

7.2 A Goal Programming Example
The technique of linear programming can help a decision maker analyze and solve a 
GP problem. The following example illustrates the concepts and modeling techniques 
used in GP problems.

Davis McKeown is the owner of a resort hotel and convention center in Myrtle Beach, 
South Carolina. Although his business is profitable, it is also highly seasonal; the sum-
mer months are the most profitable time of year. To increase profits during the rest 
of the year, Davis wants to expand his convention business but, to do so, he needs to 
expand his conference facilities. Davis hired a marketing research firm to determine 
the number and sizes of conference rooms that would be required by the conventions 
he wants to attract. The results of this study indicated that Davis’s facilities should 

B a l a n c i n g  O b j e c t i v e s  f o r 

E n l i g h t e n e d  S e l f - I n t e r e s t
As he stood on a wooded hillside watching water cascade over what was once a 
coal mine, Roger Holnback, executive director of the Western Virginia Land Trust, 
described what that section of land could have looked like if a typical subdivi-
sion was being built in the area. “They’d figure out a way to use this bottom land 
for development,” he said, pointing out how neatly a row of houses could fit in 
below the hill. “They maximize the lots they build to whatever the zoning says.”

But because of an agreement between developers Bill Ellenbogen and Steve 
Bodtke and the Western Virginia Land Trust and New River Land Trust, nearly 
half of a 225-acre subdivision on Coal Bank Ridge will be preserved through a 
conservation easement. “Our goal was to do a nice development while protecting 
the surrounding areas,” Ellenbogen said. Conservation easements are agreements 
between landowners and land trusts to restrict development while allowing the 
owner to keep the property and continue to use it. The trusts monitor use of the 
land to make sure it complies with the conditions of the easement.

Ellenbogen doesn’t try to hide the fact that he’s a businessman, and as a 
developer he needs to make a profit. But making a profit and preserving the sce-
nic views and rural character of the area are not mutually exclusive goals. “We 
think it adds tremendous value,” he said. “People live in this community because 
of the beauty of the land. If you destroy that beauty, people won’t want to live 
here. I call it enlightened self-interest.” 

“The question is, ‘How can I make money and still have a livable commu-
nity?’” Holnback said. “It’s a simple concept.”

(Adapted from: ”Developers See Conservation as Smart Business,” The Roanoke Times, December 20, 
2003.)
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328 Chapter 7 Goal Programming and Multiple Objective Optimization 

include at least 5 small (400 square feet) conference rooms, 10 medium (750 square 
feet) conference rooms, and 15 large (1,050 square feet) conference rooms. Addition-
ally, the marketing research firm indicated that if the expansion consisted of a total of 
25,000 square feet, Davis would have the largest convention center among his com-
petitors—which would be desirable for advertising purposes. While discussing his 
expansion plans with an architect, Davis learned that he can expect to pay $18,000 for 
each small conference room in the expansion, $33,000 for each medium conference 
room, and $45,150 for each large  conference room. Davis wants to limit his expendi-
tures on the convention center expansion to approximately $1,000,000.

7.2.1 DEfInIng thE DEcISIOn VarIaBlES
In this problem, the fundamental decision facing the hotel owner is how many small, 
medium, and large conference rooms to include in the conference center expansion. 
These quantities are represented by X1, X2, and X3, respectively.

7.2.2 DEfInIng thE gOalS
This problem is somewhat different from the problems presented earlier in this book. 
Rather than one specific objective, this problem involves a number of goals, which are 
stated (in no particular order) as:

Goal 1: The expansion should include approximately 5 small conference rooms.
Goal 2: The expansion should include approximately 10 medium conference rooms.
Goal 3: The expansion should include approximately 15 large conference rooms.
Goal 4: The expansion should consist of approximately 25,000 square feet.
Goal 5: The expansion should cost approximately $1,000,000.

Notice that the word “approximately” appears in each goal. This word underscores the 
fact that these goals are soft constraints rather than hard constraints. For example, if the 
first four goals could be achieved at a cost of $1,001,000, it is very likely that the hotel owner 
would not mind paying an extra $1,000 to achieve such a solution. However, we must 
determine if we can find a solution that exactly meets all of the goals in this problem and, if 
not, what trade-offs can be made among the goals to determine an acceptable solution. We 
can formulate an LP model for this GP problem to help us make this determination.

7.2.3 DEfInIng thE gOal cOnStraIntS
The first step in formulating an LP model for a GP problem is to create a goal con-
straint for each goal in the problem. A goal constraint allows us to determine how close 
a given solution comes to achieving the goal. To understand how these constraints 
should be formulated, let’s begin with the three goal constraints associated with the 
number of small, medium, and large conference rooms in the expansion.

If we wanted to make sure that exactly 5 small, 10 medium, and 15 large conference 
rooms were included in the planned expansion, we would include the following hard 
constraints in our GP model:

X1 5 5
X2 5 10
X3 5 15
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However, the goals stated that the expansion should include approximately 5 small 
conference rooms, approximately 10 medium conference rooms, and approximately
15 large conference rooms. If it is impossible to achieve all the goals, the hotel owner 
might consider a solution involving only 14 large conference rooms. The hard con-
straints would not allow for such a solution; they are too restrictive. However, we can 
modify them easily to allow for departures from the stated goals, as:

X1 1 d2
1 2 d1

1 5 5 } small rooms
 X2 1 d2

2 2 d1
2 5 10 } medium rooms

 X3 1 d2
3 2 d1

3 5 15 } large rooms
 where d2

i , d1
i $ 0 for all i 

The RHS value of each goal constraint (the values 5, 10, and 15 in the previous con-
straints) is the target value for the goal because it represents the level of achievement 
that the decision maker wants to obtain for the goal. The variables d2

i  and d1
i  are called 

deviational variables because they represent the amount by which each goal deviates 
from its target value. The d2

i  represents the amount by which each goal’s target value 
is underachieved, and the d1

i  represents the amount by which each goal’s target value is 
overachieved.

To illustrate how deviational variables work, suppose that we have a solution where 
X1 5 3, X2 5 13, and X3 5 15. To satisfy the first goal constraint listed previously, its 
deviational variables would assume the values d2

1 5 2 and d1
1 5 0 to reflect that the 

goal of having 5 small conference rooms is underachieved by 2. Similarly, in order to 
satisfy the second goal constraint, its deviational variables would assume the values 
d2

2 5 0 and d1
2 5 3 to reflect that the goal of having 10 medium conference rooms is 

overachieved by 3. Finally, in order to satisfy the third goal constraint, its deviational 
variables would assume the values d2

3 5 0 and d1
3 5 0 to reflect that the goal of having 

15 medium conference rooms is exactly achieved.
We can formulate the goal constraints for the remaining goals in the problem in a 

similar manner. Because each small, medium, and large conference room requires 400, 
750, and 1,050 square feet, respectively, and the hotel owner wants the total square 
footage of the expansion to be 25,000, the constraint representing this goal is:

400X1 1 750X2 1 1,050X3 1 d2
4 2 d1

4 5 25,000  } square footage

Because each small, medium, and large conference room results in building costs of 
$18,000, $33,000, and $45,150, respectively, and the hotel owner wants to keep the cost 
of the expansion at approximately $1,000,000, the constraint representing this goal is:

18,000X1 1 33,000X2 1 45,150X3 1 d2
5 2 d1

5 5 1,000,000  } building cost

The deviational variables in each of these goal constraints represent the amounts 
by which the actual values obtained for the goals deviate from their respective  target 
values.

7.2.4 DEfInIng thE harD cOnStraIntS
As noted earlier, not all of the constraints in a GP problem have to be goal constraints. 
A GP problem can also include one or more hard constraints typically found in LP 
problems. In our example, if $1,000,000 was the absolute maximum amount that the 
hotel owner was willing to spend on the expansion, this could be included in the model 
as a hard constraint. (As we’ll see, it is also possible to change a soft constraint into a 
hard constraint during the analysis of a GP problem.)
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7.2.5 gP OBjEctIVE functIOnS
Although it is fairly easy to formulate the constraints for a GP problem, identifying an 
appropriate objective function can be quite tricky and usually requires some mental 
effort. Before formulating the objective function for our sample problem, let’s consider 
some of the issues and options involved in this process.

The objective in a GP problem is to determine a solution that achieves all the goals 
as closely as possible. The ideal solution to any GP problem is one in which each goal 
is achieved exactly at the level specified by its target value. (In such an ideal solution, 
all the deviational variables in all the goal constraints would equal 0.) Often, it is not 
possible to achieve the ideal solution because some goals might conflict with others. In 
such a case, we want to find a solution that deviates as little as possible from the ideal 
solution. One possible objective for our example GP problem is:

Minimize the sum of the deviations: MIN: a
i
1d2

i 1 d1
i 2

With this objective, we attempt to find a solution to the problem where all the devi-
ational variables are 0—or where all the goals are met exactly. But if such a solution 
is not possible, will this objective always produce a desirable solution? The answer is 
“probably not.”

The previous objective has a number of shortcomings. First, the deviational vari-
ables measure entirely different things. In our example problem, d2

1 , d1
1 , d2

2 , d1
2 , d2

3 , and 
d1

3  all measure rooms of one size or another, whereas d2
4  and d1

4  are measures of square 
footage, and d2

5  and d1
5  are financial measures of building costs. An obvious criticism 

of the previous objective is that it is unclear how to interpret any numerical value the 
objective assumes 17 rooms 1 1,500 dollars 5 1,507 units of what? 2 .

One solution to this problem is to modify the objective function so that it measures 
the sum of percentage deviations from the various goals. This is accomplished as follows, 
where ti represents the target value for goal i:

Minimize the sum of the percentage deviations: MIN: a
i

1
ti
1d2

i 1 d1
i 2

In our example problem, suppose we arrive at a solution where the first goal is under-
achieved by 1 room 1d2

1 5 1 2 , the fifth goal is overachieved by $20,000 1d1
5 5 20,000 2 ,

and all other goals are achieved exactly (all other d2
i  and d1

i  equal 0). Using the sum of 
percentage deviations objective, the optimal objective function value is:

 
1
t1

d2
1 1

1
t5

d1
5 5

1
5

3 1 1
1

1,000,000
3 20,000 5 20% 1 2% 5 22%

Note that the percentage deviation objective can be used only if all the target values 
for all the goals are nonzero; otherwise a division by zero error will occur.

Another potential criticism of the previous objective functions concerns how they 
evaluate deviations. In the previous example, where the objective function value is 
22%, the objective function implicitly assumes that having 4 small conference rooms 
(rather than 5) is 10 times worse than being $20,000 over the desired building cost bud-
get. That is, the budget overrun of $20,000 would have to increase 10 times to $200,000 
before the percentage deviation on this goal equaled the 20% deviation caused by being 
one room below the goal of having 5 small conference rooms. Is having one fewer con-
ference room really as undesirable as having to pay $200,000 more than budgeted? 
Only the decision maker in this problem can answer this question. It would be nice to 
provide the decision maker a way to evaluate and change the implicit trade-offs among 
the goals if he or she wanted to do so.
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Both of the previous objective functions view a deviation from any goal in any direction 
as being equally undesirable. For example, according to both of the previous objective func-
tions, a solution resulting in a building cost of $900,000 (if X5 5 900,000 and d2

5 5 100,000) 
is as undesirable as a solution with a building cost of $1,100,000 (if X5 5 1,100,000 and 
d1

5 5 100,000). But, the hotel owner probably would prefer to pay $900,000 for the expan-
sion rather than $1,100,000. So, while overachieving the building cost goal is an undesirable 
occurrence, underachieving this goal is probably desirable or at least neutral. On the other 
hand, underachieving the goal related to the number of small conference rooms might be 
viewed as undesirable, whereas overachieving this goal might be viewed as desirable or 
possibly neutral. Again, it would be nice to provide the decision maker a way to represent 
which deviations are desirable and undesirable in the objective function.

One solution to the previous criticisms is to allow the decision maker to assign 
weights to the deviational variables in the objective function of a GP problem to better 
reflect the importance and desirability of deviations from the various goals. So, a more 
useful type of objective function for a GP problem is:

Minimize the weighted sum of the deviations: MIN: a
i
1w2

i d2
i 1 w1

i d1
i 2

or

Minimize the weighted sum of the percentage deviations: MIN: a
i

1
ti
1w2

i d2
i 1 w1

i d1
i 2

In these weighted objective functions, the w2
i  and w1

i  represent numeric constants 
that can be assigned values to weight the various deviational variables in the prob-
lem. A variable that represents a highly undesirable deviation from a particular goal 
is assigned a relatively large weight—making it highly undesirable for that variable to 
assume a value larger than 0. A variable that represents a neutral or desirable deviation 
from a particular goal is assigned a weight of 0 or some value lower than 0 to reflect 
that it is acceptable or even desirable for the variable to assume a value greater than 0.

Unfortunately, no standard procedure is available for assigning values to the w2
i  and 

w1
i  in a way that guarantees you will find the most desirable solution to a GP problem. 

Rather, you need to follow an iterative procedure in which you try a particular set of 
weights, solve the problem, analyze the solution, and then refine the weights and solve 
the problem again. You might need to repeat this process many times to find a solution 
that is the most desirable to the decision maker.

7.2.6 DEfInIng thE OBjEctIVE
In our example problem, assume that the decision maker considers it undesirable to 
underachieve any of the first three goals related to the number of small, medium, and 
large conference rooms, but is indifferent about overachieving these goals. Also assume 
that the decision maker considers it undesirable to underachieve the goal of adding 
25,000 square feet, but equally undesirable to overachieve this goal. Finally, assume that 
the decision maker finds it undesirable to spend more than $1,000,000, but is indifferent 
about spending less than this amount. In this case, if we want to minimize the weighted 
percentage deviation for our example problem, we use the following objective:

MIN: 
w2

1

5
d2

1 1
w2

2

10
d2

2 1
w2

3

15
d2

3 1
w2

4

25,000
d2

4 1
w1

4

25,000
d1

4 1
w1

5

1,000,000
d1

5

Notice that this objective omits (or assigns weights of 0 to) the deviational variables 
about which the decision maker is indifferent. Thus, this objective would not penalize 
a solution where, for example, 7 small conference rooms were selected (and therefore 
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d1
1 5 2 ) because we assume that the decision maker would not view this as an unde-

sirable deviation from the goal of having 5 small conference rooms. On the other hand, 
this objective would penalize a solution where 3 small conference rooms were selected 
(and therefore d2

1 5 2) because this represents an undesirable deviation from the goal 
of having 5 small conference rooms. To begin our analysis of this problem, we will 
assume that w2

1 5 w2
2 5 w2

3 5 w2
4 5 w1

4 5 w1
5 5 1 and all other weights are 0.

7.2.7 ImPlEmEntIng thE mODEl
To summarize, the LP model for our example GP problem is:

MIN: 
w2

1

5
d2

1 1
w2

2

10
d2

2 1
w2

3

15
d2

3 1
w2

4

25,000
d2

4 1
w1

4

25,000
d1

4 1
w1

5

1,000,000
d1

5

Subject to:
X1 1 d2

1 2 d1
1 5 5 } small rooms

 X2 1 d2
2 2 d1

2 5 10 } medium rooms
 X3 1 d2

3 2 d1
3  5 15 } large rooms

 400X1 1 750X3 1 1,050X3 1 d2
4  2 d1

4  5 25,000 } square footage 
 18,000X1 1 33,000X2 1 45,150X3 1 d2

5  2 d1
5 5 1,000,000 } building cost

d2
i , d1

i  $ 0 for all i } nonnegativity conditions
Xi $ 0 for all i } nonnegativity conditions
Xi must be integers

Because this is an ILP model, it can be implemented in a spreadsheet in the usual 
way. One approach for doing this is shown in Figure 7.1 (and in the file Fig7-1.xlsm 
that accompanies this book).

The first section of the spreadsheet lists basic data about the square footage and 
costs of the different conference rooms. The next section represents the decision vari-
ables, deviational variables, and goal constraints for the problem. Specifically, cells B9 
through D9 correspond to X1, X2, and X3—the number of small, medium, and large 
conference rooms to be included in the expansion. Cells E9 and F9 contain the follow-
ing formulas, which calculate the total square footage and total building cost for any 
combination of small, medium, and large conference rooms:

 Formula for cell E9: =SUMPRODUCT(B9:D9,B5:D5)
 Formula for cell F9: =SUMPRODUCT(B9:D9,B6:D6)

Cells B10 through F11 correspond to the deviational variables in our algebraic model. 
These cells indicate the amount by which each goal is underachieved or overachieved. 
The LHS formulas for the goal constraints are implemented in cells B12 through F12. 
Specifically, in cell B12 we enter the following formula and then copy it to cells C12 
through F12:

 Formula for cell B12:  5B9 1 B10 2 B11
(Copy to C12 through F12.)

The target (or RHS) values for the goal constraints are listed in cells B13 through F13.
To implement the objective function, we first implemented formulas to convert the 

values of the deviational variables into percent format by dividing each deviational 
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variable represented in cells B10 through F11 by the appropriate target value. This is 
done as follows:

Formula for cell B16:    5B10/B$13
(Copy to B16 through F17.)

Next, weights for each of the deviational variables are entered in cells B20 through 
F20. Because solving a GP problem is an iterative process in which you will probably 
need to change the weights for the objective, it is best to place the weights in a separate 
location on the spreadsheet. 

Finally, cell B23 contains the following formula, which implements the objective 
function for the problem:

Formula for cell B23:   =SUMPRODUCT(B16:F17,B20:F21)

7.2.8 SOlVIng thE mODEl
The model can be solved using the Solver settings and options shown in Figure 7.2. The 
solution obtained using these settings is shown in Figure 7.3.

Key Cell Formulas

Cell Formula Copied to

B12 5B91B102B11 C12:F12
B16 5B10/B$13 B16:F17
E9 5SUMPRODUCT(B9:D9,B5:D5) --
F9 5SUMPRODUCT(B9:D9,B6:D6) --
B23 5SUMPRODUCT(B16:F17,B20:F21) --

Variable Cells

Constraint Cells

Objective Cell

Figure 7.1 Spreadsheet implementation of the GP model
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334 Chapter 7 Goal Programming and Multiple Objective Optimization 

7.2.9 analyzIng thE SOlutIOn
As shown in Figure 7.3, this solution includes exactly 5 small, 10 medium, and 
15 large rooms in the expansion. Thus, there is no deviation at all from the target 
values for the first three goals, which would please the decision maker. However, 

Solver Settings:

Objective: B23 (Min)
Variable cells: B10:F11, B9:D9
Constraints: 
 B12:F12 5 B13:F13
 B9:D9 5 integer
 B9:D9 .5 0
 B10:F11 .5 0

Solver Options:

Standard LP/Quadratic Engine (Simplex LP)
Integer Tolerance 5 0

Figure 7.2

Solver settings 
and options 
for the GP 
model

Figure 7.3 First solution to the GP model
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considering the fourth and fifth goals, the current solution overachieves the targeted 
square footage level by 250 square feet (or 1%) and is over the building cost goal by 
$97,250 (or 9.73%).

7.2.10 rEVISIng thE mODEl
Although the decision maker might not mind being 1% over the square footage 
goal, exceeding the building cost goal by almost $100,000 most likely would be a 
concern. The decision maker might want to find another solution that comes closer 
to achieving the building cost goal. This can be done by adjusting the weights in 
the problem so that a larger penalty is assigned to overachieving the building cost 
goal. That is, we can increase the value in cell F21 representing w1

5  . Again, there is 
no way to tell exactly how much larger this value should be. As a rule-of-thumb, we 
might change its value by one order of magnitude, or from 1 to 10. If we make this 
change in the spreadsheet and re-solve the problem, we obtain the solution shown 
in Figure 7.4.

Figure 7.4 Second solution to the GP model

In Figure 7.4, notice that increasing the penalty for overachieving the building cost 
goal from 1 to 10 reduced the overachievement of this goal from $97,250 to $6,950. We 
are now within 1% of the target value for the building cost goal. However, in order to 
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obtain this improved level of achievement on the building cost goal, we had to give 
up two large conference rooms, resulting in a 13.33% underachievement for this goal. 
If the decision maker considers this unacceptable, we can increase the penalty on this 
deviational variable from 1 to 10 and re-solve the problem. Figure 7.5 shows the result-
ing solution.

7.2.11 traDE-OffS: thE naturE Of gP
In Figure 7.5, the target number of large conference rooms is met exactly, but the 
desired number of medium rooms is now underachieved by 3. Depending on the pref-
erences of the decision maker, we could continue to fine-tune the weights in the prob-
lem until we reach a solution that is most satisfactory to the decision maker. The nature 
of GP involves making trade-offs among the various goals until a solution is found 
that gives the decision maker the greatest level of satisfaction. Thus, unlike the other 
applications of LP presented earlier, the use of LP in GP does not indicate immediately 
the best possible solution to the problem (unless the decision maker initially specifies 
an appropriately weighted objective function). Rather, it provides a method by which 
a decision maker can explore a variety of possible solutions and try to find the solution 
that comes closest to satisfying the goals under consideration. Figure 7.6 provides a 
summary of the steps involved in solving a GP problem. 

Figure 7.5 Third solution to the GP model
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7.3 Comments about Goal Programming
Some additional comments should be made before we leave the topic of GP. First, it 
is important to note that different GP solutions cannot be compared simply on the 
basis of their optimal objective function values. The user changes the weights in the 
objective functions from iteration to iteration; therefore, comparing their values is not 
appropriate because they measure different things. The objective function in a GP 
problem serves more of a mechanical purpose, allowing us to explore possible solu-
tions. Thus, we should compare the solutions that are produced—not the objective 
function values.

Second, in some GP problems, one or more goals might be viewed as being infinitely 
more important than the other goals. In this case, we could assign arbitrarily large 
weights to deviations from these goals to ensure that undesirable deviations from them 
never occur. This is sometimes referred to as preemptive GP because certain goals pre-
empt others in order of importance. If the target values for these goals can be achieved, 
the use of preemptive weights effectively makes these goals hard constraints that 
should never be violated.

Third, we can place hard constraints on the amount by which we can deviate from a 
goal. For example, suppose that the owner of the hotel in our example problem wants 
to eliminate from consideration any solution that exceeds the target building cost by 
more than $50,000. We could easily build this requirement into our model with the 
hard constraint:

d1
5 # 50,000

Fourth, the concept of deviational variables is not limited to GP. These types of 
variables can be used in other problems that are quite different from GP problems. So, 
understanding deviational variables can prove useful in other types of mathematical 
programming situations.

Summary Of gOal PrOgrammIng

 1. Identify the decision variables in the problem.
 2. Identify any hard constraints in the problem and formulate them in the usual 

way.
 3. State the goals of the problem along with their target values.
 4. Create constraints using the decision variables that would achieve the goals 

exactly.
 5. Transform the above constraints into goal constraints by including deviational 

variables.
 6. Determine which deviational variables represent undesirable deviations from 

the goals.
 7. Formulate an objective that penalizes the undesirable deviations.
 8. Identify appropriate weights for the objective.
 9. Solve the problem.
10. Inspect the solution to the problem. If the solution is unacceptable, return to 

step 8 and revise the weights as needed.

Figure 7.6

Summary of the 
steps involved 
in formulating 
and solving a GP 
problem
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Finally, another type of objective function, called the MINIMAX objective, is some-
times helpful in GP when you want to minimize the maximum deviation from any 
goal. To implement the MINIMAX objective, we must create one additional constraint 
for each deviational variable as follows, where Q is the MINIMAX variable:

d2
1 # Q

d1
1 # Q

d2
2 # Q

and so on ...

The objective is to minimize the value of Q, stated as:

MIN: Q

Because the variable Q must be greater than or equal to the values of all the devia-
tional variables, and because we are trying to minimize it, Q will always be set equal to 
the maximum value of the deviational variables. At the same time, this objective func-
tion tries to find a solution where the maximum deviational variable (and the value of 
Q) is as small as possible. Therefore, this technique allows us to minimize the maxi-
mum deviation from all the goals. As we will see shortly, this type of objective is espe-
cially valuable if a GP problem involves hard constraints.

7.4 Multiple Objective Optimization
We now consider how to solve LP problems involving multiple objective functions. 
These problems are called multiple objective linear programming (MOLP) problems.

Most of the LP and ILP problems discussed in previous chapters involved one 
objective function. These objective functions typically sought to maximize profits or 
minimize costs. However, another objective function could be formulated for most 
of these problems. For example, if a production process creates a toxic pollutant 
that is dangerous to the environment, a company might want to minimize this toxic 
by-product. But this objective is likely to be in direct conflict with the company’s 
other objective of maximizing profits. Increasing profit will likely always result in 
the creation of additional toxic waste. Figure 7.7 shows a hypothetical example of 
the potential trade-offs between profit and the production of toxic waste. Each point 
on the curve in this graph corresponds to a possible level of profit and the mini-
mum amount of toxic waste that must be produced to achieve this level of profit. 
Clearly, reaching higher levels of profit (which is desirable) is associated with incur-
ring greater levels of toxic waste production (which is undesirable). So the decision 
maker must decide what level of trade-off between profit and toxic waste is most 
desirable.

Another important MOLP issue to note in Figure 7.7 is the concept of dominated and 
non-dominated solutions. Accepting a solution that offers the combination of profit and 
toxic waste indicated by point A is clearly undesirable. There is another alternative (i.e., 
point B on the graph) that offer less toxic waste production for the same level of profit. 
Also, there is another alternative (i.e., point C on the graph) that offers more profit 
for the same level of toxic waste. So points B and C would both be preferable to (or 
dominate) point A. Indeed, all the points along the curve connecting point B to point 
C dominate point A. In MOLP, a decision alternative is dominated if there is another 
alternative that produces a better value for at least one objective without worsening 
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the value of the other objectives. Clearly, rational decision makers should only want to 
consider decision alternatives that are non-dominated. The technique for MOLP pre-
sented in this chapter guarantees that the solutions presented to the decision maker are 
non-dominated.

Fortunately, MOLP problems can be viewed as special types of GP problems where, 
as part of solving the problem, we must also determine target values for each goal or 
objective. Analyzing these problems effectively also requires that we use the MINI-
MAX objective described earlier.

A
B

Toxic Waste

Pr
o�

t

C

Figure 7.7

Illustration of 
trade-offs between 
objectives and 
dominated decision 
solution  
alternatives

3 B l :  t r i p l e  B o t t o m  l i n e
The “triple bottom line” (or 3BL) is a concept created in 1994 by John Elkington, 
founder of the British consultancy SustainAbility. The idea behind 3BL is that 
companies should make decisions with consideration to three different bottom 
lines: profit, people, and planet. “Profit” refers to traditional financial measures, 
“people” refers to social responsibility issues, and “planet” refers to environmen-
tal implications associated with various decision alternatives. Decisions made 
from a 3BL perspective obviously involve the simultaneous consideration of mul-
tiple objectives and often benefit by analysis with MOLP techniques.
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7.5 An MOlP Example
The following example illustrates the issues involved in an MOLP problem. Although 
this example involves only three objectives, the concepts and techniques presented 
apply to problems involving any number of objectives.

Lee Blackstone is the owner of the Blackstone Mining Company, which oper-
ates two different coal mines in Wythe and Giles counties in southwest Virginia. 
Due to increased commercial and residential development in the primary areas 
served by these mines, Lee is anticipating an increase in demand for coal in 
the coming year. Specifically, her projections indicate a 48-ton increase in the 
demand for high-grade coal, a 28-ton increase in the demand for medium-grade 
coal, and a 100-ton increase in the demand for low-grade coal. To handle this 
increase in demand, Lee must schedule extra shifts of workers at the mines. It 
costs $40,000 per month to run an extra shift of workers at the Wythe county 
mine and $32,000 per month at the Giles mine. Only one additional shift can be 
scheduled each month at each mine. The amount of coal that can be produced in 
a month’s time at each mine by a shift of workers is summarized in the follow-
ing table.

Type of Coal Wythe Mine giles Mine

High grade 12 tons 4 tons
Medium grade 4 tons 4 tons
Low grade 10 tons 20 tons

Unfortunately, the methods used to extract coal from these mines produce toxic 
water that enters the local groundwater aquifers. At the Wythe mine, running 
an extra shift will generate approximately 800 gallons of toxic water per month, 
whereas the mine in Giles county will generate about 1,250 gallons of toxic water. 
Although these amounts are within EPA guidelines, Lee is concerned about the 
environment and doesn’t want to create any more pollution than is absolutely nec-
essary. Additionally, although the company follows all OSHA safety guidelines, 
company records indicate that approximately 0.20 life-threatening accidents occur 
per shift each month at the Wythe mine whereas 0.45 accidents occur per shift each 
month at the Giles mine. Lee knows that mining is a hazardous occupation, but she 
cares about the health and welfare of her workers and wants to keep the number of 
life-threatening accidents to a minimum. 

7.5.1 DEfInIng thE DEcISIOn VarIaBlES
In this problem, Lee has to determine the number of months to schedule an extra shift 
at each of the company’s mines. Thus, we can define the decision variables as:

X1 5  number of months to schedule an extra shift at the Wythe county mine
X2 5  number of months to schedule an extra shift at the Giles county mine

7.5.2 DEfInIng thE OBjEctIVES
This problem is different from the other types of LP problems we have considered in 
that three different objective functions are possible. Lee might be interested in minimiz-
ing costs, minimizing the production of toxic waste water, or minimizing the expected 
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number of life-threatening accidents. These three different objectives would be formu-
lated as follows:

Minimize:  $40X1 1 $32X2 } production costs (in $1,000s)
 Minimize:  800X1 1 1250X2 } toxic water produced (in gallons)
 Minimize:  0.20X1 1 0.45X2 } life-threatening accidents

In an LP model, Lee would be forced to decide which of these three objectives is most 
important or most appropriate and use that single objective in the model. However, in 
an MOLP model, Lee can consider how all of these objectives (and any others she might 
want to formulate) can be incorporated into the analysis and solution of the problem.

7.5.3 DEfInIng thE cOnStraIntS
The constraints for this problem are formulated in the same way as for any LP problem. 
The following three constraints ensure that required amounts of high-grade, medi-
um-grade, and low-grade coal are produced:

12X1 1   4X2  $   48 } High-grade coal required
 4X1 1    4X2 $  28 } Medium-grade coal required
 10X1 1 20X2 $ 100 } Low-grade coal required

7.5.4 ImPlEmEntIng thE mODEl
To summarize, the MOLP formulation of this problem is represented as:

Minimize:  $40X1 1 $32X2 } production costs (in $1,000s)
 Minimize:  800X1 1 1250X2 } toxic water produced (in gallons)
 Minimize:  0.20X1 1 0.45X2 } life-threatening accidents
 Subject to:  12X1 1   4X2     $ 48 } high-grade coal required
 4X1 1   4X2     $ 28 } medium-grade coal required
 10X1 1  20X2    $ 100 } low-grade coal required
 X1, X2     $ 0 } nonnegativity conditions

This model is implemented in a spreadsheet in the usual way except that three dif-
ferent cells represent the three objective functions. One approach to implementing this 
model is shown in Figure 7.8 (and in the file Fig7-8.xlsm that accompanies this book).

In Figure 7.8, cells B5 and C5 represent the decision variables X1 and X2, respectively. 
The coefficients for the various objective functions are entered in cells B8 through C10. 
Next, the coefficients for the constraints are entered in cells B13 through C15. The objec-
tives are then implemented in cells D8 through D10 as follows:

 Formula for cell D8:  5SUMPRODUCT(B8:C8,$B$5:$C$5)
(Copy to D9 through D10.)

Next, the coefficients for the constraints are entered in cells B13 through C15. The 
LHS formulas for the constraints are then entered in cells D13 through D15:

Formula for cell D13:  5SUMPRODUCT(B13:C13,$B$5:$C$5) 
(Copy to D14 through D15.)

The RHS values for these constraints are given by cells E13 through E15.

47412_ch07_ptg01_326-370.indd   341 11/08/16   10:32 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



342 Chapter 7 Goal Programming and Multiple Objective Optimization 

7.5.5 DEtErmInIng targEt ValuES fOr thE OBjEctIVES
An LP problem can have only one objective function, so how can we include three 
objectives in our spreadsheet model? If these objectives had target values, we could 
treat them the same way as the goals in our example earlier in this chapter. That is, the 
objectives in this problem can be stated as the following goals if we have appropriate 
values for t1, t2, and t3:

Goal 1: The total production cost should be approximately t1.
Goal 2: The gallons of toxic water produced should be approximately t2.
Goal 3: The number of life-threatening accidents should be approximately t3.

Unfortunately, the problem did not provide explicit values for t1, t 2, and t3. How-
ever, if we solve our model to find the solution that minimizes the first objective (total 
production cost), the optimal value of this objective function would be a reasonable 
value to use as t1 in the first goal. Similarly, if we solve the problem two more times 
minimizing the second and third objectives, respectively, the optimal objective function 
values for these solutions would provide reasonable values to use as t2 and t3 in the 
second and third goals. We could then view our MOLP problem in the format of a GP 
problem.

Figure 7.9 shows the Solver settings and options required to determine the mini-
mum production cost that could be realized in this problem. Note that this involves 
minimizing the value of cell D8. Figure 7.10 shows the optimal solution obtained 
by solving this LP problem. Notice that the best possible (minimum) production 

Key Cell Formulas

Cell Formula Copied to

D8 5SUMPRODUCT(B8:C8,$B$5:$C$5) D9:D10 and D13:D15

Objective Cells

Constraint Cells

Variable Cells

Figure 7.8 Spreadsheet implementation of the MOLP problem
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cost for this problem is $244 (in $1,000s) and this solution can be obtained by 
running an extra shift at the Wythe county mine for 2.50 months and at the Giles 
county mine for 4.50 months. Thus, a reasonable value for t1 is $244. It is impos-
sible to obtain a solution to this problem with a production cost lower than this 
amount.

Figure 7.11 shows the solution obtained if we minimize the generation of toxic 
groundwater pollutants (obtained by minimizing the value in cell D9). This production 
schedule requires that we run an extra shift at the Wythe county mine for 4.0 months 

Solver Settings:

Objective: D8 (Min)
Variable cells: B5:C5
Constraints: 
 D13:D15 .5 E13:E15
 B5:C5 .5 0

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)

Figure 7.9

Solver settings  
and options  
to minimize  
production costs

Figure 7.10 Optimal solution when minimizing production costs
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and at the Giles county mine for 3.0 months and generates a total of 6,950 gallons of 
toxic water. Thus, a reasonable value for t2 is 6,950. It is impossible to obtain a solution 
to this problem that produces less toxic water.

Finally, Figure 7.12 shows the solution obtained if we minimize the expected num-
ber of life-threatening accidents (obtained by minimizing the value in cell D10). This 
production schedule requires that we run an extra shift at the Wythe county mine for 
10 months and not run any extra shifts at the Giles mine. A total of 2 life-threatening 
accidents can be expected with this schedule. Thus, a reasonable value for t3 is 2. It 
is impossible to obtain a solution to this problem with a lower number of expected 
life-threatening accidents.

7.5.6 SummarIzIng thE targEt SOlutIOnS
Figure 7.13 summarizes the solutions shown in Figures 7.10, 7.11, and 7.12 and shows 
where each of the solutions occurs in terms of the feasible region for this problem.

Two important points should be observed here. First, Figure 7.13 clearly shows that 
the objectives in this problem conflict with one another. Solution 1 has the lowest pro-
duction cost ($244,000) but also has the highest expected number of accidents (2.53). 
Conversely, solution 3 has the lowest expected number of accidents (2.0) but gener-
ates the highest production costs ($400,000) and also the highest creation of toxic water 

Figure 7.11 Optimal solution when minimizing the amount of toxic water generated
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(8,000 gallons). This is not surprising, but does underscore the fact that this problem 
involves trade-offs among the three objectives. No single feasible point simultaneously 
optimizes all of the objective functions. To improve the value of one objective, we must 
sacrifice the value of the others. This characteristic is common to most MOLP problems. 
Thus, the purpose of MOLP (and of GP) is to study the trade-offs among the objectives 
in order to find a solution that is the most desirable to the decision maker.

Second, the graph in Figure 7.13 shows the solutions only at three corner points of 
the feasible region for this problem. Because we have already determined the levels of 
cost, toxic water production, and expected accident rates offered by these three solu-
tions, if none of these solutions are acceptable, the decision maker may wish to explore 
some of the other non-corner point feasible solutions shown in Figure 7.13. As we will 
see, this poses a tricky problem.

7.5.7 DEtErmInIng a gP OBjEctIVE
Now that we have target values for the three objectives in our problem, we can formu-
late a weighted GP objective to allow the decision maker to explore possible solutions. 
Earlier in this chapter, we discussed several GP objectives and illustrated the use of an 
objective that minimized the weighted percentage deviation from the goals’ target val-
ues. Let’s consider how to formulate this same type of objective for the current problem.

Figure 7.12 Optimal solution when minimizing the expected number of life-threatening accidents
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We can restate the objectives of this problem as the following goals:

Goal 1: The total production cost should be approximately $244.
Goal 2: The gallons of toxic water produced should be approximately 6,950.
Goal 3: The number of life-threatening accidents should be approximately 2.0.

We now know that the actual total production cost can never be smaller than its 
target (optimum) value of $244, so the percentage deviation from this goal may be com-
puted as: 

actual value 2  target value

target value
5

140X1 1 32X2 2 2 244
244

Similarly, the actual amount of toxic water generated can never be less than its target 
(optimum) value of 6,950, so the percentage deviation from this goal is calculated as:

actual value 2  target value

target value
5

1800X1 1 1250X2 2 2 6950
6950

X1

X2

1

2

3

4

5

1

6

7

8

9

10

11

12

2 3 4 5 6 7 8 9 10 11 12

Feasible Region

Solution 1
(minimum production cost)

Solution 2
(minimum toxic water production)

Solution 3
(minimum accidents)

1 2.53
2 2.15
3 2.00

7,625
6,950
8,000$400

$256
$2444.5

3.0
0.010.0

4.0
2.5

Expected Number of
Life-Threatening

Accidents
Gallons of Toxic

Pollutants Produced
Production

Cost

Months of
Operation at

Giles Mine (X2)

Months of
Operation at

Wythe Mine (X1)Solution

Figure 7.13

Summary of  
the solutions  
minimizing each  
of the three  
possible objectives
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Finally, the actual expected number of life-threatening accidents can never be less 
than its target (optimum) value of 2, so the percentage deviation from this goal is cal-
culated as:

actual value 2  target value

target value
5

10.20X1 1 0.45X2 2 2 2
2

These percentage deviation calculations are all linear functions of the decision vari-
ables. Thus, if we form an objective function as a weighted combination of these per-
centage deviation functions, we obtain the following linear objective function:

MIN: w1a
140X1 1 32X2 2 2 244

244
b 1 w2a

1800X1 1 1250X2 2 2 6950
6950

b 1 w3a
10.20X1 1 0.45X2 2 2 2

2
b

Recall from Chapter 2 that the optimal solution to an LP problem (that is, an opti-
mization problem with linear constraints and a linear objective function) always occurs 
at an extreme (corner) point of the feasible region. So, if we use the  preceding objective 
to solve our example problem as a GP problem, we will always obtain one of the four 
extreme points shown in Figure 7.13 as the optimal solution to the problem, regardless 
of the weights assigned to w1, w2, and w3. Thus, to explore the non-extreme feasible 
solutions to this GP problem (or any other GP problem with hard constraints), we need 
to use a different type of objective function.

7.5.8 thE mInImaX OBjEctIVE
As it turns out, the MINIMAX objective, described earlier, can be used to explore the 
points on the edge of the feasible region—in addition to corner points. To illustrate this, 
let’s attempt to minimize the maximum weighted percentage deviation from the target 
values for the goals in our example problem using the objective:

MIN: the maximum of w1 a
140X1 1 32X2 2 2 244

244
b , w2 a

1800X1 1 1250X2 2 2 6950
6950

b , 

 and w3 a
10.20X1 1 0.45X2 2 2 2

2
b

We implement this objective by establishing a MINIMAX variable Q that we mini-
mize with the objective:

MIN: Q
subject to the additional constraints:

 w1a
140X1 1 32X2 2 2 244

244
b         # Q

 w2a
1800X1 1 1250X2 2 2 6950

6950
b # Q

 w3a
10.20X1 1 0.45X2 2 2 2

2
b       # Q
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348 Chapter 7 Goal Programming and Multiple Objective Optimization 

The first constraint indicates that the weighted percentage deviation from the target 
production cost must be less than or equal to Q. The second constraint indicates that 
the weighted percentage deviation from the target level of toxic water production must 
also be less than or equal to Q. The third constraint indicates that the weighted per-
centage deviation from the target expected number of life-threatening accidents must 
also be less than or equal to Q. Thus, as we minimize Q, we are also minimizing the 
weighted percentage deviations from the target values for each of our goals. In this 
way, the maximum weighted deviation from any of the goals is minimized—or we 
have MINImized the MAXimum deviation (hence the term MINIMAX).

7.5.9 ImPlEmEntIng thE rEVISED mODEl
The revised GP model of our investment problem is summarized as:

 MIN: Q

Subject to:

12X1 1 4X2 $ 48 } high-grade coal required
  4X1 1 4X2 $ 28 } medium-grade coal required
 10X1 1 20X2 $ 100 } low-grade coal required
 w1 (40X1 1 32X2 2 244)/244 # Q } goal 1 MINIMAX constraint
 w2 (800X1 1  1 250X2 2 6 950)/6 950 # Q } goal 2 MINIMAX constraint
 w3 (0.20X1 1 0.45X2 2 2)/2 # Q  } goal 3 MINIMAX constraint
 X1, X2 $ 0     } nonnegativity conditions
 w1, w2, w3 are positive constants

The spreadsheet shown earlier in Figure 7.8 can be modified easily to implement this 
new model. The revised spreadsheet is shown in Figure 7.14 (and in the file Fig7-14.
xlsm that accompanies this book).

In Figure 7.14, cells E8 through E10 contain the target values for the goals. The per-
centage deviations from each goal are calculated in cells F8 through F10 as follows:

Formula for cell F8:    5(D8-E8)/E8
(Copy to cells F9 through F10.)

 Arbitrary weights for the deviations from the goals were entered in cells G8 through 
G10. Cells H8 through H10 contain the following formulas, which calculate the 
weighted percentage deviation from the goals:

Formula for cell H8:    5F8*G8
(Copy to cells H9 through H10.)

The formulas in cells H8 through H10 are equivalent to the LHS formulas of the 
MINIMAX constraints for each of the goals in our model. Finally, cell B18 is reserved 
to represent the MINIMAX variable Q. Notice that this cell is a variable cell and also 
represents the objective to be minimized.

7.5.10 SOlVIng thE mODEl
The Solver settings and options shown in Figure 7.15 were used to solve the model 
shown in Figure 7.14. The solution obtained for this model is shown in Figure 7.16.
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Notice that the solution shown in Figure 7.16 1X1 5 4.23, X2 5 2.88 2  does not occur 
at an extreme point of the feasible region shown earlier in Figure 7.13. Also notice that 
this solution is within approximately 7.2% of achieving the target solution for goals 
1 and 3 and is less than 1% from the target value for goal 2. Thus, the decision maker 
in this problem might find this solution more appealing than the other solutions occur-
ring at the extreme points of the feasible region. Using other weights would produce 
different solutions. Figure 7.17 shows a number of representative solutions indicated 
on the original feasible region for this problem.

H9:H10

Key Cell Formulas

Cell Formula Copied to

D8 5SUMPRODUCT(B8:C8,$B$5:$C$5) D9:D10 and D13:D15
F8 5(D82E8)/E8 F9:F10
H8 5F8*G8

Objective and
Variable Cell

Constraint Cells

Variable Cells

Figure 7.14 Spreadsheet implementation of the GP model to analyze the MOLP problem 

Solver Settings:

Objective: B18 (Min)
Variable cells: B18, B5:C5
Constraints: 
 H8:H10 ,5 B18
 D13:D15 .5 E13:E15
 B5:C5 .5 0

Solver Options:

 Standard LP/Quadratic Engine (Simplex LP)

Figure 7.15

Solver settings and 
options for the GP 
implementation of 
the MOLP  
problem

An MOlP Example 349
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350 Chapter 7 Goal Programming and Multiple Objective Optimization 

Figure 7.16 Solution to the MOLP problem obtained through GP

X1

X2

1

2

3

4

5

1

6

7

8

9

10

11

12

2 3 4 5 6 7 8 9 10 11 12

Feasible Region

w1 5 10, w2 5 1, w3 5 1, x1 5 3.08, x2 5 3.92

w1 5 1, w2 5 10, w3 5 1, x1 5 4.23, x2 5 2.88

w1 5 1, w2 5 1, w3 5 10, x1 5 7.14, x2 5 1.43

Figure 7.17

Graph of other 
solutions obtained 
using the  
MINIMAX  
objective
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Figure 7.17 illustrates that as the relative weight on the first goal 1w1 2  increases, the 
solution is driven closer to achieving the target value for this goal (which occurs at the 
point X1 5 2.5, X2 5 4.5, as shown in Figure 7.13). As the relative weight on the sec-
ond goal 1w2 2  increases, the solution is driven closer to achieving the target value for 
this goal (which occurs at the point X1 5 4.0, X2 5 3.0). Finally, as the relative weight 
on the third goal 1w3 2  increases, the solution is driven closer to achieving the target 
value for this goal (which occurs at the point X1 5 10.0, X2 5 0.0). Thus, by adjusting 
the weights, the decision maker can explore a variety of solutions that do not necessar-
ily occur at the corner points of the original feasible region to the problem.

7.6 Comments on MOlP
Figure 7.18 provides a summary of the steps involved in solving an MOLP problem. 
Although the MOLP example in this chapter was somewhat simple, the same basic 
process applies in virtually any MOLP problem, regardless of the number of objectives 
or the complexity of the problem.

Summary Of multIPlE OBjEctIVE OPtImIzatIOn

 1. Identify the decision variables in the problem.
 2. Identify the objectives in the problem and formulate them in the usual way.
 3. Identify the constraints in the problem and formulate them in the usual way.
 4. Solve the problem once for each of the objectives identi²ed in step 2 to deter-

mine the optimal value of each objective.
 5. Restate the objectives as goals using the optimal objective values identi²ed in 

step 4 as the target values.
 6. For each goal, create a deviation function that measures the amount by 

which any given solution fails to meet the goal (either as an absolute or a 
percentage).

 7. For each of the deviation functions identi²ed in step 6, assign a weight to 
the deviation function and create a constraint that requires the value of the 
weighted deviation function to be less than the MINIMAX variable Q.

 8. Solve the resulting problem with the objective of minimizing Q.
 9. Inspect the solution to the problem. If the solution is unacceptable, adjust the 

weights in step 7 and return to step 8.

Figure 7.18

Summary of the 
steps involved in 
formulating  
and solving an 
MOLP problem

One advantage of using the MINIMAX objective to analyze MOLP problems is that 
the solutions generated are always Pareto optimal. That is, given any solution generated 
using this approach, we can be certain that no other feasible solution allows an increase 
in any objective without decreasing at least one other objective. (There are one or two 
exceptions to this statement, but they go beyond the scope of this text.) 

Although the MINIMAX objective is helpful in the analysis of MOLPs, its usefulness 
is not limited to these problems. Like deviational variables, the MINIMAX technique 
can prove useful in other types of mathematical programming situations.
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In the example MOLP problem presented here, all of the goals were derived from 
minimization objectives. Because of this, we knew that the actual value for any goal 
could never be less than its derived target value and we used the following formula to 
calculate the percentage deviation for each goal constraint:

actual value 2 target value

target value

For goals derived from maximization objectives, we know that the actual value of 
the goal can never be greater than its derived target value and the percentage deviation 
for such goals should be calculated as:

target value 2 actual value

target value

If the target value of a goal is zero, it is not possible to use weighted percentage devi-
ations in the solution to the MOLP because division by zero is not permissible. In this 
case, you can simply use weighted deviations. 

7.7 Summary
This chapter presented two separate but closely related issues in optimization—GP 
and MOLP. GP provides a way of analyzing potential solutions to a decision problem 
that involves soft constraints. Soft constraints can be stated as goals with target values. 
These goals can be translated into constraints through the use of deviational variables, 
which measure the amount by which a given solution deviates from a particular goal. 
The objective in GP problems is to minimize some weighted function of the deviational 
variables. By adjusting the weights on the deviational variables, a variety of potential 
solutions can be analyzed.

MOLP provides a way to analyze LP problems involving multiple objectives that 
conflict with one another. Although an MOLP problem is somewhat different from a 
standard GP problem, the objectives can be restated as goals after identifying appropri-
ate target values for the objectives. The MINIMAX objective is helpful in analyzing the 
possible solutions to an MOLP problem.

Solving a GP or MOLP problem is not as simple as solving a single LP problem. 
Rather, a sequence of problems must be solved to allow the decision maker to analyze 
the trade-offs among the various goals and objectives at different possible solutions. 
Thus, both of these procedures are highly iterative and interactive.
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thE WOrlD Of BuSInESS analytIcS

Truck Transport Corporation Controls Costs and Disruptions 
While Relocating a Terminal

The Truck Transport Corporation, having decided to move its East St. Louis termi-
nal, knew that relationships with customers and suppliers (independent truckers) 
were critical factors for continued profitable operations. Therefore, when evaluat-
ing five potential new sites, management considered driver and customer prefer-
ences as well as costs in making its final selection.

At Truck Transport Corporation, the traditional approach to evaluating a new 
site is to include the candidate site in a transportation LP model with the 4 other 
terminals and 12 major customers, and find the solution that minimizes total 
transportation costs. This minimum cost solution is then compared with those for 
the other candidates to choose the most efficient site. An assignment problem is 
solved to assign independent truckers to terminals to minimize travel costs from 
the truckers’ homes.

Some of the drivers, however, have strong preferences not to be assigned to 
particular terminals, usually on the basis of personal relationships with terminal 
managers. Some customers also have similar preferences. In a competitive mar-
ket, failure to consider these preferences might cause the drivers or customers to 
do business elsewhere.

The linear GP model used to evaluate the sites combined the transportation 
problem and the trucker assignment problem. The constraints defined the follow-
ing deviational variables, in declining order of priority: shortages in number of 
trips to major customers, shortages in number of trips assigned to each driver, 
number of driver preferences violated, number of customer preferences violated, 
increase in transportation costs from drivers’ homes, and increase in transporta-
tion costs to the customers.

The model was validated by evaluating the East St. Louis site and comparing 
results to historical costs. The site ultimately selected fully satisfied the require-
ments for number of shipments and preferences. Total transportation costs for 
all drivers were projected to increase only $3,200, and customer transportation 
costs were projected to increase $1,400. The East St. Louis terminal was moved 
with no changes in the usual patterns of driver turnover or business with cus-
tomers, and no complaints from drivers about decreased profitability because of 
the new site.

Source: Schneiderjans, Marc J., N. K. Kwak, and Mark C. Helmer, “An Application of Goal Program-
ming to Resolve a Site Location Problem.” Interfaces, vol. 12, no. 3, June 1982, pp. 65–70.

Questions and Problems
1. What is the difference between an objective function and a goal?
2. Is there an optimal solution to a GP or MOLP problem? Explain.
3. Read to the feature at the end of section 7.1 in this chapter titled “Balancing Objec-

tives for Enlightened Self-Interest.”  What objectives were the real estate developers 
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in this article considering in their plans for the Coal Bank Ridge development?  
Describe how the objectives you identify might conflict or support each other.

4. In 2005, Hurricane Katrina decimated the gulf coast of the United States between 
Mobile, Alabama and New Orleans, Louisiana. The aftermath of this storm left the 
city of New Orleans flooded, both with water and human victims of the storm. 
Responding to this disaster was a logistical nightmare and presented governmental 
decision makers with an extremely difficult challenge. 
a. Identify several key objectives that the decision makers who were managing this 

problem must have considered simultaneously. 
b. Identify the key resources that the decision makers needed to allocate.
c. How do the objectives and the resources interrelate?
d. Do the objectives you identified conflict or compete with one another in terms of 

resource usage?
e. How might the techniques presented in this chapter have helped decision mak-

ers determine how to allocate resources to achieve the objectives?
5. Refer to the MOLP example presented in this chapter. 

a. What weights could be used to generate the solution at X1 5 2.5, X2 5 4.5? 
b. What weights could be used to generate the solution at X1 5 4.0, X2 5 3.0?
c. What weights could be used to generate the solution at X1 5 10.0, X2 5 0.0?
d. What weights could be used to generate solutions along the edge of the feasible 

region that runs from the point X1 5 0, X2 5 12.0 to the point X1 5 2.5, X2 5 4.5?
6. Suppose that the first goal in a GP problem is to make 2X1 1 5X2 approximately 

equal to 25.
a. Using the deviational variables d2

1 and d1
1, what constraint can be used to express 

this goal?
b. If we obtain a solution where X1 5 4 and X2 5 3, what values do the deviational 

variables assume?
c. Consider a solution where X1 5 4, X2 5 3, d2

1 5 6, and d1
1 5 4. Can this solution 

ever be optimal? Why or why not?
 7.  Consider the following MOLP:
 MAX: 4X1 1 2X2

 MIN: X1 1 3X2

 Subject to: 2X1 1   X2 # 18
 X1 1 4X2 # 12
 X1 1   X2 $   4
 X1, X2 $   0

a. Graph the feasible region for this problem.
b. Calculate the value of each objective at each extreme point.
c. What feasible points in this problem are Pareto optimal?

 8.  It has been suggested that one way to solve MOLP problems is to create a composite 
objective function as a linear combination of all the objectives in the problem. For 
example, in the previous problem, we might weight the first objective by 0.75 and 
the second by 0.25 to obtain the composite objective, MAX: 2.75X1 1 0.75X2. (Note 
that the second objective in the previous problem is equivalent to MAX: 2X1 23X2.) 
We then use this as the objective in an LP model to generate possible solutions. What 
problem, if any, do you see with this approach?

 9.  Refer to the MOLP problem presented in this chapter. The solutions shown in Fig-
ures 7.9, 7.10, and 7.11 each result in more than the required amount of one or more 
types of coal being produced, as summarized in the following table. 
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a. Formulate an LP model that could be solved to find the solution that minimizes 
the maximum amount of excess coal produced. (Hint: Use a MINIMAX objective 
rather than a MAX( ) function.)

b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution? 
d. Revise your model to find the solution that minimizes the maximum percentage 

of excess coal produced. What is the optimal solution? 
10. The CFO for the Shelton Corporation has $1.2 million to allocate to the following 

budget requests from five departments:

Dept. 1 Dept. 2 Dept. 3 Dept. 4 Dept. 5

$450,000 $310,000 $275,000 $187,500 $135,000

  Because the total budget requests exceed the available $1.2 million, not all the 
requests can be satisfied. Suppose the CFO considers the requests for departments 
2 and 3 to be twice as important as those from departments 4 and 5, and the request 
from department 1 to be twice as important as those from departments 2 and 3. Fur-
ther suppose the CFO wants to make sure each department receives at least 70% of 
the requested amount.
a. Formulate a GP model for this problem.
b. Implement your model and solve it. What is the optimal solution?
c. Suppose the CFO is willing to allocate more than $1.2 million to these budgets 

but regards exceeding the $1.2 million figure as being twice as undesirable as not 
meeting the budget request of department 1. What is the optimal solution?

d. Suppose the CFO regards all deviations from the original budget amounts 
(including the $1.2 million available) to be equally undesirable. What solution 
minimizes the maximum percentage deviation from the budgeted amounts?

 11.  The Reeves Corporation wants to assign each of their 13 corporate clients to exactly 
one of their three salespersons.  The estimated annual sales potential (in $1,000,000s) 
for each of the clients is summarized in the following table:

Client A B C D e F g H i J K L M

Est. Sales $67 $84 $52 $70 $74 $62 $94 $63 $73 $109 $77 $36 $114

  Reeves wants each salesperson to be assigned to at least three customers and no 
more than six customers. The company wants to assign customers to the sales force 
in such a way that the estimated annual sales potential for each salesperson’s set of 
customers is as equal as possible.
a. Formulate a GP model for this problem. (Hint: There should be a goal for the esti-

mated annual sales potential for each salesperson.)
b. Assume the company wants to minimize the sum of the absolute deviations from 

each goal. Implement your model in a spreadsheet and solve it.
 12.  Blue Ridge Hot Tubs manufactures and sells two models of hot tubs: the Aqua-Spa 

and the Hydro-Lux. Howie Jones, the owner and manager of the company, needs 
to decide how many of each type of hot tub to produce during his next production 

excess Production of 
Solution Shown in: High-grade Coal Medium-grade Coal Low-grade Coal

Figure 7.9 0 tons 0 tons 15 tons
Figure 7.10 12 tons 0 tons 0 tons
Figure 7.11 72 tons 12 tons 0 tons
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cycle. Howie buys prefabricated fiberglass hot tub shells from a local supplier and 
adds the pump and tubing to the shells to create his hot tubs. (This supplier has the 
capacity to deliver as many hot tub shells as Howie needs.) Howie installs the same 
type of pump into both hot tubs. He will have only 200 pumps available during 
his next production cycle. From a manufacturing standpoint, the main difference 
between the two models of hot tubs is the amount of tubing and labor required. 
Each Aqua-Spa requires 9 hours of labor and 12 feet of tubing. Each Hydro-Lux 
requires 6 hours of labor and 16 feet of tubing. Howie expects to have 1,566 pro-
duction labor hours and 2,880 feet of tubing available during the next production 
cycle. Howie earns a profit of $350 on each Aqua-Spa he sells and $300 on each 
Hydro-Lux he sells. He is confident that he can sell all the hot tubs he produces. The 
production of each Aqua-Spa generates 15 pounds of a toxic resin, whereas each 
Hydro-Lux produces 10 pounds of toxic resin. Howie has identified two different 
objectives that could apply to his problem: He can maximize profit or he can mini-
mize the production of toxic resin.  Suppose Howie considers the maximization of 
profit as half as important as the minimization of toxic resin. 
a. Formulate an MOLP model for Howie’s decision problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the solution to Howie’s MOLP problem?
d. The feasible region for this problem was shown in Figure 2.7. Identify on this 

graph the Pareto optimal solutions for Howie’s MOLP problem.
13. The owner of the Weiner-Meyer meat processing plant wants to determine the best 

blend of meats to use in the next production run of hamburgers. Three sources of 
meat can be used. The following table summarizes relevant characteristics of these 
meats:

Meat 1 Meat 2 Meat 3

Cost per Pound $0.75 $0.87 $0.98
% Fat 15% 10% 5%
% Protein 70% 75% 80%
% Water 12% 10% 8%
% Filler 3% 5% 7%

A local elementary school has ordered 500 pounds of meat for $1.10 per pound. The 
only requirement is that the meat consist of at least 75% protein and at most 10% 
each of water and filler. Ordinarily, the owner would produce the blend of meats 
that achieved this objective in the least costly manner. However, with the concern of 
too much fat in school lunches, the owner also wants to produce a blend that mini-
mizes the fat content of the meat produced.
a. Formulate an MOLP for this problem.
b. Implement your formulation in a spreadsheet and individually optimize the two 

objectives under consideration.
c. How much profit must be forfeited in order to fill this order using the mix that 

minimizes the fat content?
d. Solve this problem with the objective of minimizing the maximum percentage 

deviation from the target values of the goals. What solution do you obtain?
e. Assume the owner considers minimizing the fat content twice as important as 

maximizing profit. What solution does this imply?
14. A new Italian restaurant called the Olive Grove is opening in a number of loca-

tions in the Memphis area. The marketing manager for these stores has a budget 
of $150,000 to use in advertising and promotions for the new stores. The manager 
can run magazine ads at a cost of $2,000 each that result in 250,000 exposures each. 
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TV ads result in approximately 1,200,000 exposures each, but cost $12,000 each. The 
manager wants to run at least five TV ads and ten magazine ads, while maximizing 
the number of exposures generated by the advertising campaign. But the manager 
also wants to spend no more than $120,000 on magazine and TV advertising so that 
the remaining $30,000 could be used for other promotional purposes. However, the 
manager would spend more than $120,000 on advertising if it resulted in a substan-
tial increase in advertising coverage.
a. Formulate a GP model for this problem assuming the marketing manager has 

the following goals:
Goal 1: Exposures should be maximized.
Goal 2: No more than $120,000 should be spent on advertising.

(Note that you will have to determine an appropriate target value for the first goal.) 
Assume the marketing manager wants to minimize the maximum percentage devia-
tion from either goal.
b. Implement your model in a spreadsheet and solve it.
c. What is the solution you obtain?
d. What changes do you make to your model if the manager wants to spend less on 

advertising than your solution suggests?
15. The city of Abingdon is determining its tax rate structure for the coming year. The 

city needs to generate $6 million in tax revenue via taxes of property, sales, pre-
pared food, and utilities. The following table summarizes how much tax revenue 
would be generated from each segment of the population by the 1% increase in each 
tax category. (For instance, a 2% tax on prepared food would generate $240,000 in 
tax revenue from upper income residents.)

revenues (in $1,000s) per 1% Tax rate

income group Sales Property Food utility
Low $200 $  600 $  50 $  80
Middle $250 $  800 $100 $100
Upper $400 $1200 $120 $120

  City commissioners have specified that the tax rate for each revenue category must 
be between 1% and 3% and the tax rate on prepared food cannot exceed half the 
sales tax rate. Ideally, the commissioners have a goal of making up the $6 million 
tax budget with $1.5 million from low income residents, $2.1 million from middle 
income residents, and $2.4 million from high income residents. If that is not possi-
ble, the commissioners would like a solution that minimizes the maximum percent-
age deviation from these tax revenue goals for each income group.
a. Create a spreadsheet model for this problem.
b. What is the optimal solution?

 16. The Royal Seas Company runs a three-night cruise to the Caribbean from Port 
Canaveral. The company wants to run TV ads promoting its cruises to high-income 
men, high-income women, and retirees. The company has decided to consider air-
ing ads during prime-time, afternoon soap operas, and during the evening news. 
The number of exposures (in millions) expected to be generated by each type of ad 
in each of the company’s target audiences is summarized in the following table:

Prime Time Soap Operas evening News

High-income men 6 3 6
High-income women 3 4 4
Retirees 4 7 3
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Ads during prime-time, the afternoon soaps, and the news hour cost $120,000, 
$85,000, and $100,000, respectively. Royal Seas wants to achieve the following goals: 

Goal 1: Spend approximately $900,000 on TV advertising.
Goal 2: Generate approximately 45 million exposures among high-income men.
Goal 3:  Generate approximately 60 million exposures among high-income 

women.
Goal 4: Generate approximately 50 million exposures among retirees.

a. Formulate a GP model for this problem. Assume overachievement of the first 
goal is equally as undesirable as underachievement of the remaining goals on a 
percentage deviation basis.

b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?
d. What solution allows the company to spend as close to $900,000 as possible with-

out exceeding this amount?
e. Assume that the company can spend no more than $900,000. What solution min-

imizes the maximum percentage underachievement of all the goals?
f. Which of the two preceding solutions would you most prefer? Why?

17. Virginia Tech operates its own power generating plant. The electricity generated by 
this plant supplies power to the university and to local businesses and residences 
in the Blacksburg area. The plant burns three types of coal, which produce steam 
that drives the turbines that generate the electricity. The Environmental Protection 
Agency (EPA) requires that for each ton of coal burned, the emissions from the coal 
furnace smoke stacks contain no more than 2,500 parts per million (ppm) of sulfur 
and no more than 2.8 kilograms (kg) of coal dust. However, the managers of the 
plant are concerned about the environment and wants to keep these emissions to 
a minimum. The following table summarizes the amounts of sulfur, coal dust, and 
steam that result from burning a ton of each type of coal.

Coal
Sulfur  

(in ppm)
Coal Dust  

(in kg)
Pounds of Steam  

Produced 

1 1,100 1.7 24,000
2 3,500 3.2 36,000
3 1,300 2.4 28,000

The three types of coal can be mixed and burned in any combination. The resulting 
emission of sulfur or coal dust and the pounds of steam produced by any mixture 
are given as the weighted average of the values shown in the table for each type of 
coal. For example, if the coals are mixed to produce a blend that consisted of 35% of 
coal 1, 40% of coal 2, and 25% of coal 3, the sulfur emission (in ppm) resulting from 
burning one ton of this blend is:

0.35 3 1,100 1 0.40 3 3,500 1 0.25 3 1,300 5 2,110

The manager of this facility wants to select a blend of coal to burn while consider-
ing the following objectives:

Objective 1: Maximize the pounds of steam produced.
Objective 2: Minimize sulfur emissions.
Objective 3: Minimize coal dust emissions.

a. Formulate an MOLP model for this problem and implement your model in a 
spreadsheet.

b. Determine the best possible value for each objective in the problem.
c. Determine the solution that minimizes the maximum percentage deviation from 

the optimal objective function values. What solution do you obtain?
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d. Suppose management considers maximizing the amount of steam produced five 
times as important as achieving the best possible values for the other objectives. 
What solution does this suggest?

18. The Waygate Corporation makes five different types of metal casing for personal 
computers. The company is in the process of replacing its machinery with three dif-
ferent new models of metal stamping machines: the Robo-I, Robo-II, and Robo-III. 
The unit costs of each machine are $18,500, $25,000, and $35,000, respectively. Each 
machine can be programmed to produce any of the five casings. After the machine 
is programmed it produces each type of casing at the following rates:

Casings per Hour

Type 1 Type 2 Type 3 Type 4 Type 5

Robo-I 100 130 140 210 80
Robo-II 265 235 170 220 120
Robo-III 200 160 260 180 220

  The company has the following goals:

Goal 1:  To spend no more than approximately $400,000 on the purchase of new 
machines

Goal 2:  To have the ability to produce approximately 3,200 units of type 1 casings 
per hour

Goal 3:  To have the ability to produce approximately 2,500 units of type 2 casings 
per hour

Goal 4:  To have the ability to produce approximately 3,500 units of type 3 casings 
per hour

Goal 5:  To have the ability to produce approximately 3,000 units of type 4 casings 
per hour

Goal 6:  To have the ability to produce approximately 2,500 units of type 5 casings 
per hour

a. Formulate a GP model for this problem. Assume all percentage deviations from 
all goals are equally undesirable.

b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?
d. What is the solution that minimizes the maximum percentage deviation from all 

the goals?
e. Assume that the company can spend no more than $400,000. What is the solution 

that minimizes the maximum percentage deviation from all the remaining goals?
 19.  The central Florida high school basketball tournament pits teams from four differ-

ent counties against one another. The average distance (in miles) between tourna-
ment locations in each country is given in the following table.

Average Distance (in Miles) between Counties

Orange Seminole Osceola Volusia

Orange — 30 45 60
Seminole 30 — 50 20
Osceola 45 50 — 75
Volusia 60 20 75 —

  Games are officiated by certified refereeing crews from each county. Orange, Sem-
inole, Osceola, and Volusia counties have 40, 22, 20, and 26 certified crews, respec-
tively. During the tournament, officiating crews cannot work games in their home 
counties and are paid $0.23 per mile in travel costs (in addition to a $50 per game 
officiating fee). (Assume each officiating crew travels to games in a single vehicle.) 
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Additionally, crews from one county cannot work more than 50% of the games in 
any other single county. It is anticipated that Orange, Seminole, Osceola, and Volu-
sia counties will host 28, 24, 16, and 20 games, respectively. 
a. Create a spreadsheet model to determine the least costly plan for allocating offi-

ciating crews from the various counties.
b. What is the optimal solution and associated travel cost for the referees?
c. Suppose it is desired to spend no more than $700 on referee travel expenses for 

these games? Is that possible? If not, determine the solution that minimizes the 
maximum percentage deviation from the 50% officiating requirement for each 
county while requiring no more than $700 in travel costs.

20. Alaskan Railroad is an independent, stand-alone railroad operation not con-
nected to any other rail service in North America. As a result, rail shipments 
between Alaska and the rest of North America must be shipped by truck for 
thousands of miles or loaded onto ocean-going cargo vessels and transported 
by sea. Alaskan Railroad recently began talks with the nation of Canada about 
expanding its railroad lines to connect with the North American railway 
system. The North American railroad system currently provides service to 
New Hazelton and Chetwynd. Alaskan Railroad would like to expand its rail-
way so as to be able to reach at least one of these cities from both Skagway and 
Fairbanks. Figure 7.19 summarizes the various rail segments that could be built. 
Of course, there is a financial cost associated with building each potential rail 
segment, and the company would like to minimize those costs. However, there 
are also environmental costs associated with constructing each rail segment. It 
is difficult to quantify these costs financially, but the company commissioned a 
study in which ecological experts assessed the environmental impact of building 
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each rail segment and summarized their findings on a scale of 0 to 100 (where 
0 represents the lowest negative impact and 100 represents the highest negative 
impact). The financial cost and environmental impact score for each potential 
rail segment are shown on the arcs in Figure 7.19.   
a. Implement a network flow model for this problem and determine the least expen-

sive way to connect the cities of Skagway and Fairbanks to the North American 
rail system. What is the financial cost of this route and what is its total environ-
mental impact score?

b. Now determine the solution for connecting the cities of Skagway and Fairbanks 
to the North American rail system in the manner that minimizes the total envi-
ronmental impact. What is the financial cost of this route and what is its total 
environmental impact score?

c. Suppose Alaskan Railroad considers minimizing environmental impact to be 
equally important as minimizing financial cost for the new rail lines. What solu-
tion does this suggest? At this solution, how far (on a percentage basis) this each 
objective from its best possible value?

21. The Chick’n-Pick’n fast-food chain is considering how to expand its operations. 
Three types of retail outlets are possible: a lunch counter operation designed for 
office buildings in downtown areas, an eat-in operation designed for shopping 
malls, and a stand-alone building with drive-through and sit-down facilities. The 
following table summarizes the number of jobs, start up costs, and annual returns 
associated with each type of operation:

Lunch Counter Mall Stand-Alone

Jobs 9 17 35
Costs $150,000 $275,000 $450,000
Returns $85,000 $125,000 $175,000

  The company has $2,000,000 available to pay start up costs for new operations in 
the coming year. Additionally, there are five possible sites for lunch counter oper-
ations, seven possible mall locations, and three possible stand-alone locations. The 
company wants to plan its expansion in a way that maximizes annual returns and 
the number of jobs created.
a. Formulate an MOLP for this problem.
b. Determine the best possible value for each objective in the problem.
c. Implement your model in a spreadsheet and solve it to determine the solution 

that minimizes the maximum percentage deviation from the optimal objective 
function values. What solution do you obtain?

d. Suppose management considers maximizing returns three times as important as 
maximizing the number of jobs created. What solution does this suggest?

22.  A private foundation has offered $3 million to allocate to cities to help fund pro-
grams that aid the homeless. Grant proposals were received from cities A, B, and 
C seeking assistance of $750,000, $1.2 million, and $2.5 million, respectively. In the 
grant proposals, cities were requested to quantify the number of assistance units 
that would be provided using the funds (an assistance unit is a night on a bed in 
a shelter or a free meal). Cities A, B, and C reported they could provide 485,000, 
850,000, and 1.5 million assistance units, respectively, with the funds requested 
during the coming year. The directors of the foundation have two objectives. They 
want to maximize the number of assistance units obtained with the $3 million. 
However, they also want to help each of the cities by funding as much of their indi-
vidual requests as possible (this might be done by maximizing the minimum per-
centage of funding received by any city).
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a. Formulate an MOLP for this problem.
b. Determine the best possible value for each objective in the problem.
c. Implement your model in a spreadsheet and solve it to determine the solution 

that minimizes the maximum percentage deviation from the optimal objective 
function values. What solution do you obtain?

23. The marketing manager for Glissen Paint is working on the weekly sales and mar-
keting plan for the firm’s industrial and contractor sales staff. Glissen’s sales repre-
sentatives contact two types of customers: existing customers and new customers. 
Each contact with an existing customer normally takes 3 hours of the salesperson’s 
time (including travel time) and results in an average sale of $425. Contacts with 
new customers generally take a bit longer, on average 4 hours, and result in an 
average sale of $350. The company’s salespeople are required to work 40 hours a 
week, but often work more to achieve their sales quotas (on which their bonuses 
are based). The company has a policy limiting the number of hours a salesperson 
can work to 50 hours per week. The sales manager wants to set customer contact 
quotas for the salespeople that will achieve the following goals (listed in order of 
importance):

Goal 1: Each salesperson should achieve an average weekly sales level of $6,000.
Goal 2: Each salesperson should contact at least 10 existing customers per week.
Goal 3: Each salesperson should contact at least 5 new customers per week.
Goal 4:  Each salesperson should limit overtime to no more than 5 hours per 

week.

a. Formulate this problem as a GP with an objective of minimizing the sum of the 
weighted undesirable percentage deviation from the goals.

b. Implement your model in a spreadsheet and solve it by assuming equal weights 
on each goal. What solution do you obtain?

24. A paper recycling company converts newspaper, mixed paper, white office paper, 
and cardboard into pulp for newsprint, packaging paper, and print-stock quality 
paper. The recycler is currently trying to determine the best way of filling an order 
for 500 tons of newsprint pulp, 600 tons of packaging paper pulp, and 300 tons of 
print-stock quality pulp. The following table summarizes the yield for each kind of 
pulp recovered from each ton of recycled material.

recycling Yield

Newsprint Packaging Print Stock

Newspaper 85% 80% —
Mixed Paper 90% 80% 70%
White Of�ce Paper 90% 85% 80%
Cardboard 80% 70% —

  For instance, a ton of newspaper can be recycled using a technique that yields 0.85 
tons of newsprint pulp. Alternatively, a ton of newspaper can be recycled using a 
technique that yields 0.80 tons of packaging paper. Similarly, a ton of cardboard can 
be recycled to yield 0.80 tons of newsprint or 0.70 tons of packaging paper pulp. 
Note that newspaper and cardboard cannot be converted to print-stock pulp using 
the techniques available to the recycler. As each material is recycled, it also pro-
duces a toxic sludge that the recycler must dispose of. The amount of toxic sludge 
(in pounds) created by processing a ton of each of the raw materials into each of the 
types of pulp is summarized in the following table. For instance, each ton of news-
paper that is processed into newspaper pulp creates 125 pounds of sludge.
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Sludge (lbs.)

Newsprint Packaging Print Stock

Newspaper 125 100 0
Mixed Paper 50 100 150
White Of�ce Paper 50 75 100
Cardboard 100 150 0

  The cost of processing each ton of raw material into the various types of pulp is 
summarized in the following table along with the amount of each of the four raw 
materials that can be purchased and their costs.

Processing Costs per Ton Purchase Cost  
Per Ton

Tons  
AvailableNewsprint Packaging Print Stock

Newspaper $6.50 $11.00 — $15 600
Mixed Paper $9.75 $12.25 $9.50 $16 500
White Of�ce Paper $4.75 $7.75 $8.50 $19 300
Cardboard $7.50 $8.50 — $17 400

These processing costs include the cost of disposing of sludge. However, the man-
agers of the recycling facility would prefer to minimize the amount of sludge cre-
ated as well as the total cost of filling the order. 
a. Formulate an MOLP model for this problem and implement your model in a 

spreadsheet.
b. Determine the best possible value for each objective in the problem.
c. Determine the solution that minimizes the maximum percentage deviation from 

the optimal objective function values. What solution do you obtain?
d. Suppose management considers minimizing costs to be twice as important as 

minimizing the amount of sludge produced. What solution does this suggest?
25. A trust officer at Pond Island Bank needs to determine what percentage of the 

bank’s investable funds to place in each of following investments. 

investment Yield Maturity risk

A 11.0% 8 5
B 8.0% 1 2
C 8.5% 7 1
D 10.0% 6 5
E 9.0% 2 3

  The Yield column represents each investment’s annual yield. The Maturity column 
indicates the number of years funds must be placed in each investment. The Risk 
column indicates an independent financial analyst’s assessment of each invest-
ment’s risk. In general, the trust officer wants to maximize the weighted average 
yield on the funds placed in these investments while minimizing the weighted 
average maturity and the weighted average risk.
a. Formulate an MOLP model for this problem and implement your model in a 

spreadsheet.
b. Determine the best possible value for each objective in the problem.
c. Determine the solution that minimizes the maximum percentage deviation from 

the optimal objective function values. What solution do you obtain?
d. Suppose management considers minimizing the average maturity to be twice as 

important as minimizing average risk, and maximizing average yield to be twice 
as important as minimizing average maturity. What solution does this suggest?
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26. A major city in the northeast wants to establish a central transportation station from 
which visitors can ride buses to four historic landmarks. The city is arranged in a 
grid, or block, structure with equally spaced streets running north and south and 
equally spaced avenues running east and west. The coordinates of any corner of 
any block in the city can be identified by the street and avenue numbers intersect-
ing at that particular corner. The following table gives the coordinates for the four 
historic landmarks:

Landmark Street Avenue

1 7 3
2 3 1
3 1 6
4 6 9

The transportation planners want to build the transportation station at the location 
in the city that minimizes the total travel distance (measured rectangularly) to each 
landmark. For example, if they built the station at 6th Street and 2nd Avenue, the 
total distance to each landmark will be:

Landmark Distance

1 |726| 1 |322| 5 1 1 1 5 2
2 |326| 1 |122| 5 3 1 1 5 4
3 |126| 1 |622| 5 5 1 4 5 9
4 |626| 1 |922| 5 0 1 7 5 7

Total Distance 5 22

a. Plot the locations of the various historical landmarks on a graph where the X-axis 
represents avenue numbers (starting at 0) and the Y-axis represents street num-
bers (starting at 0).

b. Formulate an LP model to determine the corner at which the central transpor-
tation station should be located. (Hint: Let the decision variables represent the 
street location (X1) and avenue location (X2) of the station and use deviational 
variables to measure the absolute street distance and absolute avenue distance 
from each landmark to X1 and X2. Minimize the sum of the deviational variables.)

 27. KPS Communications is planning to bring wireless Internet access to the town of 
Ames, Iowa. Using a geographic information system, KPS has divided Ames into 
the following 5 by 5 grid. The values in each block of the grid indicate the expected 
annual revenue (in $1,000s) KPS will receive if wireless Internet service is provided 
to the geographic area represented by each block.

expected Annual revenue by Area (in $1,000s)

$34 $43 $62 $42 $34
$64 $43 $71 $48 $65
$57 $57 $51 $61 $30
$32 $38 $70 $56 $40
$68 $73 $30 $56 $44

  KPS can build wireless towers in any block in the grid at a cost of $150,000 per 
tower. Each tower can provide wireless service to the block it is in and to all adja-
cent blocks. (Blocks are considered to be adjacent if they share a side. Blocks touch-
ing only at a corner point are not considered adjacent.)  KPS wants to determine 
how many towers to build and where to build them in order to maximize profits in 
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the first year of operations. (Note: If a block can receive wireless service from two 
different towers, the revenue for that block should only be counted once.)
a. Create a spreadsheet model for this problem and solve it.
b. What is the optimal solution and how much money will KPS make in the first 

year?
c. In order to be the dominant player in this market, KPS is also considering pro-

viding wireless access to all of Ames even if it is less profitable to do so in the 
short term. Modify your model as necessary to determine the tower location plan 
that maximizes the wireless coverage in Ames. What is the optimal solution and 
how much profit will it provide?

d. Clearly, there is a trade-off between the objective in part b of maximizing profit 
and the objective in part c of maximizing wireless coverage. Determine the solu-
tion that minimizes the maximum percentage deviation from the optimal objec-
tive function values from parts b and c.

e. Suppose KPS considers maximizing profit to be twice as important as maximiz-
ing coverage. What solution does this suggest?

28. A car dealer specializing in late model used cars collected the following data on the 
selling price and mileage of five cars of the same make and model year at an auto 
auction:

Mileage Price

43,890 $12,500
35,750 $13,350
27,300 $14,600
15,500 $15,750
8,900 $17,500

  Because there seems to be a strong relationship between mileage and price, the 
dealer wants to use this information to predict this type of car’s market value on the 
basis of its mileage. The dealer thinks that the car’s selling price can be predicted as:

Estimated price 5 A 1 B 3 mileage

  A and B represent numeric constants (which might be positive or negative). Using 
the data collected at last week’s auction, the dealer wants to determine appropriate 
values for A and B that minimize the following quantity:

 MIN:  |A 1 B 3 43890 2 12500| 1 |A 1 B 3 35750 2 13350| 1 
 |A 1 B 3 27300  2 14600| 1 |A 1 B  3 15500 2 15750|  1 
 |A 1 B 3 8900    2 17500|

  Notice that this objective seeks to find values of A and B that minimize the sum of 
the absolute value of the deviations between the actual prices of the cars and the 
estimated prices.
a. Create an LP model using deviational variables whose solution provides the best 

values for A and B using the stated criteria. That is, what values of A and B mini-
mize the sum of the absolute deviations between the actual and estimated selling 
prices?

b. Implement your model in a spreadsheet and solve it.
c. Using the values of A and B determined by your solution, what should the esti-

mated selling price be for each car?
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29. Refer to the previous question. Suppose that the car dealer wanted to find values for 
A and B that minimized the maximum absolute deviation between the actual and 
estimated selling price for each car. What values of A and B achieve this objective?

30. A job in a machine shop must undergo five operations—A, B, C, D, and E. Each 
operation can be performed on either of two machines. The following table summa-
rizes the time required for each machine to perform each operation:

A B C D e

Machine 1 7 8 4 4 9
Machine 2 5 3 9 6 8

  Formulate a model that can be solved to determine the job routing that minimizes 
the maximum amount of time used on either machine. That is, if ti is the total time 
used on machine i, find the solution that minimizes the maximum of t1 and t2.

Removing Snow in Montreal
Based on: James Campbell and Andre Langevin, “The Snow Disposal Assignment Problem,” Journal of the 
Operational Research Society, 1995, pp. 919–929.

Snow removal and disposal are important and expensive activities in Montreal and 
many northern cities. Although snow can be cleared from streets and sidewalks by 
plowing and shoveling, in prolonged subfreezing temperatures, the resulting banks of 
accumulated snow can impede pedestrian and vehicular traffic and must be removed. 

To allow timely removal and disposal of snow, a city is divided up into several sec-
tors and snow removal operations are carried out concurrently in each sector. In Mon-
treal, accumulated snow is loaded into trucks and hauled away to disposal sites (e.g., 
rivers, quarries, sewer chutes, surface holding areas). The different types of disposal 
sites can accommodate different amounts of snow due to the physical size of the dis-
posal facility. The annual capacities for five different snow disposal sites are given in 
the following table (in 1,000s of cubic meters).

Disposal Site

1 2 3 4 5

Capacity 350 250 500 400 200

 The snow transported to various disposal sites is often contaminated by salt and 
de-icing chemicals. When the snow melts, these contaminants ultimately wind up in 
lakes, rivers, and the local water supply. The different disposal sites are equipped to 
remove different amounts of contaminants from the snow they receive.  The percentage 
of contaminants that can be removed from the snow delivered to each disposal site is 
given in the following table. The amount of contaminant contained in removed snow is 
relatively constant across sectors.

Disposal Site

1 2 3 4 5

Contaminant Removed 30% 40% 20% 70% 50%

CASe 7.1

47412_ch07_ptg01_326-370.indd   366 11/08/16   10:32 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



The cost of removing and disposing of snow depends mainly on the distance it must 
be trucked. For planning purposes, the City of Montreal uses the straight-line distance 
between the center of each sector to each of the various disposal sites as an approxima-
tion of the cost involved in transporting snow between these locations. The following 
table summarizes these distances (in kilometers) for ten sectors in the city.

Disposal Site

Sector 1 2 3 4 5

1 3.4 1.4 4.9 7.4 9.3
2 2.4 2.1 8.3 9.1 8.8
3 1.4 2.9 3.7 9.4 8.6
4 2.6 3.6 4.5 8.2 8.9
5 1.5 3.1 2.1 7.9 8.8
6 4.2 4.9 6.5 7.7 6.1
7 4.8 6.2 9.9 6.2 5.7
8 5.4 6 5.2 7.6 4.9
9 3.1 4.1 6.6 7.5 7.2

10 3.2 6.5 7.1 6 8.3

Using historical snow fall data, the city is able to estimate the annual volume of 
snow requiring removal in each sector as four times the length of streets in the sectors 
in meters (i.e., it is assumed each linear meter of street generates 4 cubic meters of snow 
to remove over an entire year). The following table estimates the snow removal require-
ments (in 1,000s of cubic meters) for each sector in the coming year.

estimated Annual Snow removal requirements

1 2 3 4 5 6 7 8 9 10

153 152 154 138 127 129 111 110 130 135

 1. If Montreal wants to pursue the objective of minimizing the distance the snow must 
be moved (and therefore the cost of removing snow), how much snow should it 
plan to move from each sector to each disposal site? 

 2. If it costs $35 to move 1,000 cubic meters of snow one kilometer, how much should 
Montreal plan on spending on the transportation for the removal of snow?

 3. If Montreal wants to purse the objective of maximizing the amount of contaminant 
that is removed from transported snow, how much snow should it plan to move 
from each sector to each disposal site and what transportation cost is associated 
with this solution? 

 4. Suppose Montreal wants to minimize the maximum percentage deviation from the 
optimal value for each of the two objectives mentioned earlier. What is the optimal 
solution and how far is each objective function from its optimal value?

 5. Suppose the removal of contaminants is regarded as five times more important than 
transportation cost minimization. What solution minimizes the maximum weighted 
percentage deviation for each objective? How far is each objective from its optimal 
value?

 6. What other suggestions might you have for Montreal as it attempts to deal with 
these two conflicting objectives?

   Case 7.1 367
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Planning Diets for the Food  
Stamp Program
Based on: S. Taj, “A Mathematical Model for Planning Policies for Food Stamps.” Applications of Management 
Science, Vol. 7, 25–48, 1993. 

The United States Department of Agriculture (USDA) is responsible for managing and 
administering the national food stamp program. This program provides vouchers to 
low income families that can be used in place of cash to purchase food at grocery stores. 
In determining the cash value of the vouchers issued, the USDA must consider how 
much it costs to obtain a nutritional, well-balanced diet for men and women in various 
age groups. As a first step in this process, the USDA identified and analyzed 31 differ-
ent food groups and determined the contributions a serving from each group makes 
to 24 different nutritional categories. A partial listing of this information is given in 
Figure 7.20 (and in the file DietData.xlsm that accompanies this book).

CASe 7.2

Figure 7.20 Data for the USDA diet-planning problem
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The last two rows in this spreadsheet indicate the minimum and/or maximum nutri-
ents required per week for men between the ages of 20 and 50. (Maximum values of 9999 
indicate that no maximum value applies to that particular nutritional requirement.) 

The USDA uses this information to design a diet (or weekly consumption plan) that 
meets the indicated nutritional requirements. The last two columns in Figure 7.20 rep-
resent two different objectives that can be pursued in creating a diet. First, we may 
want to identify the diet that meets the nutritional requirements at a minimum cost. 
Although such a diet might be very economical, it might also be very unsatisfactory 
to the tastes of the people who are expected to eat it. To help address this issue, the 
USDA conducted a survey to assess people’s preferences for different food groups. 
The last column in Figure 7.20 summarizes these preference ratings, with higher scores 
indicating more desirable foods, and lower scores indicating less desirable foods. Thus, 
another objective that could be pursued would be that of determining the diet that 
meets the nutritional requirements and produces the highest total preference rating. 
However, this solution is likely to be quite expensive. Assume that the USDA has asked 
you to help them analyze this situation using MOLP.
a. Find the weekly diet that meets the nutritional requirements in the least costly man-

ner. What is the lowest possible minimum cost? What preference rating does this 
solution have?

b. Find the weekly diet that meets the nutritional requirements with the highest pref-
erence rating. What preference rating does this solution have? What cost is associ-
ated with this solution? 

c. Find the solution that minimizes the maximum percentage deviation from the opti-
mum values for each individual objective. What cost and preference rating is asso-
ciated with this solution?

d. Suppose that deviations from the optimal cost value are weighted twice as heavily 
as those from the optimal preference value. Find the solution that minimizes the 
maximum weighted percentage deviations. What cost and preference rating is asso-
ciated with this solution?

e. What other factors or constraints might you want to include in this analysis if you 
had to eat the resulting diet?

Sales Territory Planning at Caro-life
Caro-Life is a financial services firm that specializes in selling life, auto, and home 
insurance to residential consumers in the state of North Carolina. The company is 
planning to expand and offer its services in South Carolina as well. The company 
wants to open a set of 10 offices throughout the state in such a way to ensure that all 
residents of the state can access at least 1 office in either their county of residence or 
an adjacent county. The set of counties adjacent to the county containing each office 
will be regarded as the sales territory for that office. (Note that a county is consid-
ered to be adjacent to itself.)  Figure 7.21 (and the file Caro-Life.xlsm that accompanies 
this book) shows a portion of an Excel spreadsheet with a matrix indicating county 
adjacencies throughout the state, and the estimated population and geographic size 
(in square miles) for each potential sales territory. (Values of 1 in the matrix indicate 
counties that are adjacent to one another.) 

Sales of insurance products in a given area tend to be highly correlated with the 
number of people living in the area. As a result, agents assigned to the various offices 
want their sales territories to contain as many people as possible (to maximize sales 
potential). On the other hand, territories containing large amounts of people may also 
be comprised of a large geographic area that may require lots of travel on the part of the 

CASe 7.3

Case 7.3 369
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370 Chapter 7 Goal Programming and Multiple Objective Optimization 

agents. So the goal of having a territory with lots of people is sometimes in conflict with 
having a territory that is compact in size. It is important for Caro-Life to design its sales 
territories in as equitable a manner as possible (i.e., where the territories are similar in 
terms of geographic size and sales potential).

a. Assume Caro-Life wants to maximize the average sales potential of its 10 offices. 
Where should it locate offices and what is the population and geographic area 
associated with each office?

b. Assume Caro-Life wants to minimize the average geographic area covered by 
each of its 10 offices. Where should it locate offices and what is the population and 
geographic area associated with each office?

c. Determine the solution that minimizes the maximum percentage deviation from 
the optimal objective function values identified in parts a and b. According to this 
solution, where should Caro-Life locate its offices and what is the population and 
geographic area associated with each office?

d. Suppose Caro-Life considers maximizing average sales potential of its territories to 
be twice as important as minimizing the average geographic size of its territories. 
Find the solution that minimizes the maximum weighted percentage deviations.  
According to this solution, where should Caro-Life locate its offices and what is the 
population and geographic area associated with each office?

e. What other issues would you suggest Caro-Life take into account in modeling this 
decision problem?

Figure 7.21 Data for the Caro-Life sales territory planning problem
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Chapter 8
Nonlinear Programming &  
Evolutionary Optimization

8.0 Introduction
Up to this point in our study of optimization, we have considered only mathematical 
programming models in which the objective function and constraints are linear func-
tions of the decision variables. In many decision problems, the use of such linear func-
tions is appropriate. Other types of optimization problems involve objective functions 
and constraints that cannot be modeled adequately using linear functions of the decision 
variables. These types of problems are called nonlinear programming (NLP) problems.

The process of formulating an NLP problem is virtually the same as formulating an LP 
problem. In each case, you must identify the appropriate decision variables and formulate 
an appropriate objective function and constraints using these variables. As you will see, the 
process of implementing and solving NLP problems in a spreadsheet is also similar to that 
for LP problems. However, the mechanics (that is, mathematical procedures) involved in 
solving NLP problems are very different. Although optimization software such as Solver 
makes this difference somewhat transparent to the user of such systems, it is important to 
understand these differences so you can understand the difficulties you might encounter 
when solving an NLP problem. This chapter discusses some of the unique features and 
challenges involved in solving NLP problems, and presents several examples of manage-
rial decision-making problems that can be modeled as NLP problems.

8.1 The Nature of NlP Problems
The main difference between an LP and NLP problem is that NLPs can have a nonlin-
ear objective function and/or one or more nonlinear constraints. To understand the dif-
ferences and difficulties nonlinearities introduce to an optimization problem, consider 
the various hypothetical NLP problems shown in Figure 8.1.

The first graph in Figure 8.1, labeled (a), illustrates a problem with a linear objec-
tive function and a nonlinear feasible region. Note that the boundary lines of the feasi-
ble region for this problem are not all straight lines. At least one of the constraints in 
this problem must be nonlinear to cause the curve in the boundary line of the feasible 
region. This curve causes the unique optimal solution to this problem to occur at a solu-
tion that is not a corner point of the feasible region.

The second graph in Figure 8.1, labeled (b), shows a problem with a nonlinear objec-
tive function and a linear constraint set. As indicated in this graph, if an NLP problem 
has a nonlinear objective function, the level curves associated with the objective are 
also nonlinear. So from this graph, we observe that a nonlinear objective can cause the 
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372 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

optimal solution to the NLP problem to occur at a solution that is not a corner point of 
the feasible region—even if all the constraints are linear.

The third graph in Figure 8.1, labeled (c), shows a problem with a nonlinear objective 
and a nonlinear constraint set. Here again, we see that the optimal solution to this NLP 
problem occurs at a solution that is not a corner point of the feasible region.

Finally, the fourth graph in Figure 8.1, labeled (d), shows another problem with 
a nonlinear objective and a linear constraint set. The optimal solution to this problem 
occurs at a point in the interior of the feasible region.

These graphs illustrate the major difference between LP and NLP problems—an 
optimal solution to an LP problem always occurs at a corner point of its feasible region, 
but this is not true of NLP problems. The optimal solution to some NLP problems 
might not occur on the boundary of the feasible region at all, but at some point in the 
interior of the feasible region. Therefore, the strategy of searching the corner points 
of the feasible region employed by the simplex method to solve LP problems will not 
work with NLP problems. We need another strategy to solve NLP problems.

(a) Linear objective, nonlinear constraints
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Feasible
region

Feasible
region

(b) Nonlinear objective, linear constraints
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8.2 Solution Strategies for NlP Problems
The solution procedure Solver uses to solve NLP problems is called the generalized 
reduced gradient (GRG) algorithm. The mathematics involved in this procedure is 
rather complex and goes beyond the scope and purpose of this text. However, the fol-
lowing discussion should give you a very basic (if somewhat imprecise) understanding 
of the ideas behind the GRG and other NLP solution algorithms.

NLP algorithms begin at any feasible solution to the NLP problem. This initial fea-
sible solution is called the starting point. The algorithm then attempts to move from 
the starting point in a direction through the feasible region that causes the objective 
function value to improve. Some amount of movement (or a step size) in the selected 
feasible direction is then taken resulting in a new, and better, feasible solution to the 
problem. The algorithm next attempts to identify another feasible direction in which 
to move to obtain further improvements in the objective function value. If such a 
direction exists, the algorithm determines a new step size and moves in that direc-
tion to a new and better feasible solution. This process continues until the algorithm 
reaches a point at which there is no feasible direction in which to move that results in 
an improvement in the objective function. When no further possibility for improve-
ment exists (or the potential for further improvement becomes arbitrarily small), the 
algorithm terminates.

Figure 8.2 shows a graphical example of how a crude NLP algorithm might work. In 
this graph, an initial feasible solution occurs at the origin (point A). The fastest rate of 
improvement in the objective function value occurs by moving from point A in the direc-
tion that is perpendicular to (or forms a 90-degree angle with) the level curves of the 
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objective function. Feasible movement in this direction is possible from point A to point 
B where a boundary of the feasible region is encountered. From point B, moving along 
the edge of the feasible region to point C further improves the objective function value. 
At point C, the boundary of the feasible region begins to curve; therefore, continued 
movement in the direction from point B to point C is no longer feasible. From point C, 
a new direction through the interior of the feasible region allows movement to point D. 
This process continues from point D until the solution becomes arbitrarily close (or 
converges) to point E—the optimal solution.

In moving from point A in Figure 8.2, we selected the direction that resulted in the 
fastest rate of improvement in the objective function. In retrospect, we can see that it 
would have been better to move from point A in the direction of point E. This direc-
tion does not result in the fastest rate of improvement in the objective as we move 
from point A, but it would have taken us to the optimal solution in a more direct 
fashion. Thus, it is not always best to move in the direction producing the fastest rate 
of improvement in the objective, nor is it always best to move as far as possible in that 
direction. The GRG algorithm used by Solver takes these issues into consideration as 
it determines the direction and step size of the movements to make. Thus, although 
the GRG algorithm usually cannot move directly from a starting point to an optimal 
solution, it does choose the path it takes in a more refined manner than outlined in 
Figure 8.2. 

8.3 local vs. Global Optimal Solutions
An NLP solution algorithm terminates whenever it detects that no feasible direc-
tion exists in which it can move to produce a better objective function value (or 
when the amount of potential improvement becomes arbitrarily small). In such a 
situation, the current solution is a local optimal solution—a solution that is bet-
ter than any other feasible solution in its immediate, or local, vicinity. However, a 
given local optimal solution might not be the best possible, or global optimal, solu-
tion to a problem. Another local optimal solution in some other area of the feasible 
region could be the best possible solution to the problem. This type of anomaly is 
illustrated in Figure 8.3.

If an NLP algorithm starts at point A in Figure 8.3, it could move immediately to 
point B and then along the feasible direction from B to C. Because no feasible point in 
the vicinity of C produces a better objective function value, point C is a local optimal 
solution and the algorithm terminates at this point. However, this is clearly not the best 
possible solution to this problem. If an NLP algorithm starts at point D in Figure 8.3, 
it could move immediately to point E, and then follow the feasible direction from E to 
F and from F to G. Note that point G is both a local and global optimal solution to this 
problem.

It is important to note that the feasible region of the problem in Figure 8.3 is non-
convex while those in Figures 8.1 and 8.2 are convex. A set of points X is called a con-
vex set if for any two points in the set a straight line drawn connecting the two points 
falls entirely within X. (A line connecting points B and E in Figure 8.3 would not fall 
within the feasible region. Therefore the feasible region in Figure 8.3 is non-convex.) 
A function is convex (or concave) if the line connecting any two points on the function 
falls entirely above (or below) the function. Optimization problems with convex feasi-
ble regions and convex (or concave) objective functions are considerably easier to solve 
to global optimality than those that do not exhibit these properties. 
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Local vs. Global Optimal Solutions 375

Figure 8.3 highlights two important points about the GRG and all other NLP 
algorithms:

•	 NLP algorithms can terminate at a local optimal solution that might not be the global 
optimal solution to the problem.

•	 The local optimal solution at which an NLP algorithm terminates depends on the 
initial starting point.

The possibility of terminating at a local optimal solution is undesirable—but we 
have encountered this type of difficulty before. In our study of integer programming, 
we noted that suboptimal solutions to ILPs might be acceptable if they are within some 
allowable tolerance of the global optimal solution. Unfortunately, with NLP problems, 
it is difficult to determine how much worse a given local optimal solution is than the 
global optimal solution because most optimization packages do not provide a way of 
obtaining bounds on the optimal objective function values for these problems. How-
ever, many NLP problems have a single local optimal solution that, by definition, must 
also be the global optimal solution. So in many problems NLP algorithms will locate the 
global optimal solution but, as a general rule, we will not know whether the solution 
obtained is a global optimal solution. However, in Analytic Solver Platform some infor-
mation about this issue can be obtained by running the convexity tester (by choosing 
Optimize - Analyze Without Solving, or by clicking the ‘X-Checkbox’ icon on the Model 
tab in the task pane). The result of convexity testing may be ‘Proven convex’, ‘Proven 
non-convex’, or ‘Nothing proven’. If you see ‘Model Type - NLP Convex’ in the Model 
Diagnosis area of the Task Pane Model tab, then you know that a local optimal solu-
tion is also a global optimal solution. If you see ‘NLP NonCvx’ or just ‘NLP’, then you 
have to assume that you have only a local optimal solution. In the non-convex case, it 
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is usually a good idea to try starting NLP algorithms from different points to determine 
if the problem has different local optimal solutions. This procedure often reveals the 
global optimal solution. (Two questions at the end of this chapter illustrate this process.)

A  N o t e  A b o u t  “ O p t i m a l ”  

S o l u t i o n s
When solving an NLP problem, Solver normally stops when the first of three 
numerical tests is satisfied, causing one of the following three completion mes-
sages to appear:

1. “Solver found a solution. All constraints and optimality conditions are 
satisfied.” This means Solver found a local optimal solution, but does not 
guarantee that the solution is the global optimal solution. Unless you know 
that a problem has only one local optimal solution (which must also be the 
global optimal solution), you should run Solver from several different starting 
points to increase the chances that you find the global optimal solution to your 
problem. The easiest way to do this is to set the Engine tab Global Optimization 
group MultiStart option to True before you solve—this will automatically run 
the Solver from several randomly (but efficiently) chosen starting points.

2. “Solver has converged to the current solution. All constraints are satisfied.” 
This means the objective function value changed very slowly for the last few 
iterations. If you suspect the solution is not a local optimal solution, your 
problem may be poorly scaled. The convergence option in the Solver Options 
dialog box can be reduced to avoid convergence at suboptimal solutions.

3. “Solver cannot improve the current solution. All constraints are satisfied.” 
This rare message means that your model is degenerate and the Solver 
is cycling. Degeneracy can often be eliminated by removing redundant 
constraints in a model.

A  N o t e  A b o u t  S t a r t i n g  

P o i n t s
Solver sometimes has trouble solving an NLP problem if it starts at the null start-
ing point, where all the decision variables are set equal to 0—even if this solution 
is feasible. Therefore, when solving an NLP problem, it is best to specify a non-
null starting solution whenever possible.

We will now consider several examples of NLP problems. These examples illustrate 
some of the differences between LP and NLP problems and provide insight into the 
broad range of problems that cannot be modeled adequately using LP.

8.4 Economic Order Quantity Models
The economic order quantity (EOQ) problem is one of the most common business 
problems for which nonlinear optimization can be used. This problem is encountered 
when a manager must determine the optimal number of units of a product to purchase 
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Economic Order Quantity Models 377

whenever an order is placed. The basic model for an EOQ problem makes the follow-
ing assumptions:

1. Demand for (or use of) the product is fairly constant throughout the year.
2. Each new order is delivered in full when the inventory level reaches 0.

Figure 8.4 illustrates the type of inventory patterns observed for a product when 
the preceding conditions are met. In each graph, the inventory levels are depleted at a 
constant rate, representing constant demand. Also, the inventory levels are replenished 
instantly whenever the inventory levels reach 0.

The key issue in an EOQ problem is to determine the optimal quantity to order 
whenever an order is placed for an item. The trade-offs in this decision are evident in 
Figure 8.4. The graphs indicate two ways of obtaining 150 units of a product during 
the year. In the first graph, an order for 50 units is received whenever the inventory 
level drops to 0. This requires that three purchase orders be issued during the year 
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and results in an average inventory level of 25 units. In the second graph, an order for 
25 units is received whenever the inventory level drops to 0. This requires that six pur-
chase orders be issued throughout the year and results in an average inventory level 
of 12.5 units. Thus, the first ordering strategy results in fewer purchase orders (and 
lower ordering costs) but higher inventory levels (and higher carrying costs). The sec-
ond ordering strategy results in more purchase orders (and higher ordering costs) but 
lower levels of inventory (and lower carrying costs).

In the basic EOQ model, the total annual cost of stocking a product is computed as 
the sum of the actual purchase cost of the product, plus the fixed cost of placing orders, 
plus the cost of holding (or carrying) the product in inventory. Figure 8.5 shows the 
relationships among order quantity, carrying cost, ordering cost, and total cost. Notice 
that as the order quantity increases, ordering costs decrease and carrying costs increase. 
The goal in this type of problem is to find the EOQ that minimizes the total cost.

The total annual cost of acquiring products that meet the stated assumptions is rep-
resented by:

Total annual cost 5 DC 1
D
Q

  S 1
Q
2

  Ci

where:

D 5 annual demand for the item
C 5 unit purchase cost for the item
S 5 fixed cost of placing an order
i 5 cost of holding one unit in inventory for a year (expressed as a percentage of C)

Q 5 order quantity, or quantity ordered each time an order is placed
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The first term in this formula (DC) represents the cost of purchasing a year’s worth 
of the product. The second term D

Q 
S represents the annual ordering costs. Specifically, 

D
Q represents the number of orders placed during a year. Multiplying this quantity by 
S represents the cost of placing these orders. The third term Q

2  
Ci represents the annual 

cost of holding inventory. On average, Q
2  units are held in inventory throughout the 

year (refer to Figure 8.4). Multiplying this term by Ci represents the cost of holding 
these units. The following example illustrates the use of the EOQ model.

Alan Wang is responsible for purchasing the paper used in all the copy machines and 
laser printers at the corporate headquarters of MetroBank. Alan projects that in the 
coming year he will need to purchase a total of 24,000 boxes of paper, which will be 
used at a fairly steady rate throughout the year. Each box of paper costs $35. Alan esti-
mates that it costs $50 each time an order is placed (this includes the cost of placing the 
order plus the related costs in shipping and receiving). MetroBank assigns a cost of 18% 
to funds allocated to supplies and inventories because such funds are the lifeline of the 
bank and could be lent out to credit card customers who are willing to pay this rate on 
money borrowed from the bank. Alan has been placing paper orders once a quarter, 
but he wants to determine if another ordering pattern would be better. He wants to 
determine the most economical order quantity to use in purchasing the paper.

8.4.1 ImPlemeNtINg the mOdel
To solve this problem, we first need to create a spreadsheet model of the total cost 
formula described earlier, substituting the data for Alan’s problem for the parameters 
D, C, S, and i. This spreadsheet implementation is shown in Figure 8.6 (and in the file 
Fig8-6.xlsm that accompanies this book).

In Figure 8.6, cell D4 represents the annual demand (D), cell D5 represents the per-
unit cost (C), cell D6 represents the cost of placing an order (S), cell D7 represents the 
inventory holding cost (i) expressed as a percentage of an item’s value, and cell D9 
represents the order quantity (Q). The data corresponding to Alan’s decision prob-
lem have been entered into the appropriate cells in this model. Because Alan places 
orders once a quarter (or four times a year), the order quantity in cell D9 is set at 
2 4 ,0 0 0 4 4 5 6 ,0 0 0 .  

We calculate each of the three pieces of our total cost function in cells D11, D12, and 
D13. Cell D11 contains the cost of purchasing a year’s worth of paper, cell D12 rep-
resents the cost associated with placing orders, and cell D13 is the inventory holding 
cost that would be incurred. The sum of these costs is calculated in cell D14.

Formula for cell D11: 5D5*D4
Formula for cell D12: 5D4/D9*D6
Formula for cell D13: 5D9/2*D7*D5

Formula for cell D14: 5SUM 1D11:D13 2

8.4.2 SOlvINg the mOdel
The goal in this problem is to determine the order quantity (the value of Q) that min-
imizes the total cost. That is, we want Solver to determine the value for cell D9 that 
minimizes the value in cell D14. Figure 8.7 shows the Solver parameters and options 
required to solve this problem. Note that a constraint has been placed on cell D9 to 
prevent the order quantity from becoming 0 or negative. This constraint requires that at 
least one order must be placed during the year. 
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Key Cell Formulas

Cell Formula Copied to

D11 5D5*D4 --
D12 5D4/D9*D6 --
D13 5D9/2*D5*D7 --
D14 5SUM(D11:D13) --

Variable Cell

Objective Cell

Figure 8.6

Spreadsheet 
implementation 
of MetroBank’s 
paper purchasing 
problem

Solver Settings:

Objective: D14 (Min)
Variable cells: D9
Constraints: 
  B9:D9 .51
Solver Options:
 Standard LSGRG Nonlinear Engine

Figure 8.7

Solver parameters 
for MetroBank’s 
paper purchasing 
problem

A  N o t e  A b o u t  e n g i n e  O p t i o n s
When solving an NLP problem, it is important not to select the Standard LP 
engine option. When this option is selected, Analytic Solver Platform conducts 
a number of internal tests to verify that the model is truly linear in the objective 
and constraints. If this option is selected and Solver’s tests indicate that the model 
is not linear, a message appears indicating that the conditions for linearity are not 
satisfied.
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8.4.3 ANAlyzINg the SOlutION
The optimal solution to this problem is shown in Figure 8.8. This solution indicates 
that the optimal number of boxes for Alan to order at any time is approximately 617. 
Because the total cost curve in the basic EOQ model has one minimum point, we can be 
sure that this local optimal solution is also the global optimal solution for this problem. 
Notice this solution occurs where the total ordering costs are in balance with the total 
holding costs. Using this order quantity, costs are reduced by approximately $15,211 
from the earlier level shown in Figure 8.6 when an order quantity of 6,000 was used.

If Alan orders 617 boxes, he needs to place approximately 39 orders during the year 
12 4 ,0 0 0 4 6 1 7 5 3 8 .8 9 2 , or 1.333 orders per week 15 2 4 3 9 5 1 .3 3 3 2 . As a practi-
cal matter, it might be easier for Alan to arrange for weekly deliveries of approximately 
461 boxes. This would increase the total cost by only $167 to $844,055 but probably 
would be easier to manage and still save the bank more than $15,000 per year.

8.4.4 COmmeNtS ON the eOQ mOdel
There is another way to determine the optimal order quantity using the simple EOQ 
model. Using calculus, it can be shown that the optimal value of Q is represented by:

Q* 5 Å
2DS
Ci

If we apply this formula to our example problem, we obtain:

Q* 5 Å
2 3 24,000 3 50

35 3 0.18
5 Å

2,400,000
6.3

5 617.214

The value obtained using calculus is almost the same value obtained using Solver 
(refer to cell D9 in Figure 8.8). The slight difference in the results might be due to 
rounding, or to Solver stopping just short of converging on the exact solution.

Variable Cell

Objective Cell

Figure 8.8 Optimal solution to MetroBank’s paper purchasing problem
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382 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

Although the previous EOQ formula has its uses, we often must impose financial 
or storage space restrictions when determining optimal order quantities. The previ-
ous formula does not explicitly allow for such restrictions, but it is easy to impose 
these types of restrictions using Solver. In some of the problems at the end of this 
chapter, we will consider how the EOQ model can be adjusted to accommodate 
these types of restrictions, as well as quantity discounts. A complete discussion of 
the proper use and role of EOQ models in inventory control is beyond the scope 
of this text, but can be found in other texts devoted to production and operations 
management.

8.5 location Problems 
A number of decision problems involve determining the location of facilities or service 
centers. Examples might include determining the optimal location of manufacturing 
plants, warehouses, fire stations, or ambulance centers. The objective in these types 
of problems is often to determine a location that minimizes the distance between two 
or more service points. You might recall from basic algebra that the straight line (or 
Euclidean) distance between two points 1X1, Y1 2  and 1X2, Y2 2  on a standard X-Y graph 
is defined as:

Distance 5 "1X1 2 X2 2 2 1 1Y1 2 Y2 2 2

This type of calculation is likely to be involved in any problem in which the decision 
variables represent possible locations. The distance measure might occur in the objec-
tive function (for example, we might want to minimize the distance between two or 
more points) or it might occur in a constraint (for example, we might want to ensure 
that some minimum distance exists between two or more locations). Problems involv-
ing this type of distance measure are nonlinear. The following example illustrates the 
use of distance measures in a location problem.

The Rappaport Communications Company provides cellular telephone services in 
several mid-western states. The company is planning to expand its customer base 
by offering cellular service in northeastern Ohio to the cities of Cleveland, Akron, 
Canton, and Youngstown. The company will install the hardware necessary to ser-
vice customers in each city on preexisting communications towers in each city. The 
locations of these towers are summarized in Figure 8.9.

However, the company also needs to construct a new communications tower 
somewhere between these cities to handle intercity calls. This tower will also 
allow cellular calls to be routed onto the satellite system for worldwide calling 
service. The tower the company is planning to build can cover areas within a 
40-mile radius. Thus, the tower needs to be located within 40 miles of each of 
these cities.

It is important to note that we could have overlaid the X- and Y-axes on the map in 
Figure 8.9 in more than one way. The origin in Figure 8.9 could be located anywhere 
on the map without affecting the analysis. To establish the X-Y coordinates, we need 
an absolute reference point for the origin, but virtually any point on the map could 
be selected as the origin. Also we can express the scaling of the X-axis and Y-axis in 
a number of ways: meters, miles, inches, feet, and so on. For our purposes, we will 
assume that each unit along the X- and Y-axes represents one mile.
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8.5.1 defININg the deCISION vArIAbleS
In Figure 8.9, definite X-Y coordinates have been established to describe the locations of 
the cities. These points are fixed and are not under the decision maker’s control. How-
ever, the coordinates of the new communications tower have not been established. We 
will assume that Rappaport wants to determine the tower location that minimizes the 
total distance between the new tower and those in each of the four cities. (Note that this 
is equivalent to minimizing the average distance as well.) Thus, the coordinates of the 
new tower represent the decision variables in this problem, which are defined as:

X1 5  location of the new tower with respect to the X-axis
Y1 5  location of the new tower with respect to the Y-axis

8.5.2 defININg the ObjeCtIve
The objective in this problem is to minimize the total distance from the new tower to 
each of the existing towers, defined as:

MIN: "15 2 X1 2 2 1 14 5 2 Y1 2 2 1 "11 2 2 X1 2 2 1 12 1 2 Y1 2 2

1 "11 7 2 X1 2 2 1 15 2 Y1 2 2 1 "15 2 2 X1 2 2 1 12 1 2 Y1 2 2

 The first term in the objective calculates the distance from the tower in Cleveland, at 
X-Y coordinates (5, 45), to the location of the new tower, whose location is defined by 
the values X1 and Y1. The remaining terms perform similar calculations for the towers 
in Akron, Canton, and Youngstown. 

10 20 30 40 50

10

20

30

40

50

60

Canton
x 5 17, y 5 5

Akron
x 5 12, y 5 21

Youngstown
x 5 52, y 5 21

Cleveland
x 5 5, y 5 45

X

Y
Figure 8.9

Map of Rappaport 
Communication’s 
tower location 
problem
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384 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

8.5.3 defININg the CONStrAINtS
The problem statement noted that the new tower has a 40-mile transmission radius and 
therefore must be located within 40 miles of each of the existing towers. The following 
constraints ensure that the distance from each of the existing towers to the new tower is 
no larger than 40 miles:

"15 2 X1 2 2 1 145 2 Y1 2 2   # 40   6 Cleveland distance constraint

"112 2 X1 2 2 1 121 2 Y1 2 2 # 40   6 Akron distance constraint

"117 2 X1 2 2 1 15 2 Y1 2 2 # 40  6 Canton distance constraint

"152 2 X1 2 2 1 121 2 Y1 2 2
 # 40     6 Youngstown distance constraint

Graphically, these constraints would be drawn as four circles, each with a 40-mile 
radius, each centered at one of the of the four existing tower locations. The intersection 
of these circles would represent the feasible region for the problem. 

8.5.4 ImPlemeNtINg the mOdel
In summary, the problem Rappaport Communications wants to solve is:

MIN:  "15 2 X1 2 2 1 14 5 2 Y1 2 2 1 "11 2 2 X1 2 2 1 12 1 2 Y1 2 2

1 "11 7 2 X1 2 2 1 15 2 Y1 2 2 1 "15 2 2 X1 2 2 1 12 1 2 Y1 2 2

Subject to:

"15 2 X1 2 2 1 145 2 Y1 2 2   # 40   6 Cleveland distance constraint

"112 2 X1 2 2 1 121 2 Y1 2 2 # 40   6 Akron distance constraint

"117 2 X1 2 2 1 15 2 Y1 2 2 # 40  6 Canton distance constraint

"152 2 X1 2 2 1 121 2 Y1 2 2
 # 40     6 Youngstown distance constraint

Note that both the objective and constraints for this problem are nonlinear. 
One approach to implementing the model for this problem in a spreadsheet is shown in 
Figure 8.10 (and in the file Fig8-10.xlsm that accompanies this book). 

In this spreadsheet, cells C6 and D6 are used to represent the decision variables X1

and Y1, which correspond to the X-Y coordinates of the location of the new tower. The 
locations of the existing towers are listed in terms of their X-Y coordinates in rows 7 
through 10 of columns C and D. Reasonable starting values for X1 and Y1 in this prob-
lem would be the average values of the X and Y coordinates of the existing tower loca-
tions. These averages were computed and entered in cells C6 and D6. 

Column E calculates the distance from each existing tower to the selected location 
for the new tower. Specifically, cell E7 contains the following formula, which is copied 
to cells E8 through E10:

Formula for cell E7:    =SQRT((C7 2 $C$6)^2 1 (D7 2 $D$6)^2)
(Copy to E8 through E10.) 

These cells represent the LHS formulas for the problem. The RHS values for these con-
straints are given in cells F7 through F10. The objective function for the problem is then 
implemented easily in cell E11 with the formula:

Formula for cell E11:    5SUM 1E7:E10 2

47412_ch08_ptg01_371-446.indd   384 17/08/16   1:35 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Location Problems  385

8.5.5 SOlvINg the mOdel ANd ANAlyzINg  
the SOlutION
Figure 8.11 shows the Solver settings and options used to solve this problem, and 
Figure 8.12 shows the optimal solution. 

The solution in Figure 8.12 indicates that if the new tower is located at the coordi-
nates X1 5 1 2 .2  and Y1 5 2 1 .0 , the total distance between the towers is 81.761 miles 
(so the average distance is 20.4 miles). If you try re-solving this problem from a variety 
of starting points, you can verify that this is the global optimal solution to the problem. 
Interestingly, the coordinates of this location for the new tower are virtually identical 
to the coordinates of the existing tower in Akron. So, the solution to this problem may 
not involve building a new tower at all but, instead, Rappaport may want to investigate 
the feasibility of upgrading or retrofitting the existing Akron tower to play the role of 
the “new” tower.

Key Cell Formulas

Cell Formula Copied to

E7 5SQRT((C72$C$6)^21(D72$D$6)^2) E8:E10
E11 5SUM(E7:E10) --

Variable Cells

Objective Cell

Constraint Cells

Figure 8.10

Spreadsheet 
implementation of 
the tower location 
problem

Solver Settings:

Objective: E11 (Min)
Variable cells: C6:D6
Constraints:
 E7:E10 ,5 F7:F10

Solver Options:
 Standard LSGRG Nonlinear Engine

Figure 8.11

Solver parameters 
for the tower 
location problem
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386 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

8.5.6 ANOther SOlutION tO the PrOblem
The solution shown in Figure 8.12 positions the new tower at essentially the same 
location as the existing tower in Akron. So, instead of building a new tower, per-
haps the company should consider upgrading the tower at Akron with the equip-
ment needed for handling intercity calls. On the other hand, the distance from Akron 
to the tower in Youngstown is almost 40 miles—the limit of the broadcast radius of 
the new equipment. Thus, Rappaport may prefer a solution that provides more of a 
safety margin on their broadcast range, to help ensure quality and reliability during 
inclement weather.

Another objective that could be applied to this problem would attempt to minimize 
the maximum distance from the new tower to each of the existing towers. Figure 8.13 
(and the file Fig8-13.xlsm that accompanies this book) shows the solution to this new 
problem.

To obtain this solution, we implemented a new objective function in cell E12 to com-
pute the maximum of the distances in column E as follows:

Formula for cell E12:    5MAX 1E7:E10 2

We then instructed Solver to minimize E12 to obtain the solution shown. This solu-
tion positions the new tower at the X-Y coordinates (26.84, 29.75). Although the total 
distance associated with this solution increased to 97.142 (or an average of 24.28 miles), 
the maximum distance was reduced to about 26.6 miles. Thus, Rappaport might prefer 
this solution to the alternative shown in Figure 8.12.

Figure 8.12 Optimal solution to the tower location problem
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A  N o t e  A b o u t  N o n - S m o o t h 

O p t i m i z a t i o n  P r o b l e m s
In Figure 8.13, notice that the revised model containing the formula MAX(E7:E10) 
is diagnosed as an NSP—or a non-smooth optimization problem. Non-smooth 
optimization problems often contain Excel functions like IF( ), MAX( ), MIN( ), 
CHOOSE( ), or LOOKUP( ). Problems containing these (and similar) functions 
are non-smooth in the sense that their derivatives are not continuous. Generally 
speaking, with non-smooth problems you can have confidence that the solutions 
are “good” but they are not guaranteed to be globally or even locally optimal. 

Figure 8.13 Another solution to the tower location problem minimizing the maximum distance

Key Cell Formulas

Cell Formula Copied to

E7 5SQRT((C72$C$6)^21(D72$D$6)^2) E8:E10
E11 5SUM(E7:E10) --
E12 5MAX(E7:E10)
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388 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

8.5.7 SOme COmmeNtS AbOut the SOlutION tO 
lOCAtION PrOblemS
When solving location problems, it is possible that the location indicated by the optimal 
solution may simply not work. For instance, the land at the optimal location might not 
be for sale, the “land” at this location might be a lake, the land might be zoned for resi-
dential purposes only, etc. However, solutions to location problems often give decision 
makers a good idea about where to start looking for suitable property to acquire for the 
problem at hand. It might also be possible to add constraints to location problems that 
eliminate certain areas from consideration if they are inappropriate or unavailable.

8.6 Nonlinear Network Flow Problem
In chapter 5 we looked at several different types of network flow problems with linear 
objective functions and linear constraint sets. We noted that the constraints in network 
flow models have a special structure in which the flow into a node must be balanced 
with the flow out of the same node. Numerous decision problems exist in which the 
balance-of-flow restrictions must be maintained while optimizing a nonlinear objective 
function. We present one such example here.

SafetyTrans is a trucking company that specializes in transporting extremely valu-
able and extremely hazardous materials. Due to the nature of its business, the com-
pany places great importance on maintaining a clean driving safety record. This not 
only helps keep their reputation up, but also helps keep their insurance premiums 
down. The company is also conscious of the fact that when carrying hazardous mate-
rials, the environmental consequences of even a minor accident could be disastrous. 

Whereas most trucking companies are interested in identifying routes that provide 
for the quickest or least costly transportation, SafetyTrans likes to ensure that it selects 
routes that are the least likely to result in an accident. The company is currently trying 
to identify the safest routes for carrying a load of hazardous materials from Los Ange-
les, California to Amarillo, Texas. The network in Figure 8.14 summarizes the routes 
under consideration. The numbers on each arc represent the probability of having an 
accident on each potential leg of the journey. SafetyTrans maintains a national database 
of such probabilities developed from data they receive from the National Highway 
Safety Administration and the various Departments of Transportation in each state.

8.6.1 defININg the deCISION vArIAbleS
The problem summarized in Figure 8.14 is very similar to the shortest path problem 
described in chapter 5. As in the shortest path problem, here we will need one vari-
able for each of the arcs (or routes) in the problem. Each decision variable will indicate 
whether or not a particular route is used. We will define these variables as follows:

Yij 5 e1, if the route from node i to node j is selected
0, otherwise

8.6.2 defININg the ObjeCtIve
The objective in this problem is to find the route that minimizes the probability of hav-
ing an accident, or equivalently, the route that maximizes the probability of not having 
an accident. Let Pij 5  the probability of having an accident while traveling from node 
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Nonlinear Network Flow Problem 389

i to node j. Then, the probability of not having an accident while traveling from node 
i to node j is 1 2 Pij. For example, the probability of not having an accident while trav-
eling from Los Angeles to Las Vegas is 1 2 P1 2 5 1 2 0 .0 0 3 5 0 .9 9 7 . The objective 
of maximizing the probability of not having an accident is given by:

MAX: 11 2 P12Y12 2  11 2 P13Y13 2  11 2 P14Y14 2  11 2 P24Y24 2  11 2 P26Y26 2   . . .  11 2 P9,10Y9,10 2

The first term in this objective returns the value 1 if Y1 2 5 0  and the value 1 2 P1 2

if Y1 2 5 1 . Thus, if we take the route from Los Angeles to Las Vegas 1Y1 2 5 1 2 ,  the 
value 0.997 is multiplied by the remaining terms in the objective function. If we do 
not take the route from Los Angeles to Las Vegas 1Y1 2 5 0 2 , the value 1 is multiplied 
by the remaining terms in the objective function. (Of course, multiplying by 1 has no 
effect.) The remaining terms in the objective have similar interpretations. So, this objec-
tive function computes the probabilities of not having accidents on whichever routes 
are selected and then computes the products of these values. The result is the overall 
probability of not having an accident on any set of selected routes. This is the value 
SafetyTrans wants to maximize. 

8.6.3 defININg the CONStrAINtS
To solve a shortest path network flow problem, we assign the starting node a supply 
value of 21 , assign the ending node a demand value of 1 1 , and apply the balance-
of-flow rule covered in chapter 5. This results in the following set of constraints for our 
example problem.

2Y12 2 Y13 2 Y14 5  21  6 balance-of-flow constraint for node 1 

1Y12 2 Y24 2 Y26 5  0 6 balance-of-flow constraint for node 2

1Y13 2 Y34 2 Y35 5  0 6 balance-of-flow constraint for node 3
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Figure 8.14

Network 
representation of 
the SafetyTrans 
routing problem
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1  Y14 1 Y24 1 Y34 2 Y45 2 Y46 2 Y48 5  0 6 balance-of-flow constraint for node 4

1Y35 1 Y45 2 Y57 5  0 6 balance-of-flow constraint for node 5

1Y26 1 Y46 2 Y67 2 Y68 5  0 6 balance-of-flow constraint for node 6

1Y57 1 Y67 2 Y78 2 Y79 2 Y7,10 5  0 6 balance-of-flow constraint for node 7

1Y48 1 Y68 1 Y78 2 Y8,10 5  0 6 balance-of-flow constraint for node 8

1Y79 2 Y9,10 5  0 6 balance-of-flow constraint for node 9

1Y7,10 1 Y8,10 1 Y9,10 5  1 6 balance-of-flow constraint for node 10

The first constraint ensures that one unit flows out of node 1 to nodes 2, 3, or 4. 
The last constraint ensures that one unit flows into node 10 from nodes 7, 8, or 9. The 
remaining constraints ensure that any flow into nodes 2 through 9 is balanced by an 
equal amount of flow out of those nodes.

8.6.4 ImPlemeNtINg the mOdel
In summary, the problem SafetyTrans wants to solve is:

MAX:     11 2 0.003Y12 2  11 2 0.004Y13 2  11 2 0.002Y14 2  11 2 0.010Y24 2
11 2 0.006Y26 2   . . .  11 2 0.006Y9,10 2

Subject to:

2Y12 2 Y13 2 Y14 5  21 6 balance-of-flow constraint for node 1

1Y12 2 Y24 2 Y26 5  0 6 balance-of-flow constraint for node 2

1Y13 2 Y34 2 Y35 5  0 6 balance-of-flow constraint for node 3

1Y14 1 Y24 1 Y34 2 Y45 2 Y46 2 Y48 5  0 6 balance-of-flow constraint for node 4

1Y35 1 Y45 2 Y57 5  0  6 balance-of-flow constraint for node 5

1Y26 1 Y46 2 Y67 2 Y68 5  0 6 balance-of-flow constraint for node 6

1Y57 1 Y67 2 Y78 2 Y79 2 Y7,10 5  0 6 balance-of-flow constraint for node 7

1Y48 1 Y68 1 Y78 2 Y8,10 5  0 6 balance-of-flow constraint for node 8

1Y79 2 Y9,10 5  0 6 balance-of-flow constraint for node 9

1Y7,10 1 Y8,10 1 Y9,10 5  1 6 balance-of-flow constraint for node 10

All Yij binary

One approach to implementing this model is shown in Figure 8.15. In this spread-
sheet, cells A6 through A23 represent our decision variables. 

The LHS formulas for the constraints in this problem are implemented in cells K6 
through K15 using the same technique as described in chapter 5. The RHS values for 
the constraints are given in cells L6 through L15. Specifically, we enter the following 
formula in cells K6 and copy down the rest of the column:

Formula for cell K6:      5 SUMIF 1$D$6:$D$23,I6,$A$6:$A$23 2
 (Copy to cells K7 through K15.) 2 SUMIF 1$B$6:$B$23,I6,$A$6:$A$23 2

The probabilities of having an accident on each of the routes are listed in cells F6 
through F23. Each of the terms for the objective function were then implemented in 
cells G6 through G23 as follows:

Formula for cell G6:      5 1 2 A6*F6
 (Copy to cells G7 through G23.) 
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Nonlinear Network Flow Problem 391

Note that the formula in G6 corresponds exactly to the first term in the objective 
11 2 Y12P12 2  as described earlier. Next, the product of the values in cells G6 through 
G23 is calculated in cell G24 as:

Formula for cell G24:       5 PRODUCT 1G6:G23 2

Figure 8.16 shows the Solver settings and options used to solve this problem. The 
optimal solution is shown in Figure 8.17.

8.6.5 SOlvINg the mOdel ANd ANAlyzINg the SOlutION
The solution to this problem indicates Y14 5 Y46 5 Y68 5 Y8,10 5 1, and all other Yij 5 0.
Thus, the optimal (safest) route is to travel from Los Angeles to Phoenix to Flagstaff to 
Albuquerque to Amarillo. Following this route, there is a 0.99 probability of not having 

Key Cell Formulas

Cell Formula Copied to

C6 5VLOOKUP(B6,$I$6:$J$15,2) C7:C23 and E6:E23
G6 512A6*F6 G7:G23
G24 5PRODUCT(G6:G23) --
K6 5SUMIF($D$6:$D$23,I6,$A$6:$A$23)

   2SUMIF($B$6:$B$23,I6,$A$6:$A$23)
K7:K15

Objective Cell

Constraint Cells

Variable Cells

Figure 8.15 Spreadsheet implementation of the SafetyTrans routing problem
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an accident. Solving this problem from numerous starting points indicates that this is 
the global optimal solution to the problem.

If you solve this model again minimizing the objective, you will discover that the 
least safe route has a 0.9626 probability of not having an accident. This may lead some 
to conclude that it doesn’t make much difference which route is taken because the dif-
ferences in the best case and worst case probabilities seem minimal. However, if it costs 
$30,000,000 to clean up an accident involving hazardous waste, the expected cost of 
taking the safest route is 11 2 0.99 2 3 $30,000,000 5 $300,000 and the expected cost of 
taking the least safe route is 11 2 0.9626 2 3 $30,000,000 5 $1,122,000. So although the 
differences in probabilities may appear small, the differences in the potential outcomes 
can be quite significant. Of course, this doesn’t even consider the potential loss of life 
and environmental damage that no amount of money can fix. 

Solver Settings:

Objective: G24 (Max)
Variable cells: A6:A23
Constraints: 

K6:K15 5 L6:L15
A6:A23 5 binary

Solver Options:
Standard LSGRG Nonlinear Engine
Integer Tolerance 5 0

Figure 8.16

Solver parameters 
for the SafetyTrans 
problem

Figure 8.17 Optimal solution to the SafetyTrans problem
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There are a number of other areas to which this type of nonlinear network flow 
model can be applied. Analysts are often interested in determining the “weakest link” 
in a telecommunications network or production system. The same type of problem 
described here could be solved to determine the least reliable path through these types 
of networks.

8.7 Project Selection Problems
In chapter 6, we looked at a project selection example in which we wanted to select 
the combination of projects that produced the greatest net present value (NPV) subject 
to various resource restrictions. In these types of problems, there is often some uncer-
tainty about whether a selected project can actually be completed successfully, and this 
success might be influenced by the amount of resources devoted to the project. The fol-
lowing example illustrates how NLP techniques can be used to help model this uncer-
tainty in a selected project’s potential for success. 

The directors of the TMC Corporation are trying to determine how to allocate their R&D 
budget for the coming year. Six different projects are under consideration. The direc-
tors believe that the success of each project depends in part on the number of engineers 
assigned. Each project proposal includes an estimate of the probability of success as a 
function of the number of engineers assigned. Each probability function is of the form:

Pi 5 probability of success for project i if assigned Xi engineers 5
Xi

Xi 1 ei

where ei is a positive constant for project i that determines the shape of its probabil-
ity function. The probability functions for several of the projects are shown in Fig-
ure 8.18. The following table summarizes the initial startup funds required for each 
project and the estimated NPV the project will generate if it is successful.

Project 1 2 3 4 5 6

Startup Costs $325 $200 $490 $125 $710 $240

Net Present Value $750 $120 $900 $400 $1,110 $800

Probability Parameter ei 3.1 2.5 4.5 5.6 8.2 8.5
(Note: All monetary values are in $1000s.)

TMC’s directors have agreed to hire up to 25 engineers to assign to these projects 
and are willing to allocate $1.7 million of the R&D budget to cover the startup costs 
for selected projects. They want to determine the project selection and resource allo-
cation strategy that will maximize the expected NPV.

8.7.1 defININg the deCISION vArIAbleS
TMC’s directors must make two separate but related decisions. First, they must determine 
which projects to select. We will use the following binary variables to model these decisions:

Yi 5 e1, if project i is selected
0, otherwise

, i 5 1, 2, 3, . . . , 6

Second, the directors must determine the number of engineers to assign to each 
 project. We will model these decisions with the following variables:

Xi 5 the number of engineers to assign to project i , i 5 1, 2, 3, . . . , 6
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394 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

8.7.2 defININg the ObjeCtIve fuNCtION
TMC’s directors want to maximize the expected NPV of their decision, so our objective func-
tion must correspond to this quantity. This requires that we multiply each project’s expected 
return by the probability of the project being successful. This is accomplished as follows:

MAX: 
750X1

1X1 1 3.1 2 1
120X2

1X2 1 2.5 2 1
900X3

1X3 1 4.5 2 1
400X4

1X4 1 5.6 2 1
1100X5

1X5 1 8.2 2 1
800X6

1X6 1 8.5 2

8.7.3 defININg the CONStrAINtS
Several constraints apply to this problem. We must ensure that the projects selected 
require no more than $1.7 million in startup funds. This is accomplished as follows:

325Y1 1 200Y2 1 490Y3 1 125Y4 1 710Y5 1 240Y6 # 1700 6 Constraint on startup funds

Next, we must ensure that no more than 25 engineers are assigned to selected proj-
ects. This is accomplished by the following constraint:

X1 1 X2 1 X3 1 X4 1 X5 1 X6 # 25  6 Constraint on engineers

Finally, we need to make sure that engineers are assigned only to the projects that 
have been selected. This requires the use of linking constraints that were first presented 
in chapter 6 when discussing the fixed-charge problem. The linking constraints for this 
problem could be stated as:

Xi 2 25Yi # 0, i 5 1, 2, 3,  . . . , 6  6 Linking constraints

Figure 8.18

Graph showing 
the probability of 
success for selected 
projects in the 
TMC problem
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Project Selection Problems 395

These linking constraints ensure that an Xi variable can be greater than 0 if and only 
if its associated Yi variable is 1. 

Instead of using the previous constraint on the number of engineers and the asso-
ciated six linking constraints, we could have used the following single nonlinear 
constraint:

X1Y1 1 X2Y2 1 X3Y3 1 X4Y4 1 X5Y5 1 X6Y6 # 25  6 constraint on engineers

This would sum the number of engineers assigned to selected projects. (Note that 
if we used this constraint, we would also need to multiply each term in the objective 
function by its associated Yi variable. Do you see why?) Using this single nonlinear 
constraint might appear to be easier than the previous seven constraints. However, 
when you have a choice between using linear constraints and nonlinear constraints, it 
is almost always better to use the linear constraints. 

8.7.4 ImPlemeNtINg the mOdel
The model for TMC’s project selection problem is summarized as,

MAX: 
750X1

1X1 1 3.1 2 1
120X2

1X2 1 2.5 2 1
900X3

1X3 1 4.5 2 1
400X4

1X4 1 5.6 2 1
1100X5

1X5 1 8.2 2 1
800X6

1X6 1 8.5 2
Subject to:

325Y1 1 200Y2 1 490Y3 1 125Y4 1 710Y5 1 240Y6 # 1700 6  Constraint on  
startup funds

X1 1 X2 1 X3 1 X4 1 X5 1 X6 # 25 6 Constraint on engineers

Xi 2 25Yi # 0, i 5 1, 2, 3,  . . .  6 6 Linking constraints
Xi $ 0 and integer
Yi binary

Notice that this problem has a nonlinear objective function and linear constraints. 
One approach to implementing this model is shown in Figure 8.19 (and in the file Fig8-
19.xlsm that accompanies this book). In this spreadsheet, cells B7 through B12 are used 
to represent our binary Yi variables indicating whether or not each project is selected. 
Cells C7 through C12 represent the Xi variables indicating the number of engineers 
assigned to each project.

We implemented the linking constraints for this problem by entering the LHS for-
mulas in cells D7 through D12 as follows:

Formula for cell D7:       5C7 2 B7*$C$14
 (Copy to cells D8 through D12.)

We will constrain these values to be less than or equal to zero. The LHS for the con-
straint on the number of engineers assigned to projects is implemented in cell C13 as 
follows:

Formula for cell C13:       5SUM 1C7:C12 2
The RHS value for this constraint is given in cell C14. Similarly, the LHS for the con-

straint of the total startup funds is implemented in cell I13 with its RHS value listed in I14:

Formula for cell I13:       5SUMPRODUCT 1B7:B12,I7:I12 2
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396 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

To implement the objective function, we first calculate the probability of success for 
each project. This is done in column F as follows:

Formula for cell F7:       5C7/ 1C7 1 E7 2
(Copy to cells F8 through F12.)

Next, the expected NPV value for each project is computed by multiplying the prob-
ability of success for each project by the NPV it should generate if the project is success-
ful. This is done in column H as follows:

Formula for cell H7:       5F7*G7
(Copy to cells H8 through H12.)

Finally, we compute the sum of the expected NPVs for selected projects in cell H13:

Formula for cell H13:       5SUM 1H7:H12 2

The Solver settings and options used to solve this problem are shown in Figure 8.20.

8.7.5 SOlvINg the mOdel
An arbitrary starting point for this problem was selected as shown in Figure 8.19. From 
this arbitrary starting point, Solver located the solution shown in Figure 8.21 which 

Key Cell Formulas

Cell Formula Copied to

C13 5SUM(C7:C12) H13
D7 5C72B7*$C$14 D8:D12
F7 5C7/(C71E7) F8:F12
H7 5F7*G7 H8:H12
I13 5SUMPRODUCT(B7:B12,I7:I12) --

Objective Cell

Constraint Cells

Variable Cells

Figure 8.19

Spreadsheet 
implementation 
of TMC’s project 
selection problem
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Project Selection Problems 397

has an expected NPV of approximately $1.757 million. In this solution, notice that the 
probability of success for project 4 is only 0.3488. Thus, project 4 is far more likely to fail 
than succeed if it is assigned only three engineers. As a result, we might want to add 
a constraint to this problem to ensure that if a project is selected, it must have at least 
a 50% chance of succeeding. An exercise at the end of this chapter asks you to do that.

Figure 8.20

Solver parameters 
for TMC’s project 
selection problem

Solver Settings:

Objective: H13 (Max)
Variable cells: B7:C12
Constraints: 
 C13 ,5 C14
 I13 ,5 I14
 D7:D12 ,5 0
 C7:C12 .5 0
 B7:B12 5 binary
 C7:C12 5 integer 

Solver Options:

 Standard LSGRG Nonlinear Engine
 Integer Tolerance 5 0

Figure 8.21 Solution to the TMC project selection problem
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398 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

8.8 Optimizing Existing Financial 
Spreadsheet Models
So far in our discussion of optimization, we have always constructed an algebraic 
model of a decision problem and then implemented this model in a spreadsheet for 
solution and analysis. However, we can apply optimization techniques to virtually any 
existing spreadsheet model. Many existing spreadsheets involve financial calculations 
that are inherently nonlinear. The following is an example of how optimization can be 
applied to an existing spreadsheet.

Thom Pearman’s life is changing dramatically. He and his wife recently bought a 
new home and are expecting their second child in a few months. These new respon-
sibilities have prompted Thom to think about some serious issues, including life 
insurance. Ten years ago, Thom purchased an insurance policy that provides a 
death benefit of $40,000. This policy is paid for in full and will remain in force for 
the rest of Thom’s life. Alternatively, Thom can surrender this policy and receive an 
immediate payoff of approximately $6,000 from the insurance company.

Ten years ago, the $40,000 death benefit provided by the insurance policy seemed 
more than adequate. However, Thom now feels that he needs more coverage to 
care for his wife and children adequately in the event of his untimely death. Thom 
is investigating a different kind of insurance that would provide a death benefit of 
$350,000 but would also require ongoing annual payments to keep the coverage in 
force. He received the following estimates of the annual premiums for this new pol-
icy in each of the next 10 years:

Year 1 2 3 4 5 6 7 8 9 10

Premium $423 $457 $489 $516 $530 $558 $595 $618 $660 $716 

To pay the premiums for this new policy, one alternative Thom is considering 
involves surrendering his existing policy and investing the $6,000 he would receive 
to generate the after-tax income needed to pay the premiums on his new policy. 
However, to see if this is possible, he wants to determine the minimum rate of 
return he would have to earn on his investment to generate after-tax investment 
earnings that would cover the premium payments for the new policy. Thom likes 
the idea of keeping the $6,000 in case of an emergency and does not want to use it to 
pay premiums. Thom’s marginal tax rate is 28%.

8.8.1 ImPlemeNtINg the mOdel
A spreadsheet model for Thom’s decision problem is shown in Figure 8.22 (and in the 
file Fig8-22.xlsm that accompanies this book). The strategy in this spreadsheet is to 
determine how much money would be invested at the beginning of each year, how 
much money would be earned during the year after taxes, and how much would be left 
at the end of the year after paying taxes and the insurance premium due for that year.

As shown in Figure 8.22, cells D4 and D5 contain the assumptions about the initial 
amount invested and Thom’s marginal tax rate. Cell D6 represents the expected annual 
return (which is compounded quarterly). The annual return of 15% was entered in this 
cell simply for planning purposes. This is the value that we will attempt to minimize 
when we optimize the spreadsheet.
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Optimizing Existing Financial Spreadsheet Models 399

The beginning balance for the first year (cell B10) is equal to the initial amount of 
money invested. The beginning balance for each of the following years is the ending 
balance from the previous year. The formula in cell C10 calculates the amount earned 
for the year given the interest rate in cell D6. This same formula applies to cells C11 
through C19:

Formula for cell C10:       5B10*(1 1 $D$6/4)^4 2 B10
(Copy to cells C11 through C19.)

Because Thom pays 28% in taxes, the values in the Earnings After Taxes column are 
72% of the investment earnings listed in column C 1100% 2 28% 5 72% 2 . The values 
in the Ending Balance column are the beginning balances plus the earnings after taxes 
minus the premium due for the year.

8.8.2 OPtImIzINg the SPreAdSheet mOdel
Three elements are involved in any optimization problem: one or more decision vari-
ables, an objective function, and constraints. The objective in the current problem is to 

Key Cell Formulas

Cell Formula Copied to

B10 5D4 --
B11 5F10 B12:B19
C10 5B10*(11$D$6/4)^42B10 C11:C19
D10 5(12$D$5)*C10 D11:D19
F10 5B101D102E10 F11:F19

Constraint Cells

Variable Cell

Figure 8.22

Spreadsheet 
implementation of 
Thom’s insurance 
funding problem
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determine the minimum annual return that will generate after-tax earnings to pay the 
premiums each year. Thus, the decision variable in this model is the interest rate in cell 
D6. The value in cell D6 also represents the objective in the problem because we want 
to minimize its value. For constraints, the after-tax earnings each year should be greater 
than or equal to the premium due for the year. Thus, we require that the values in cells D10 
through D19 be greater than or equal to the values in cells E10 through E19. Figure 8.23 
shows the Solver settings and options required to solve this problem, and Figure 8.24 
shows the optimal solution.

Solver Settings:

Objective: D6 (Min)
Variable cells: D6
Constraints: 

D10:D19 .5 E10:E19 

Solver Options:

Standard LSGRG Nonlinear Engine

Figure 8.23

Solver parameters 
for the insurance 
funding problem

Figure 8.24 Optimal solution to the insurance funding problem
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The Portfolio Selection Problem 401

8.8.3 ANAlyzINg the SOlutION
The solution shown in Figure 8.24 indicates that Thom needs to obtain an annual return 
of at least 13.29% in order for the after-tax earnings from his investment of $6,000 to 
pay the premiums on his new policy for the next 10 years. This rate of return causes 
his after-tax earnings in year 10 to equal exactly the premium payment of $716 due that 
year. Thus, in order for Thom’s plan to succeed, he needs to identify an investment that 
is capable of producing at least a 13.29% annual return each year for the next 10 years. 
Thom might want to use the technique described in Section 8.9 to help design such an 
investment.

8.8.4 COmmeNtS ON OPtImIzINg  
exIStINg SPreAdSheetS
One difficulty in optimizing an existing spreadsheet model is determining whether 
the underlying algebraic model is linear or nonlinear. This is important in determining 
whether a global optimal solution to the problem has been obtained. As mentioned 
earlier, if we instruct Solver to assume that the model is linear, it conducts a series of 
numerical tests to determine whether this assumption is appropriate. If Solver detects 
that the model is not linear, a message is displayed to that effect and we need to re-solve 
the model as an NLP. So when applying optimization techniques to an existing spread-
sheet model, it is a good idea to instruct Solver to assume that the model is linear. If 
Solver can find a solution under this assumption, we can be confident that it is the 
global optimal solution. If Solver detects that the model is nonlinear, we must be aware 
that any solution obtained might represent a local optimal solution as opposed to the 
global optimal solution. In this case, we might re-solve the model several times from 
different starting points to see if better local optimal solutions exist for the problem. 
(Note that if a problem is poorly scaled, Solver’s linearity tests will sometimes indicate 
that the model is not linear when, in fact, it is.) 

As you develop your skills and intuition about spreadsheet optimization, you might 
be inclined to skip the step of writing out algebraic formulations of your models. For 
straightforward problems, this might be appropriate. However, in more complex prob-
lems, this can lead to undesirable results. For example, in chapter 6, we noted how it 
can be tempting to implement the binary variables in a fixed-charge problem using an 
IF( ) function in a spreadsheet. Unfortunately, this causes Solver to view the problem as 
an NLP rather than as a mixed-integer LP problem. So, how you implement the model 
for a problem can impact whether Solver finds the global optimal solution. As the 
model builder, you must understand what kind of model you have and implement it 
in the most appropriate way. Writing out the algebraic formulation of the model often 
helps to ensure that you thoroughly understand the model you are attempting to solve.

8.9 The Portfolio Selection Problem
One of the most famous applications of NLP involves determining the optimal mix of 
investments to hold in a portfolio in order to minimize the risk of the portfolio while 
achieving a desired level of return. One way to measure the risk inherent in an individ-
ual investment is the variance (or, alternatively, the standard deviation) of the returns 
it has generated over a period of time. One of the key objectives in portfolio selection is 
to smooth out the variation in the return on a portfolio by choosing investments whose 
returns tend to vary in opposite directions. That is, we want to choose investments that 
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have a negative covariance or negative correlation so that when one investment gener-
ates a lower-than-average return, another investment in our portfolio offsets this with 
a higher-than-average return. This tends to make the variance of the return of the port-
folio smaller than that of any individual investment. The following example illustrates 
a portfolio selection problem.

Ray Dodson is an independent financial advisor. He recently met with a new cli-
ent, Paula Ribben, who wanted Ray’s advice on how best to diversify a portion of 
her investments. Paula has invested a good portion of her retirement savings in the 
stock of International Business Corporation (IBC). During the past 12 years, this 
stock has produced an average annual return of 7.64% with a variance of approx-
imately 0.0026. Paula wants to earn more on her investments, but is very cautious 
and doesn’t like to take risks. Paula has asked Ray to recommend a portfolio of 
investments that would provide at least a 12% average return with as little addi-
tional risk as possible. After some research, Ray identified two additional stocks, 
from the National Motor Corporation (NMC) and the National Broadcasting Sys-
tem (NBS), that he believes could help meet Paula’s investment objectives. Ray’s 
initial research is summarized in Figure 8.25.

As indicated in Figure 8.25, shares of NMC have produced an average rate of 
return of 13.43% over the past 12 years, while those of NBS have generated an 
average return of 14.93%. Ray used the COVAR( ) function in Excel to create the 

Key Cell Formulas

Cell Formula Copied to

B18 5AVERAGE(B6:B17) C18:D18
G6 5COVAR(B6:B17,$B$6:$B$17) H6:I6
G7 5COVAR(B6:B17,$C$6:$C$17) H7:I7
G8 5COVAR(B6:B17,$D$6:$D$17) H8:I8

Figure 8.25

Data for the 
portfolio selection 
problem
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The Portfolio Selection Problem 403

covariance matrix in this spreadsheet. The numbers along the main diagonal in this 
matrix correspond to the variances of the returns for each stock. For example, the 
covariance matrix indicates that the variances in the annual returns for IBC, NMC, 
and NBS are 0.00258, 0.00276, and 0.03677, respectively. The entries off the main 
diagonal represent covariances between different pairs of stocks. For example, 
the covariance between IBC and NMC is approximately 20.00025, the covariance 
between IBC and NBS is approximately 0.00440, and the covariance between NMC 
and NBS is approximately 20.00542.

Ray wants to determine what percentage of Paula’s funds should be allocated to 
each of the stocks in order to achieve an overall expected return of 12% while mini-
mizing the variance of the total return on the portfolio.

8.9.1 defININg the deCISION vArIAbleS
In this problem, we must determine what percentage of the total funds invested should 
go toward the purchase of each of the three stocks. Thus, to formulate the model for 
this problem, we need the following three decision variables:

p1 5 proportion of total funds invested in IBC
p2 5 proportion of total funds invested in NMC
p3 5 proportion of total funds invested in NBS

Because these variables represent proportions, we also need to ensure that they 
assume values no less than 0, and that they sum to 1 (or 100%). We will handle these 
conditions when we identify the constraints for the problem.

8.9.2 defININg the ObjeCtIve
The objective in this problem is to minimize the risk of the portfolio as measured by its 
variance. In general, the variance of a portfolio consisting of n investments is defined in 
most finance texts as:

Portfolio variance 5 an

i51
s2

i p
2
i 1 2an21

i51
an

j5 i11
sijpipj

where
pi 5 the percentage of the portfolio invested in investment i

si
2 5 the variance of investment i

sij 5 sji 5 the covariance between investments i and j

If you are familiar with matrix multiplication, you might realize that the portfolio 
variance can also be expressed in matrix terms as:

Portfolio variance 5 pTCp

where

pT 5  1p1, p2, ..., pn 2

C 5 the n 3 n covariance matrix 5 ±
s2

1 s12
c s1n

s21 s2
2

c s2n

( ( f (
sn1 sn2

c s2
n

≤
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404 Chapter 8 Nonlinear Programming & Evolutionary Optimization 

Notice that if 100% of the funds available are placed in a single investment i, then the 
portfolio variance reduces to si

2—the variance for that single investment.
In our example problem, we have:

s1
2 5 0.00258, s2

2 5 0.00276, s3
2 5 0.03677

s12 5 20.00025, s13 5 0.00440, s23 5 20.00542

So, using the preceding formula, the objective for our problem is stated as:

MIN: 0.00258p2
1 1 0.00276p2

2 1 0.03677p2
3 1 2 120.00025p1p2 1 0.0044p1p3 2 0.00542p2p3 2

This objective function is not a linear combination of the decision variables, so we 
must solve this problem as an NLP. However, it can be shown that the solution pro-
duced when using this objective for a portfolio selection is a global optimal solution. 
(This problem is actually an example of a quadratic programming [QP] problem.)

8.9.3 defININg the CONStrAINtS
Only two main constraints apply to this problem. As mentioned earlier, because only 
three investments are under consideration for this portfolio, and our decision vari-
ables represent the percentage of funds invested in each of these investments, we must 
ensure that our decision variables sum to 100%. This can be accomplished easily as:

p1 1 p2 1 p3 5 1

We also need a constraint to ensure that the expected return of the entire portfolio 
achieves or exceeds the desired return of 12%. This condition is expressed as:

0.0764 p1 1 0.1343 p2 1 0.1493 p3 $ 0.12

The LHS of this constraint represents a weighted average of the expected returns 
from the individual investments. This constraint indicates that the weighted average 
expected return on the portfolio must be at least 12%.

Finally, because the decision variables must represent proportions, we should also 
include the following upper and lower bounds:

p1, p2, p3 $ 0
p1, p2, p3 # 1

The last condition, requiring each pi to be less than or equal to 1, is mathematically 
redundant because the pi must also be nonnegative and sum to 1. However, we will 
include this restriction for completeness.

8.9.4 ImPlemeNtINg the mOdel
In summary, the algebraic model for this problem is given as:

MIN:    0.00258p2
1 1 0.00276p2

2 1 0.03677p2
3

1 2 120.00025p1p2 1 0.0044p1p3 2 0.00542p2p3 2
Subject to: 

p1 1 p2 1 p3 5 1
0.0764 p1 1 0.1343 p2 1 0.1493 p3 $ 0.12
p1, p2, p3 $ 0
p1, p2, p3 # 1
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The Portfolio Selection Problem 405

One approach to implementing this model in a spreadsheet is shown in Figure 8.26 
(and in the file Fig8-26.xlsm that accompanies this book). In this spreadsheet, cells G11, 
H11, and I11 represent the decision variables p1, p2, and p3, respectively. The initial val-
ues in these cells reflect the investor’s current portfolio, which consists entirely of stock 
in IBC.

We can implement the objective function for this problem in a number of ways. The 
standard approach is to implement a formula that corresponds exactly to the algebraic 
form of the objective function. This is represented by:

Formula for cell H16:     5G6*G11^2 1 H7*H11^2 1 I8*I11^2 1 2*
1H6*G11*H11 1 I6*G11*I11 1 H8*H11*I11 2

Entering this formula is tedious and prone to error, and would be even more so if 
this example involved more than three stocks. The following is an alternative, and eas-
ier, way of expressing this objective:

Alternative formula for cell H16: 5SUMPRODUCT 1MMULT 1G11:I11,G6:I8 2 ,G11:I11 2
This alternative formula uses matrix multiplication (the MMULT( ) function) to com-

pute the portfolio variance. Although both formulas generate the same result, the sec-
ond formula is much easier to enter and can accommodate any number of investments. 
Notice that the value 0.00258 in cell H16 in Figure 8.26 indicates that when 100% of the 
funds are invested in IBC stock, the variance of the portfolio is the same as the variance 
of the IBC stock.

Key Cell Formulas

Cell Formula Copied to

J11 5SUM(G11:I11) --
H13 5SUMPRODUCT(B18:D18,G11:I11) --
H16 5SUMPRODUCT(MMULT(G11:I11,G6:I8),G11:I11) --

Objective Cell

Constraint Cells

Variable Cells

Figure 8.26

Spreadsheet 
implementation 
for the portfolio 
selection problem
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The LHS formulas of the two main constraints are implemented in cells J11 and H13 as:

Formula for cell J11:     5SUM 1G11:I11 2
Formula for cell H13:   5SUMPRODUCT 1B18:D18,G11:I11 2

Figure 8.27 shows the Solver settings and options used to solve this problem, and 
Figure 8.28 shows the optimal solution.

8.9.5 ANAlyzINg the SOlutION
In contrast to the original solution shown in Figure 8.26, the optimal solution shown 
in Figure 8.28 indicates that a better solution would result by placing 27.2% of the 

Solver Settings:

Objective: H16 (Min)
Variable cells: G11:I11
Constraints: 
 G11:I11 ,5 1
 G11:I11 .5 0
 H13 .5 H14
 J11 5 1 

Solver Options:

 Standard LSGRG Nonlinear Engine

Figure 8.27

Solver parameters 
for the portfolio 
selection problem

Figure 8.28 Optimal solution to the portfolio selection problem
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investor’s money in IBC, 63.4% in NMC, and 9.4% in NBS. Cell H13 indicates that this 
mix of investments would achieve the desired 12% expected rate of return, and cell H16 
indicates that the variance for this portfolio would be only 0.00112.

The solution to this problem indicates that a portfolio exists that produces a higher
expected return for Paula with less risk than was involved in her original portfolio. 
Paula’s original investment would be called inefficient in the terms of portfolio theory. 
Portfolio theory stipulates that for each possible level of investment return, there is a 
portfolio that minimizes risk, and accepting any greater level of risk at that level of 
return is inefficient. Alternatively, for each level of investment risk, there is a portfolio 
that maximizes the return, and accepting any lower level of return at this level of risk is 
also inefficient.

The optimal trade-off between risk and return for a given portfolio problem can be 
summarized by a graph of the efficient frontier, which plots the minimal portfolio 
risk associated with each possible level of return. Figure 8.29 (and the file Fig8-29.xlsm 
that accompanies this book) shows the efficient frontier for our example problem. This 

Figure 8.29 Efficient frontier for the portfolio selection problem

Key Cell Formulas

Cell Formula Copied to

J11 5SUM(G11:I11) --
H13 5SUMPRODUCT(B18:D18,G11:I11) --
H14 5PsiOptParam(B18, D18) --
H16 5SUMPRODUCT(MMULT(G11:I11,G6:I8),G11:I11) --
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graph plots the minimal level of risk associated with 15 different portfolios where the 
required rate is varied in equal steps between 7.64% and 14.93% (representing, respec-
tively, the minimum and maximum possible rates of return). To create this graph, we 
first placed the following formula in cell H14:

Formula for cell H14:      5PsiOptParam 1B18, D18 2

 This causes the required return value in cell H14 to be varied from 7.64% (cell B18) 
to 14.93% (cell D18) in equal steps as Solver runs the number of optimizations indi-
cated by the “Optimizations to Run” setting on the Platform tab in the Solver task pane 
(which was set to 15 for this example). After Solver performs the optimizations, you 
can easily construct a graph like the one shown in Figure 8.29 by following these steps:

1. Click the Charts icon on the Analytic Solver Platform tab.
2. Select Multiple Optimizations, Monitored Cells.
3. Expand the Objective option, select $H$16, and click the “.” button.
4. Click OK. 

The resulting graph in Figure 8.29 shows how the optimal portfolio variance 
increases for each of the 15 optimizations as the required expected return increased in 
equal increments from 7.64% to 14.93%. This graph is helpful not only in identifying 
the maximum level of risk that should be accepted for each possible level of return, 
but also in identifying where further increases in expected returns incur much greater 
amounts of risk. In this case, there is a fairly significant increase in the portfolio vari-
ance (risk) between the 13th and 14th optimization run. The drop-down list in Figure 
8.29 allows us to select and inspect the details of each optimization run.

Whether you attempt to minimize risk subject to a certain required rate of return, or 
maximize the return subject to a given level of risk, the solutions obtained may still be 
inefficient. For instance, in the solution to our example problem, there may be a differ-
ent portfolio that produces a higher return for the same level of risk. We could check 
for this by solving the problem again, maximizing the expected return while holding 
the minimal level of risk constant. 

8.9.6 hANdlINg CONflICtINg  
ObjeCtIveS IN POrtfOlIO PrOblemS
As we have seen, there are two different conflicting objectives that can be applied to 
portfolio selection problems: minimizing risk (portfolio variance) and maximizing 
expected returns. One way of dealing with these conflicting objectives is to solve the 
following problem:

MAX:      11 2 r 2 3 1Expected Portfolio Return 2 2 r 3 1Portfolio Variance 2
Subject to: a  pi 5 1

pi $  0 for all i

Here, the pi again represent the percentages of money we should invest in each stock 
in the portfolio and r is a constant between 0 and 1 representing the investor’s aversion 
to risk (or the risk aversion value). When r 5 1 (indicating maximum risk aversion), 
the objective function attempts to minimize the portfolio variance. Such a solution is 
shown in Figure 8.30 (and in the file Fig8-30.xlsm that accompanies this book) in which 
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The Portfolio Selection Problem 409

we have implemented the expected return in cell H13, the portfolio variance in cell 
H14, the risk aversion factor in cell H15, and the objective function in cell H16. This 
solution places roughly 36% of the investor’s money in IBC, 57% in NMC, and 7.1% in 
NBS. This results in a portfolio variance of 0.0011. This is the smallest possible portfolio 
variance for this collection of stocks.

Conversely, when r 5 0 (indicating a total disregard of risk), the objective attempts 
to maximize the expected portfolio return. This solution is shown in Figure 8.31. This 
solution places 100% of the investor’s money in NBS because this produces the largest 
return for the portfolio. 

For values of r between 0 and 1, Solver will always attempt to keep the expected 
return as large as possible and the portfolio variance as small as possible (because the 
objective function in this problem is being maximized). As the value of the parameter 
r increases, more and more weight is placed on the importance of making the portfolio 
variance as small as possible (or minimizing risk). Thus, a risk averse investor should 
prefer solutions with relatively large values of r. By solving a series of problems, each 
time adjusting the value of r, an investor can select a portfolio that provides the greatest 
utility, or the optimum balance of risk and return for their own attitudes toward risk 

Key Cell Formulas

Cell Formula Copied to

J11 5SUM(G11:I11) --
H13 5SUMPRODUCT(B18:D18,G11:I11) --
H14 5SUMPRODUCT(MMULT(G11:I11,G6:I8),G11:I11) --
H16 5(12H15)*H132H15*H14 --

Objective Cell

Variable Cells

Constraint Cell

Figure 8.30 Solution showing the least risky portfolio
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and return. Alternatively, if an investor feels minimizing risk is twice as important as 
maximizing returns, we can solve the problem with r 5 0.667 (and 11 2 r 2 5 0.333) to 
reflect the investor’s attitude toward risk and return. An r value of 0.99275 will produce 
the same solution shown earlier in Figure 8.28.

8.10 Sensitivity Analysis
In chapter 4, we analyzed how sensitive the optimal solution to an LP model is to 
changes in various coefficients in the model. We noted that one advantage of using the 
simplex method to solve LP problems is that it provides expanded sensitivity informa-
tion. A certain amount of sensitivity information is also available when using nonlinear 
optimization methods to solve linear or nonlinear problems.

To understand the sensitivity information available from nonlinear optimization, we 
will compare it to what we learned in chapter 4 about the sensitivity information that 
results from using the simplex method. In chapter 4, we solved the following modi-
fied version of the Blue Ridge Hot Tubs problem where a third type of hot tub—the 
Typhoon-Lagoon—was included in the model:

MAX: 350X1 1 300X2 1 320X3 6 profit

Subject to: 1X1 1       1X2 1        1X3 #      200 6 pump constraint

  9X1 1       6X2 1        8X3 # 1,566 6 labor constraint

  12X1 1    16X2 1     13X3 # 2,880 6 tubing constraint

 X1, X2, X3 $           0 6 nonnegativity conditions

Figure 8.31 Solution showing the maximum return portfolio
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Sensitivity Analysis 411

The spreadsheet implementation of this problem is shown in Figure 8.32 (and in the 
file Fig8-32.xlsm that accompanies this book). Figure 8.33 shows the Sensitivity Report 
generated for this problem after solving it using the simplex method. Figure 8.34 
shows the Sensitivity Report for this problem after solving it using Solver’s nonlinear 
optimizer.

In comparing Figures 8.33 and 8.34, notice that the same optimal solution is obtained 
regardless of whether the problem is solved using the simplex method or the non-
linear optimizer. Both reports indicate that 122 Aqua-Spas, 78 Hydro-Luxes, and 0 
Typhoon-Lagoons should be produced. Both reports also indicate that this solution 
requires 200 pumps, 1,566 labor hours, and 2,712 feet of tubing. The fact that the two 
optimization techniques found the same optimal solution is not surprising because this 
problem is known to have a unique optimal solution. However, if an LP problem has 
alternative optimal solutions, the simplex method and the nonlinear optimizer will not 
necessarily identify the same optimal solution.

Another similarity between the two Sensitivity Reports is apparent if we compare 
the values in the Reduced Cost and Shadow Price columns in Figure 8.33 with the 
values in the Reduced Gradient and Lagrange Multiplier columns in Figure 8.34. The 
reduced cost for each variable in Figure 8.33 is the same as the reduced gradient for 
each variable in Figure 8.34. Similarly, the shadow price for each constraint in Figure 
8.33 is the same as the Lagrange multiplier for each constraint in Figure 8.34. This is not 
simply a coincidence.

Key Cell Formulas

Cell Formula Copied to

E6 5SUMPRODUCT(B6:D6,$B$5:$D$5) E9:E11

Constraint Cells

Objective Cell

Variable Cells

Figure 8.32 Spreadsheet model for the revised Blue Ridge Hot Tubs problem
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Figure 8.33 Sensitivity Report obtained after solving the model using the simplex method

Figure 8.34 Sensitivity Report obtained after solving the model using Solver’s nonlinear GRG optimizer
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Solver Options for Solving NLPs 413

8.10.1 lAgrANge multIPlIerS
In chapter 4, we saw that the shadow price of a constraint represents the marginal value of 
an additional unit of the resource represented by the constraint—or the amount by which 
the objective function would improve if the RHS of the constraint is loosened by one unit. 
This same interpretation applies in a more approximate sense to Lagrange multipliers. 
The main difference between shadow prices and Lagrange multipliers involves the range 
of RHS values over which the shadow price or Lagrange multiplier remains valid.

As discussed in chapter 4 (and shown previously in Figure 8.33), after solving an LP 
problem using the simplex method, we can identify the allowable increase and decrease 
in a constraint’s RHS value over which the shadow price of the constraint remains valid. 
We can do this because the objective function and constraints in an LP problem are all 
linear, making the impact of changes in a constraint’s RHS value on the objective func-
tion value relatively easy to compute. However, in NLP problems, we have no general 
way to determine such ranges for the RHS values of the constraints. So, when using 
Solver’s nonlinear optimizer to solve an optimization problem, we cannot easily deter-
mine the range of RHS values over which a constraint’s Lagrange multiplier will remain 
valid. The Lagrange multipliers can be used only to estimate the approximate impact on 
the objective function of changing a constraint’s RHS value by small amounts.

8.10.2 reduCed grAdIeNtS
In chapter 4, we saw that the reduced cost of a variable that assumes its simple lower 
(or upper) bound in the optimal solution generally represents the amount by which 
the objective function would be reduced (or improved) if this variable were allowed 
to increase by one unit. Again, this same interpretation applies in a more approximate 
sense to reduced gradient values. In particular, nonzero reduced gradient values indi-
cate the approximate impact on the objective function value of very small changes in the 
value of a given variable. For example, in chapter 4, we saw that forcing the production 
of one Typhoon-Lagoon resulted in a $13.33 reduction in total profit for the problem 
shown in Figure 8.32. This is reflected by the reduced cost value for Typhoon-Lagoons 
in Figure 8.33 and the reduced gradient value for Typhoon-Lagoons in Figure 8.34.

Although we used an LP model to discuss the meaning of reduced gradients and 
Lagrange multipliers, their interpretation is the same for nonlinear problems. As stated 
earlier, an LP problem can be viewed as a special type of NLP problem where the objec-
tive function and constraints are linear.

8.11 Solver Options for Solving NlPs
Although we can represent an LP problem by a highly structured, and relatively sim-
ple, objective function and set of constraints, the objective function and constraints in 
an NLP problem can be virtually any mathematical function. Thus, it is not uncommon 
to encounter difficulties while trying to solve NLP problems.

Solver provides several options for controlling how it solves NLPs. These options—
Estimates, Derivatives, and Search—are located in the Engine tab in the Analytic Solver 
task pane, as shown in Figure 8.35. The default settings for these options work well for 
many problems. However, if you have difficulty solving an NLP, you might try changing 
these options to force Solver to use a different search strategy. A complete description of 
these options would require an in-depth understanding of calculus, which is not assumed 
in this book. The following descriptions provide a non-technical overview of these options.
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As Solver searches for an optimal solution to an NLP, it terminates if the relative 
change in the objective function value for several iterations is smaller than the conver-
gence factor. If you think Solver is stopping too quickly as it converges on an optimal 
solution, you should reduce the convergence setting shown in Figure 8.35. 

The Estimates option determines how Solver estimates the values of the decision 
variables while searching for improved solutions. The default setting, Tangent, esti-
mates values using a linear extrapolation technique, whereas the alternate setting, Qua-
dratic, uses a nonlinear extrapolation technique.

The Derivatives option determines how Solver estimates derivatives. When using 
the default setting, Forward, Solver obtains estimates of first derivatives at a point 
by perturbing the point once in a forward direction and computing the rise over the 
run. With the Central setting, Solver obtains estimates of first derivatives by perturb-
ing away from a point in both a backward and forward direction and computing the 
rise over the run between the two points. The Central setting requires twice as many 
recalculations as the Forward option but can improve the estimates of the derivatives, 
yielding better search directions and often fewer iterations. However, the difference in 
accuracy is usually not worth the extra effort, hence the default is Forward.

The Search option determines how Solver chooses a search direction along which to 
seek a feasible point with an improved objective value. The default setting, Newton, 
causes Solver to use the Broyden-Fletcher-Goldfarb-Shanno Quasi-Newton method to 
identify search directions. The Conjugate setting instructs Solver to use the conjugate 
gradient method. The details of these techniques go beyond the scope of this text but 
can be found in most texts devoted to NLP. 

As mentioned earlier, the local optimal solution at which an NLP algorithm termi-
nates often depends on the initial starting point. Note that the MultiStart option in 
Figure 8.35, if set to True, causes Solver to apply methods to attempt to find a global, 

Figure 8.35

Solver options for 
NLP problems
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Evolutionary Algorithms 415

rather than a local, optimal solution. Additionally, scaling problems often affect how 
easily Solver can solve a problem. Thus, selecting the Use Automatic Scaling option is 
also a possible remedy to try if Solver encounters difficulty in solving an NLP.

8.12 Evolutionary Algorithms
In recent years, one of the most interesting and exciting developments in the field of 
optimization has centered on research into the area of evolutionary (or genetic) algo-
rithms. Inspired by ideas from Darwin’s theory of evolution, researchers interested in 
mathematical optimization have devised heuristic search techniques that mimic pro-
cesses in biological reproduction and apply the principle of ‘survival of the fittest’ to 
create general purpose optimization engines.

In a nutshell, genetic algorithms (GAs) start with a set of chromosomes (numeric 
vectors) representing possible solutions to an optimization problem. The individual 
components (numeric values) within a chromosome are referred to as genes. New 
chromosomes are created by crossover and mutation. Crossover is the probabilistic 
exchange of values between solution vectors. Mutation is the random replacement 
of values in a solution vector. Chromosomes are then evaluated according to a fit-
ness (or objective) function with the fittest surviving into the next generation. The 
result is a gene pool that evolves over time to produce better and better solutions to 
a problem.

Figure 8.36 gives an example of how one iteration through the evolutionary process 
might work on a simple problem involving four decision variables. In this case, we 
arbitrarily started with a population of 7 possible solution vectors (chromosomes). (In 
reality, most GAs use a population size of 50 to 100 chromosomes.) Each chromosome 
is evaluated according to some fitness (objective) function for the problem. 

Next, we apply the crossover and mutation operators to generate new possible solu-
tions to the problem. The second table in Figure 8.36 shows the results of this process. 
Note that the values for X3 and X4 in chromosomes 1 and 2 have been exchanged, as 
have the values for X1 and X2 in chromosomes 5 and 6. This represents the crossover 
operation. Also note that the values of X2, X3, and X4 in chromosomes 3, 4, and 7, respec-
tively, have been changed, randomly representing mutation. The fitness of each new 
chromosome is then calculated and compared against the fitness of the correspond-
ing chromosome in the original population, with the most fit chromosome surviving 
into the next population. Various procedures can be used to implement the crossover, 
mutation, and survival of the fittest. This simple example is intended to give you a 
basic understanding of how a GA might work.

To a certain extent, Solver’s evolutionary algorithm picks up where its nonlinear 
GRG algorithm leaves off. As we have seen, for nonlinear problems, the solution Solver 
generates depends on the starting point and may be a local rather than global optimal 
solution. Also, Solver tends to have difficulty solving problems with discontinuities 
and unsmooth landscapes, which are typical of spreadsheet models employing logi-
cal IF( ) functions and/or Lookup tables. Although the evolutionary algorithm cannot 
completely avoid the possibility of becoming trapped at a local optimal solution, its use 
of a randomized initial gene pool and probabilistic crossover and mutation operators 
make this occurrence less likely. Moreover, the evolutionary algorithm can operate on 
virtually any spreadsheet model—even those containing IF( ) functions, Lookup tables, 
and custom macro functions. We will now consider a few examples of problems where 
Solver’s evolutionary algorithm can be applied.
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8.13 Forming Fair Teams
A variety of problems exist where the goal is to form fair/balanced teams from a 
group of people. This can happen in amateur golf tournaments where the goal is to 
form teams with similar handicaps, and in civic organizations that sponsor networking 
events where there is a desire to ensure diversity in seating arrangements for tables. 
Another such problem is illustrated below. 

Steve Sorensen is the director of the MBA program at Claytor College. Each year, he 
forms project teams for the incoming class of full-time MBA students. Students work 
in the same team for each of their classes during their first semester in order to get to 
know one another and learn how to deal with people that they might not have other-
wise chosen to work with. There are 34 students in the next incoming class that Steve 
would like to organize into seven teams. He would like to assign students to teams 
so that the average GMAT score for each team is as similar as possible.

Figure 8.36

Example of one 
iteration through 
an evolutionary 
algorithm

initial Population
Chromosome X1 X2 X3 X4 Fitness

1 7.84 24.39 28.95 6.62 282.08
2 10.26 16.36 31.26 3.55 293.38
3 3.88 23.03 25.92 6.76 223.31
4 9.51 19.51 26.23 2.64 331.28
5 5.96 19.52 33.83 6.89 453.57
6 4.77 18.31 26.21 5.59 229.49
7 8.72 22.12 29.85 2.30 409.68

Crossover & Mutation
Chromosome X1 X2 X3 X4 Fitness

1 7.84 24.39 31.26 3.55 334.28
2 10.26 16.36 28.95 6.62 227.04
3 3.88 19.75 25.92 6.76 301.44
4 9.51 19.51 32.23 2.64 495.52
5 4.77 18.31 33.83 6.89 332.38
6 5.96 19.52 26.21 5.59 444.21
7 8.72 22.12 29.85 4.60 478.93

New Population
Chromosome X1 X2 X3 X4 Fitness

1 7.84 24.39 31.26 3.55 334.28
2 10.26 16.36 31.26 3.55 293.38
3 3.88 19.75 25.92 6.76 301.44
4 9.51 19.51 32.23 2.64 495.52
5 5.96 19.52 33.83 6.89 453.57
6 5.96 19.52 26.21 5.59 444.21
7 8.72 22.12 29.85 4.60 478.93

Crossover

Mutation

Crossover
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Forming Fair Teams 417

8.13.1 A SPreAdSheet mOdel fOr the PrOblem
Figure 8.37 shows a spreadsheet containing GMAT scores for the 34 new MBA students 
for Claytor College. (Note that rows 17 to 26 of this table have been hidden to save 
space.) Cells D5 through D38 represent decision variables indicating to which of the 
seven teams each student is assigned. Arbitrary values have been assigned to these 
cells at present. We will instruct Solver to assign integer values from 1 to 7 to each 
of these cells. Cells G5 through G11 compute the average GMAT score for students 
assigned to each team as follows:

Formula for cell G5:       5 AVERAGEIF 1$D$5:$D$38, F5, $C$5:$C$38 2
(Copy to cells G6 through G11.)

The AVERAGEIF( ) function works in much the same way as the SUMIF( ) func-
tion covered earlier in this chapter (and in chapter 5). In cell G5, the AVERAGE-
IF($D$5:$D$38, F5, $C$5:$C$38) function for team 1 compares the team assignment 
values in cells D5 through D38 to the value of 1 in cell F5 and, when matches occur, 
averages the corresponding GMAT values in cells C5 through C38.

Key Cell Formulas

Cell Formula Copied to

G5 5AVERAGEIF($D$5:$D$38,F5,$C$5:$C$38) G6:G11
H5 5COUNTIF($D$5:$D$38,F5) H6:H11
G12 5IFERROR(VAR(G5:G11),999999999) --

Constraint Cells

Objective Cell

Variable Cells

Figure 8.37

Spreadsheet model 
for the MBA 
team assignment 
problem
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Cell G12 computes the variance of the average GMAT scores and will serve as our 
objective function to be minimized for this problem.

Formula for cell G12:      5IFERROR 1VAR 1G5:G11 2 ,999999999 2
The IFERROR( ) function returns an arbitrarily large value of 999999999 if an error is 

ever encountered in computing the variance of G5 through G11. So if Solver happens 
to assign values to the decision cells that produce an error value in other computations, 
the objective value for such a solution will be a very large (poor) value rather than 
being an error value. (For instance, if Solver does not assign any students to a particular 
group the AVERAGEIF( ) function for that group will return a division by zero error. 
[Only Chuck Norris can divide by zero.])

To keep an approximately equal number of students assigned to each team we will 
allow a maximum of five students per team. The number of students assigned to each 
team is computed in cells H5 through H11 as follows.

Formula for cell H5:       5COUNTIF 1$D$5:$D$38, F5 2
(Copy to cells H6 through H11.)

8.13.2 SOlvINg the mOdel
In this problem, we want to use Solver to determine values for the team assignment in 
cells D5 through D38 that minimize the variance of the team GMAT scores in cell G12 
while assigning no more than five students to each team.

Unfortunately, the AVERAGEIF( ) and COUNTIF( ) functions used in this model 
create discontinuities that causing Solver’s GRG algorithm to be fairly ineffective on 
this problem. Indeed, if you attempt to use Solver’s GRG algorithm on this problem, 
it goes no further than the initial solution shown in Figure 8.37. However, if we solve 
the problem using Solver’s evolutionary algorithm, using the settings shown in Figure 
8.38, we obtain the solution shown in Figure 8.39. You might have to solve the problem 
several times to obtain this solution and you might even find a different (or better) 
solution. Because this is a non-smooth optimization problem, Solver will usually find a 
“good” but not necessarily global or local optimal solution. 

8.13.3 ANAlyzINg the SOlutION
The team assignments shown in Figure 8.39 have reduced the variance of the average 
team GMAT scores significantly, from 887.5 to 2.7024. It is important to remember that 

Solver Settings:

Objective: G12 (Min)
Variable cells: D5:D38
Constraints: 

H5:H11 ,5 5
D5:D38 ,5 7
D5:D38 .5 1
D5:D38 5 integer

Solver Options:

Standard Evolutionary Engine

Figure 8.38

Solver settings 
and options for 
the MBA team 
assignment 
problem
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Solver’s evolutionary algorithm is a heuristic that might or might not find the global 
optimal solution. Often, when Solver stops and reports that it cannot improve on the 
current solution, re-starting Solver from a different starting point will result in a differ-
ent (and potentially better) solution.

8.14 The Traveling Salesperson Problem
The Traveling Salesperson Problem (TSP) is one of the most famous problems in the 
field of optimization. This problem can be described succinctly as follows: 

A salesperson wants to find the least costly (or shortest) route for visiting clients in 
n different cities, visiting each city exactly once before returning home. 

Although this problem is very simple to state, it becomes extremely difficult to 
solve as the number of cities increases. In general, for an n-city TSP, there are 1n 2 1 2 !

Figure 8.39 Possible solution for the MBA team assignment problem
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possible routes (or tours) the salesman can take (where 1n 2 1 2 ! 5 1n 2 1 2 3 1n 2 2 2
3 1n 2 3 2 3  . . . 3 2 3 1 2 . The following table shows the value of 1n 2 1 2 ! for several 
different values of n:

n 1n 2 12!
3 2

5 24

9 40,320

13 479,001,600

17 20,922,789,888,000

20 121,645,100,408,832,000

Thus, for a 3-city TSP, there are only two distinct routes for the salesperson (i.e., 
1 S 2 S 3 S 1 and 1 S 3 S 2 S 1, assuming the salesperson starts in city 1). How-
ever, with just 17 cities, the number of possible routes increases to almost 21 trillion. 
Because TSPs are so difficult, heuristic solution techniques (like genetic algorithms) are 
often used to solve these problems.

Although it is unlikely that many traveling salespersons really care about solving this 
type of problem, there are numerous other examples of practical business problems that 
can be described in the general form of a TSP. One such example is described next.

The Wolverine Manufacturing Company owns and operates a number of com-
puter-controlled machines that can be programmed to perform precise drilling 
and machining operations. The company is currently programming their drilling 
machine for a job that requires nine holes to be drilled in precise locations on a 
flat fiberglass panel that is used in the production of a popular automobile. After 
each hole is drilled, the machine will automatically retract the drill bit, and move it 
to the next location until all the holes have been drilled. Because the machine will 
be required to repeat this process for millions of panels, Wolverine is interested in 
making sure that it programs the machine to drill the series of holes in the most 
efficient manner. In particular, they want to minimize the total distance the drill bit 
must be moved in order to complete the nine drilling operations.

If you imagine the drill bit in this problem representing a salesperson and each of 
the required hole locations as representing cities the drill bit must visit, it is easy to see 
that this is a TSP.

8.14.1 A SPreAdSheet mOdel fOr the PrOblem
To solve Wolverine’s TSP, the company first must determine the straight-line distance 
between each pair of required hole locations. A matrix showing the distance (in inches) 
between each pair of required hole locations is shown in Figure 8.40 (and the file Fig8-
40.xlsm that accompanies this book). Note that we are using the integers from 0 to 8 to 
identify the nine holes in this problem. The reason for numbering the holes starting at 
zero (rather than one) will become apparent shortly.

An arbitrary tour for the drill bit 10 S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 0 2  is 
shown in cells E18 through F26. The distance between each of the required hole loca-
tions in this tour is shown in cells G18 through G26 using the following formula:

Formula for cell G18:     5INDEX 1$C$6:$K$14,E18 1 1,F18 1 1 2
(Copy to cells G19 through G26.)
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The Traveling Salesperson Problem 421

In general, the function INDEX(range, row number, column number) returns the 
value in the specified row number and column number of the given range. Because 
cell E18 contains the number 0 and F18 contains the number 1, the previous formula 
returns the value in the first row 1E18 1 1 2  and second column 1F18 1 1 2  of the range 
C6:K14—or the value in cell D6.

Of course, any hole location that the drill bit moves to becomes the next location that 
it will move from. Thus, the following formula was entered in cells E19 through E26 to 
ensure this occurs:

Formula for cell E19:      5F18
(Copy to cells E20 through E26.)

The number 0 was entered in cell F26 to ensure that the drill bit’s last move is always 
back to its starting position. Because the solution to a TSP requires n cities to be visited 
exactly once, the length of the optimal tour will not change regardless of which city is 
selected as the starting point. (There may be alternate optimal tours, but they will all 
have the same objective function value.) So by selecting a starting point for a TSP, we 
reduce the number of possible solutions in the TSP from n! to 1n 2 1 2 ! which, as shown 
earlier, becomes quite significant as n increases.

Key Cell Formulas

Cell Formula Copied to

E19 5F18 E20:F26
G18 5INDEX($C$6:$K$14,E1811,F1811) G19:G26
G27 5SUM(G18:G26) --

Objective Cell

Variable Cells

Figure 8.40

Spreadsheet model 
for Wolverine’s 
TSP
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The objective in this problem is to minimize the total distance the drill bill has to 
travel. Thus, our objective (or fitness) function should compute the total distance asso-
ciated with the current tour. This is calculated in cell G27 as follows:

Formula for cell G27:      5 SUM 1G18:G26 2
If we start at hole position zero, any permutation of the set of integers from 1 to 8 in 

cells F18 through F25 represents a feasible tour for the drill bit. (A permutation is sim-
ply a rearrangement of the elements of a set.) Fortunately, Solver allows for a special 
type of constraint for changing cells known as the “alldifferent” constraint. The alldif-
ferent constraint can be applied to a contiguous range of n changing cells and instructs 
Solver only to use a permutation of the set of integers from 1 to n in those cells. The 
alldifferent constraint used in combination with Solver’s evolutionary optimizer allows 
us to model and solve a number of very challenging but practical business problems 
involving the optimal sequencing of jobs or activities. Several such problems are found 
in the questions and cases at the end of this chapter. 

S o l v e r ’ s  “ a l l d i f f e r e n t ”  C o n s t r a i n t
Solver’s alldifferent constraint (selected via the “dif” option in Solver’s Add Con-
straint dialog box) can be applied to a contiguous range of n changing cells and 
instructs Solver only to use a permutation of the set of integers from 1 to n in 
those cells. Currently, you may not place any other bounds or restrictions on the 
cells covered by an alldifferent constraint. Thus, if you need to determine the opti-
mal permutation of a set of integers from, for example, 21 to 28 you can: 

1) Apply the alldifferent constraint to a set of eight changing cells (so Solver will 
generate permutations of 1 to 8 in these cells), and then

2) Place formulas in another set of eight cells that add 20 to the values Solver 
generates for the alldifferent changing cells.

8.14.2 SOlvINg the mOdel
Figure 8.41 shows the Solver parameters used to solve this problem. The alldifferent 
constraint type is selected by choosing the “dif” option when adding constraints for the 
variable cells. The solution obtained is shown in Figure 8.42. 

Solver Settings:

Objective: G27 (Min)
Variable cells: F18:F25
Constraints: 

F18:F25 5 alldifferent

Solver Options:

Standard Evolutionary Engine

Figure 8.41

Solver parameters 
for Wolverine’s 
TSP
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8.14.3 ANAlyzINg the SOlutION
The solution shown in Figure 8.42 represents a 33.5% reduction in the total distance 
the drill bit needs to travel. If this drilling operation is going to be repeated on mil-
lions of parts, the reduction in processing time and machine wear and tear associ-
ated with implementing the optimal tour would likely be quite significant for this 
company. 

It is important to remember that Solver’s evolutionary algorithm randomly gen-
erates the initial population of solutions and uses probabilistic crossover and muta-
tion operations. So if you solve this problem, you may not obtain the same solution 
shown in Figure 8.42 (or you may obtain an alternate optimal solution). Indeed, 
with large TSP type problems, if you run Solver’s evolutionary optimizer several 
times, it will likely locate better and better solutions to the problem until the global 
optimal solution is found. Such is the nature of heuristic optimization techniques! 
As stated earlier, the evolutionary algorithm is one of the most exciting develop-
ments in the field of optimization in recent years. Solver’s evolutionary search capa-
bilities will undoubtedly continue to be refined and improved in future software 
releases.

Figure 8.42 A solution for Wolverine’s TSP
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8.15 Summary
This chapter introduced some of the basic concepts involved in nonlinear programming 
and discussed several applications. The steps involved in formulating and solving an 
NLP problem are not very different from those required to solve an LP problem—the 
decision variables are identified and an objective function and any constraints are 
stated in terms of the decision variables. Because the objective function and constraints 
in an NLP problem might be nonlinear, the calculations involved in solving NLP prob-
lems are different from those included in the simplex method, which is used most often 
to solve LP problems. NLP problems sometimes have several local optimal solutions. 
Thus, finding the global optimal solution to a difficult NLP problem might require 
re-solving the model several times using different initial starting points.

Evolutionary (or genetic) algorithms use random search techniques and the principle 
of survival of the fittest to solve difficult optimization problems for which linear and 
nonlinear optimization techniques are not suitable. Research into genetic algorithms is 
ongoing, but this promises to become a very useful and powerful optimization tool for 
business.
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the WOrld Of buSINeSS ANAlytICS

Water Spilled Is Energy Lost: Pacific Gas and Electric Uses 
Nonlinear Optimization to Manage Power Generation

The power produced by a hydroelectric generator is a nonlinear function of the 
flow rate of water through the turbine and the pressure. Pressure, or head, is 
determined by the difference in water level upstream from the generator.

Pacific Gas and Electric Company (PG&E), the world’s largest privately held 
utility, generates power from fossil fuels, nuclear energy, wind, solar energy, and 
geothermal steam, as well as hydropower. Its Sierra, Nevada Hydro System is a 
complex network of 15 river basins, 143 reservoirs, and 67 power plants. Stream 
flow peaks markedly in the spring from snow melting in the mountains, whereas 
demand for electric power peaks in the summer.

(Continued)
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Questions and Problems
1. Can the GRG algorithm be used to solve LP problems? If so, will it always identify 

a corner point of the feasible region as the optimal solution (as does the simplex 
method)?

2. In describing the NLP solution strategy summarized in Figure 8.2, we noted that the 
fastest improvement in the objective function is obtained by moving from point A 
in a direction that is perpendicular to the level curve of the objective function. How-
ever, there are other directions that also result in improvements to the objective.
a. How would you describe or define the set of all directions that result in improve-

ment to the objective?  
b. How would your answer change if the level curve of the objective function at 

point A was nonlinear?
3. Consider an optimization problem with two variables and the constraints 

X1 # 5, X2 # 5 where both X1 and X2 are nonnegative.
a. Sketch the feasible region for this problem.
b. Sketch level curves of a nonlinear objective for this problem that would have 

exactly one local optimal solution that is also the global optimal solution.
c. Redraw the feasible region and sketch level curves of a nonlinear objective for 

this problem that would have a local optimal solution that is not the global opti-
mal solution.

 4. Consider the following function:

 Y 5 20.865 1 8.454X 2 1.696X2 1 0.132X3 2 0.00331X4

a. Plot this function on an X-Y graph for positive values of X from 1 to 20.
b. How many local maximum solutions are there?
c. How many local minimum solutions are there?

Water spilled from a dam cannot be used to generate power at that dam, 
although it can increase the head at a dam downstream and contribute to power 
generation there. If the water spills at a time when all of the downstream reser-
voirs are full, it will spill from all the dams, and its energy will be lost forever. 
Hydrologists at PG&E attempt to maximize the useful generation of electricity by 
strategically timing controlled spills to manage the levels of all reservoirs in the 
system and minimize wasted flow. If done effectively, this reduces the company’s 
reliance on fossil fuel and reduces the cost of electricity to its customers.

This problem was modeled as a nonlinear program with a nonlinear objective 
function and linear constraints. Because many of the constraints are network flow 
constraints, using a network flow algorithm along with the linear terms of the 
objective function produced a good starting point for the NLP algorithm. A good 
starting point can be a critical factor in the successful use of NLP.

PG&E management confirms that the optimization system saves between $10 
and $45 million annually compared to manual systems, and the California Public 
Utilities Commission has recommended its use to others.

Source: Ikura, Yoshiro, George Gross and Gene Sand Hall. “PG&E’s State-of-the-Art Scheduling 
Tool for Hydro Systems.” Interfaces, vol. 16, no. 1, January-February 1986, pp 65-82.
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d. Use Solver to find the maximum value of Y using a starting value of X 5 2. What 
value of Y do you obtain?

e. Use Solver to find the maximum value of Y using a starting value of X 5 14.
What value of Y do you obtain?

5. Consider the following function:

Y 5 37.684 2 15.315X 1 3.095X2 2 0.218X3 1 0.005X4

a. Plot this function on an X-Y graph for positive values of X from 1 to 20.
b. How many local maximum solutions are there?
c. How many local minimum solutions are there?
d. Use Solver to find the minimum value of Y using a starting value of X 5 3. What 

value of Y do you obtain?
e. Use Solver to find the minimum value of Y using a starting value of X 5 18.

What value of Y do you obtain?
6. Refer to TMC’s project selection problem presented in this chapter. In the solution 

shown in Figure 8.21, notice that the probability of success for project 4 is only 0.3488. 
Thus, project 4 is almost twice as likely to fail as succeed if it is assigned only three 
engineers. As a result, management might want to add a constraint to this problem to 
ensure that if a project is selected, it must have at least a 50% chance of succeeding. 
a Reformulate TMC’s problem so that if a project is selected, it must have at least a 

50% chance of succeeding. 
b. Implement your model in a spreadsheet.
c. What is the optimal solution?

7. The PENTEL Corporation manufactures three different types of computer chips. 
Each type of chip requires different amounts of processing time in three different 
departments as summarized in the following table.

Processing Hours req’d per 100 Chips

Chip A Chip B Chip C Hours Available

Dept 1 3 2 4 10,000
Dept 2 2 4 3 9,000
Dept 3 3 4 2 11,000

  The total profit for each type of chip may be described as follows:

 Chip A profit 5 20.35A2 1 8.3A 1 540

Chip B profit 5 20.60B2 1 9.45B 1 1108

Chip C profit 5 20.47C2 1 11.0C 1 850

where A, B and C represent the number of chips produced in 100s.

a. Formulate an NLP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

8. A car dealership needs to determine how to allocate its $20,000 advertising budget. 
They have estimated the expected profit from each dollar (X) spent in four different 
advertising media as follows:

Medium expected Profit

Newspaper 100X0.7

Radio 125X0.65

TV 180X0.6

Direct Mail 250X0.5
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If the company wants to spend at least $500 on each medium, how should it allocate its 
advertising budget in order to maximize profit?

9. The XYZ Company produces two products. The total profit achieved from these prod-
ucts is described by the following equation:

Total profit 5 20.2X2
1 2 0.4X2

2 1 8X1 1 12X2 1 1500 
 where  X1 5 thousands of units of product 1

X2 5 thousands of units of product 2

Every 1,000 units of X1 requires one hour of time in the shipping department, and every 
1,000 units of X2 requires 30 minutes in the shipping department. Each unit of each 
product requires two pounds of a special ingredient, of which 64,000 pounds are avail-
able. Additionally, 80 hours of shipping labor are available. Demand for X1 and X2 is 
unlimited.
a. Formulate an NLP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What is the optimal solution?

10. A traveler was recently stranded in her car in a snowy blizzard in Wyoming. Unable to 
drive any farther, the stranded motorist used her cell phone to dial 911 to call for help. 
Because the caller was unsure of her exact location, it was impossible for the emergency 
operator to dispatch a rescue squad. Rescue personnel brought in telecommunications 
experts who determined that the stranded motorist’s cell phone call could be picked 
up by three different communications towers in the area. Based on the strength of the 
signal being received at each tower, they were able to estimate the distance from each 
tower to the caller’s location. The following table summarizes the location (X-Y coordi-
nates) of each tower and the tower’s estimated straight line (or Euclidean) distance to 
the caller.

Tower X-Position Y-Position estimated Distance

1 17 34 29.5
2 12 5 4.0
3 3 23 17.5

  The caller’s cell phone battery is quickly discharging and it is unlikely the motorist will 
survive much longer in the subfreezing temperatures. However, the emergency opera-
tor has a copy of Excel on her computer and believes it may be possible, with your help, 
to use Solver to determine the approximate location of the stranded motorist.
a. Formulate an NLP for this problem.
b. Implement your model in a spreadsheet and solve it.
c. To approximately what location should the rescue personnel be dispatched to look 

for the motorist?
 11. Refer to the insurance problem faced by Thom Pearman discussed in Section 8.8 of this 

chapter. Let bi represent the balance in his investment at the beginning of year i and let r 
represent the annual interest rate.
a. What is the objective function for this problem? Is it linear or nonlinear?
b. Write out the first two constraints for this problem algebraically. Are they linear or 

nonlinear?
 12. In the insurance problem discussed in Section 8.8 of this chapter, suppose that Thom is 

confident that he can invest his money to earn a 15% annual rate of return compounded 
quarterly. Assuming a fixed 15% return, suppose he now wants to determine the min-
imum amount of money he must invest in order for his after-tax  earnings to cover the 
planned premium payments.
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a. Make whatever changes are necessary to the spreadsheet and answer Thom’s 
question.

b. Is the model you solved linear or nonlinear? How can you tell?
13. The yield of a bond is the interest rate that makes the present value of its cash flows 

equal to its selling price. Assume a bond can be purchased for $975 and generates 
the following cash flows:

Years from now 1 2 3 4 5

Cash Flow $100 $120 $90 $100 $1,200 

  Use Solver to determine the yield for this bond. (Hint: In Excel, use the NPV() func-
tion to compute the present value of the cash flows.) What is the yield on this bond?

 14. Suppose a gift shop in Myrtle Beach has an annual demand for 15,000 units for a 
souvenir kitchen magnet that it buys for $0.50 per unit. Assume it costs $10 to place 
an order and the inventory carrying cost is 25% of the item’s unit cost. Use Solver 
to determine the optimal order quantity if the company wants to minimize the total 
cost of procuring this item.
a. What is the optimal order quantity?
b. What is the total cost associated with this order quantity?
c. What are the annual order and annual inventory holding costs for this solution?

 15. Vijay Bashwani is organizing a charity golf tournament where teams of four players 
will play in a captain’s choice format. The handicaps of the 40 players who have 
registered for the tournament are summarized in the following table. Vijay needs 
to create 10 teams of four players each in such a way that the total handicap of each 
team is as equal as possible. He would like to do this by minimizing the variance of 
the total handicaps of all the teams.

Player Handicaps

0 3 6 9
0 3 6 9
0 3 6 10
0 4 6 10
0 4 7 11
1 4 7 11
1 4 7 11
1 5 8 12
2 5 8 13
2 5 8 13

a. Create a spreadsheet model for this problem and solve it.
b. What are the optimal team assignments?

 16. Lex Rex is an aspiring rock band composed of college friends based in Raleigh, 
NC. They are planning a short tour that will take them to five other college towns 
throughout the Mid-Atlantic region over a 10 day period. The distances between 
each of the cities planned for their tour are given below:
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Distances Between Cities in Miles

Home A B C D e

Home 0 210 353 457 65 125
A 210 0 530 797 176 173

B 353 530 0 571 755 771
C 457 797 571 0 477 395
D 65 176 755 477 0 792
E 125 173 771 395 792 0

  The venues where the band will perform have other acts booked on some the dates 
the band will be on tour. The following table indicates (with entries of 1) the dates 
that venues are available in each of the cities. 

Dates Available for Concerts 11 5 Available, 0 5 Not Available2
City 1 2 3 4 5 6 7 8 9 10

A 1 0 1 0 1 0 1 1 0 1
B 0 1 0 1 0 1 0 0 1 1
C 0 0 0 0 1 1 0 0 1 0
D 1 0 0 0 0 1 1 0 0 0
E 1 1 1 0 0 0 0 0 1 1

a. Create a spreadsheet model that can be optimized to determine the tour that 
minimizes the number of miles traveled. What is that tour?

b. Now use your model to determine the tour that minimizes the number of days 
on the road. What is that tour?

c. Now use your model to determine the tour that minimizes the amount of driving 
on a tour lasting 8 days. (Assume it takes 1 day to travel from any of the cities 
back to the band home town.) 

 17. The file InvestmentData.xlsx that accompanies this book contains data on the aver-
age returns and covariances for fifteen different mutual funds. Use this data to 
answer the following questions.
a. Create the efficient frontier associated with this collection of investments assum-

ing that for each possible level of return an investor wishes to minimize risk.
b. What portfolio has the highest expected return?  What portfolio variance is asso-

ciated with this portfolio?
c. What portfolio has the smallest expected return? What portfolio variance is asso-

ciated with this portfolio?
d. Suppose an investor wanted a portfolio with an expected return of 18% using 

this set of investments.  What portfolio would you recommend?
 18. SuperCity is a large retailer of electronics and appliances.  The store sells three different 

models of TVs that are ordered from different manufacturers.  The demands, costs, and 
storage requirements for each model are summarized in the following table:

Model 1 Model 2 Model 3

Annual Demand 800 500 1,500
Unit Cost $300 $1,100 $600
Storage space req’d 9 sq ft 25 sq ft 16 sq ft

  It costs $60 to do the administrative work associated with preparing, processing, 
and receiving orders, and SuperCity assumes a 25% annual carrying cost for all 
items it holds in inventory.  There are 3,000 square feet of total warehouse space 
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available for storing these items, and the store never wants to have more than 
$45,000 invested in inventory for these items.  The manager of this store wants to 
determine the optimal order quantity for each model of TV.
a. Formulate an NLP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. What are the optimal order quantities?
d. How many orders of each type of TV will be placed each year?
e. Assuming demand is constant throughout the year, how often should orders be 

placed?
19.  The Radford hardware store expects to sell 1,500 electric garbage disposal units in 

the coming year.  Demand for this product is fairly stable over the year.  It costs $20 
to place an order for these units and the company assumes a 20% annual holding 
cost on inventory.  The following price structure applies to Radford’s purchases of 
this product:

Order Quantity

0 to 499 500 to 999 1,000 and up

Price per Unit $35 $33 $31

  So if Radford orders 135 units, it pays $35 per unit; if it orders 650, it pays $33 per 
unit; and if it orders 1,200, it pays $31 per unit.  
a. What is the most economical order quantity and total cost of this solution?  (Hint:  

Solve a separate EOQ problem for each of the order quantity ranges given and 
select the solution that yields the lowest total cost.)

b. Suppose the discount policy changed so that Radford had to pay $35 for the first 
499 units ordered, $33 for the next 500 units ordered, and $31 for any additional 
units. What is the most economical order quantity and what is the total cost of 
this solution?

 20. Andy Parker’s family has been planning a visting to a major theme park in Florida.  
As the family wants to make the most of their time at the park, Andy has collected 
data (in the file ParkData.xlsx accompanying this book) that includes estimated 
walking distances between each attraction in the park and the estimated amount 
of time it takes to get through each attraction. Andy also asked each member of 
his family to rate the desirability of each attraction and developed a composite rat-
ing from these values. Andy plans to spend 8 hours visiting attractions in the park 
(excluding the time they spend eating) and would like his family to make the best 
use of their time.
a. Create a spreadsheet model to assist Andy in maximizing his family’s enjoyment 

of the park. How should Andy plan to spend his time at the park?
 21. Howie Jones, owner of Blue Ridge Hot Tubs, is facing a new problem.  Although 

sale of the two hot tubs manufactured by his company (Aqua-Spas and Hydro-
Luxes) have been brisk, the company is not earning the level of profits that Howie 
wants to achieve.  Having established a reputation for high quality and reliabil-
ity, Howie believes he can increase profits by increasing the prices of the hot tubs.  
However, he is concerned that a price increase might have a detrimental effect on 
demand, so Howie has engaged a marketing research firm to estimate the level of 
demand for Aqua-Spas and Hydro-Luxes at various prices.  The marketing research 
firm used the technique of regression analysis (discussed in chapter 9) to develop 
a model of the relationship between the prices and demand for the hot tubs.  After 
analyzing the situation, the marketing research firm concluded that a reasonable 
price range for the hot tubs is between $1,000 and $1,500, and that within this range, 

47412_ch08_ptg01_371-446.indd   430 17/08/16   1:36 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Questions and Problems 431

Howie can expect the demand for hot tubs in the next quarter to vary with price in 
the following way:

Demand for Aqua-Spas 5 300 2 0.175 3 price of Aqua-Spas
Demand for Hydro-Luxes 5 325 2 0.15 3 price of Hydro-Luxes

Howie determined that the costs of manufacturing Aqua-Spas and Hydro-Luxes are 
$850 and $700 per unit, respectively. Ideally, he wants to produce enough hot tubs 
to meet demand exactly and carry no inventory. Each Aqua-Spa requires 1 pump, 9 
hours of labor, and 12 feet of tubing; each Hydro-Lux requires 1 pump, 6 hours of 
labor, and 16 feet of tubing. Howie’s suppliers have committed to supplying him 
with 200 pumps and 2,800 feet of tubing. Also, 1,566 hours of labor are available for 
production. Howie wants to determine how much to charge for each type of hot tub 
and how many of each type to produce.
a.Formulate an NLP model for this problem.
b.Implement your model in a spreadsheet and solve it.
c.What is the optimal solution?
d.Which of the resource constraints are binding at the optimal solution?  
e. What values would you expect the Lagrange multipliers to take on for these con-

straints?  (Create a Sensitivity Report for this problem to verify your answer.)
22. Carnival Confections, Inc. produces two popular southern food items, pork rinds 

and fried peanuts, which it sells at a local recreation area on weekends. The owners 
of the business have estimated their profit function on these items to be:

0.6p 2 0.002p2 1 0.5f 2 0.0009f 2 2 0.001pf

Note that p is the number of packages of pork rinds produced and f is the number 
of packages of fried peanuts produced. Both of these items require deep frying. The 
company’s fryer has the capacity to produce a total of 600 packages of pork rinds 
and/or fried peanuts. One minute of labor is required to dry and package the pork 
rinds, and 30 seconds are required to dry and package the peanuts. The company 
devotes a total of 16 hours of labor to producing these products each week.
a. Formulate an NLP model for this problem.
b. Implement your model in a spreadsheet.
c. What is the optimal solution?

23. A new mother wants to establish a college education fund for her newborn child.  
She wants this fund to be worth $100,000 in 18 years.
a.If she invests $75 per month, what is the minimum rate of return she would need 

to earn on her investment? Assume monthly compounding. (Hint: Consider 
using the future value function FV( ) in your spreadsheet.)

b. Suppose the mother knows of an investment that will guarantee a 12% annual 
return compounded monthly. What is the minimum amount she should invest 
each month to achieve her goal?

24. A pharmaceutical company is hiring five new salespeople to expand its sales in a 
western state. Pharmaceutical sales representatives do not sell directly to doctors 
because doctors do not purchase and distribute drugs.  However, doctors do write 
prescriptions and it is that activity the sales representatives try to influence.  The 
pharmaceutical company is focusing its efforts on the ten counties in the state and 
estimated the number of doctors in each county as follows:

County 1 2 3 4 5 6 7 8 9 10

Doctors 113 106 84 52 155 103 87 91 128 131
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Additionally, ten possible sales regions (comprising contiguous sets of counties) 
have been identified as follows:

Possible Sales region

County 1 2 3 4 5 6 7 8 9 10

1 1 1 1
2 1 1 1 1
3 1 1 1 1
4 1 1 1
5 1 1 1
6 1 1 1
7 1 1 1
8 1 1 1
9 1 1 1

10     1     1     1

  For example, if a sales representative is assigned to region 1, he or she would be 
responsible for counties 1, 3, and 5. Each sales representative may be assigned 
to only a single sales region, so not all of the possible sales regions will be 
used. The company would like to assign their five sales representatives to 
these possible regions in such a way as to ensure that at least one sale repre-
sentative covers each county. If regions are assigned in such a way that more 
than one sales representative covers the same county, the doctors within that 
county would be split equally among the relevant sales representatives. Addi-
tionally, the company would like to assign regions so that the total number of 
doctors assigned to each sales representative is as equal as possible. (Note that 
if exactly the same number of doctors is assigned to each sales representative, 
the variance of the number of doctors assigned to each sales representative 
would be zero.) 
a. Create a spreadsheet model for this problem and use Solver’s evolutionary 

engine to solve it.
b. What is the optimal solution?
c. What other criteria can you think of that might be relevant to the decision mak-

ers or sales representatives in this problem?
 25. The Arctic Oil Company has recently drilled two new wells in a remote area of 

Alaska. The company is planning to install a pipeline to carry the oil from the two 
new wells to a transportation and refining (T&R) center. The locations of the oil 
wells and the T&R center are summarized in the following table. Assume a unit 
change in either coordinate represents 1 mile.

X-Coordinate Y-Coordinate

Oil well 1  50 150
Oil well 2  30  40
T&R center 230  70

  Installing the pipeline is a very expensive undertaking, and the company wants to 
minimize the amount of pipeline required. Because the shortest distance between 
two points is a straight line, one of the analysts assigned to the project believes that 
a separate pipe should be run from each well to the T&R center. Another alternative 
is to run separate pipes from each well to some intermediate substation where the 
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two lines are joined into a single pipeline that continues on to the T&R center. Arc-
tic Oil’s management wants to determine which alternative is best. Furthermore, if 
using the intermediate substation is best, management wants to determine where 
this station should be located.
a. Create a spreadsheet model to determine how many miles of pipeline Arctic Oil 

must install it runs separate pipelines from each oil well to the T&R center. How 
much pipe will be needed?

b. If Arctic Oil wants to build a substation, where should it be built? How much 
pipe is needed in this solution?

c. Which alternative is best?
d. Suppose the substation cannot be built within a 10-mile radius of the coordinates 

X 5 80, Y 5 95. (Assume the pipeline can run through this area but the substa-
tion cannot be built in the area.) What is the optimal location of the substation 
now and how much pipe will be needed?

 26. The Rugger Corporation is a Seattle-based R&D company that recently developed 
a new type of fiber substrate that is waterproof and resists dirt. Several carpet 
manufacturers in northeast Georgia want to use Rugger as their sole supplier for 
this new fiber. The locations of the carpet manufacturers are summarized in the 
following table. 

Carpet Mill Locations X-Coordinate Y-Coordinate

Dalton  9 43
Rome  2 28
Canton 51 36
Kennesaw 19  4

  Rugger expects to make 130, 75, 90, and 80 deliveries to the carpet producers in 
Dalton, Rome, Canton, and Kennesaw, respectively. The company wants to build its 
new plant in the location that would minimize the annual shipping miles. However, 
Rugger also wants to be within 50 miles of each of the new customers so that it will 
be easy to provide on-site technical support for any production problems that may 
occur.
a. Formulate an NLP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c.What is the optimal location for the new plant? How many annual shipping miles 

are associated with this solution?
d. Suppose the company wants to identify the location that minimizes the average 

distance to each of its customers. Where is this location and how many annual 
shipping miles would Rugger incur if the new plant locates there?

e. Suppose the company wants to identify the location that minimizes maximum 
distance to any of its customers. Where is this location and how many annual 
shipping miles would Rugger incur if the new plant locates there?

 27. An air-ambulance service in Colorado is interested in keeping its helicopter in a 
central location that would minimize the flight distance to four major ski resorts. 
An X-Y grid was laid over a map of the area to determine the following latitude and 
longitude coordinates for the four resorts:

resort Longitude Latitude

Bumpyride 35 57
Keyrock 46 48
Asprin 37 93
Goldenrod 22 67
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a. Formulate an NLP model to determine where the ambulance service should be 
located in order to minimize the total distance to each resort.

b. Implement your model in a spreadsheet and solve it. Where should the ambu-
lance service be located?

c. What other factors might affect the decision and how might you incorporate 
them in your model? (Consider, for example, differences in the average number 
of skiers and accidents at the different resorts, and the topography of the area.)

28. The Heat-Aire Company has two plants that produce identical heat pump units. 
However, production costs at the two differ due to the technology and labor used at 
each plant. The total costs of production at the plants depend on the quantity pro-
duced, and are described as:

Total cost at plant 1: 2X2
1 2 1X1 1 15

Total cost at plant 2: X2
2 1 0.3X2 1 10

Note that X1 is the number of heat pumps produced at plant 1 and X2 is the number 
of heat pumps produced at plant 2. Neither plant can make more than 600 heat 
pumps. Heat pumps can be shipped from either plant to satisfy demand from four 
different customers. The unit shipping costs and demands for each customer are 
summarized in the following table.

Customer 1 Customer 2 Customer 3 Customer 4

Plant 1 $23 $30 $32 $26 
Plant 2 $33 $27 $25 $24 
Demand 300 250 150 400

  What is the optimal production and shipping plan if management wants to meet 
customer demand at the lowest total cost?
a.Formulate an NLP model for this problem.
b.Implement your model in a spreadsheet and solve it.
c.What is the optimal solution?

 29. Beth Dale is the Director of Development for a nonprofit organization that depends 
largely on charitable gifts for its operations. Beth needs to assign four different 
staff people to make trips to call on four possible donors. Only one staff person 
can call on each donor and each staff person can make only one call. Beth estimates 
the probability of each staff person successfully obtaining the donation from each 
potential giver as follows:

Donor

Staff 1 2 3 4

Sam 0.95 0.91 0.90 0.88
Billie 0.92 0.95 0.95 0.82
Sally 0.95 0.93 0.93 0.85
Fred 0.94 0.87 0.92 0.86

a. Formulate an NLP model to determine the assignment of staff persons to donors 
that maximizes the probability of receiving all donations.

b. Implement your model in a spreadsheet and solve it. What is the optimal 
solution?

c. Suppose it is estimated that the donations possible from donors 1, 2, 3, and 4 
are for $1 million, $2 million, $0.5 million, and $0.75 million, respectively. How 
should Beth assign her staff if she wants to maximize the expected value of the 
donations received?
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d. All staffers will have the least luck soliciting funds from donor number 4, so 
no one really wants to be assigned to this donor. Indeed, each staffer will regret 
not being assigned to the donor with whom they have the highest probability 
of success. Suppose we define the amount of this regret for each staffer by their 
maximum probability of success minus the probability of success for their actual 
assignment. What assignment of staffers to donors will minimize the maximum 
regret suffered by any staffer?

30. Water is delivered throughout New York City using eight main waterlines that are 
connected at six pumping stations as shown in Figure 8.43. The numbers on each of 
the arcs indicates the maximum allowable flow of water through each waterline (in 
1000s of gallons per minute). 

Figure 8.43

Main waterlines 
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Because the city’s waterlines are aging, breaks have been occurring more fre-
quently and are related to the increasing demands being placed on the system. 
Civil engineers have estimated the probability of a waterline break occurring as 
follows:

Probability of failure on the line from station i to station j 5 1 2 EXP 12aij 
Fij /1000 2

where Fij is the flow (in 1000s of gallons per minute) on the line from station i to sta-
tion j and the values for the parameters aij are given as follows:

From Station To Station  aij

1 2 0.10
1 3 0.17
2 4 0.19
2 5 0.15
3 4 0.14
3 5 0.16
4 6 0.11
5 6 0.09

  Engineers can use control valves to limit how much water flows through each 
waterline. During peak demand times, a total of 110,000 gallons of water per min-
ute needs to flow through this system. 
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a. Create a spreadsheet model to determine the flow pattern that meets the required 
demand for water in the most reliable way.

b. How much water should flow through each waterline?
c. What is the probability that no waterline will fail while operating in this way?

31. The Wiggly Piggly Grocery Company owns and operates numerous grocery stores 
throughout the state of Florida. It is developing plans to consolidate warehouse 
operations so that there will be 3 different warehouses that supply stores in 10 
different regions of the state. The company plans to sell all its existing warehouses 
and build new, state-of-the-art warehouses. Each warehouse can supply multi-
ple regions; however, all stores in a particular region will be assigned to only 1 
warehouse. The locations of the different regions are summarized in the following 
table.

Location

region X Y

  1 Panama City 1.0 14.0
  2 Tallahassee 6.1 15.0
  3 Jacksonville 13.0 15.0
  4 Ocala 12.0 11.0
  5 Orlando 13.5 9.0
  6 Tampa 11.0 7.5
  7 Ft Pierce 17.0 6.0
  8 Ft Myers 12.5 3.5
  9 West Palm 17.5 4.0
10 Miami 17.0 1.0

a. Create a spreadsheet model to determine approximately where Wiggly Piggly 
should locate its new warehouses and which regions should be assigned to each 
of the new warehouses. Assume the company wants to build its warehouses in 
locations that minimize the distances to each of the regions it serves.

b. What is the optimal solution?
32. An investor wants to determine the safest way to structure a portfolio from several 

investments. Investment A produces an average annual return of 14% with a vari-
ance of 0.025. Investment B produces an average rate of return of 9% with a variance 
of 0.015. Investment C produces an average rate of return of 8% with a variance of 
0.010. Investments A and B have a covariance of 0.00028, and investments A and C 
have a covariance of 20.006. Investments B and C have a covariance of 0.00125.
a. Suppose the investor wants to achieve at least a 12% return. What is the least 

risky way of achieving this goal?
b. Suppose the investor regards risk minimization as being five times more import-

ant than maximizing return. What portfolio would be most appropriate for the 
investor?

33. Betsy Moore wants to invest in the stocks of companies A, B, C, and D, whose 
annual returns for the past 13 years are as follows.

Annual return

Year A B C D

1 8.0% 12.0% 10.9% 11.2%
2 9.2% 8.5% 22.0% 10.8%
3 7.7% 13.0% 19.0% 9.7%
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  4 6.6% 22.6% 37.9% 11.6%
  5 18.5% 7.8% 211.8% 21.6%
  6 7.4% 3.2% 12.9% 24.1%
  7 13.0% 9.8% 27.5% 8.6%
  8 22.0% 13.5% 9.3% 6.8%
  9 14.0% 6.5% 48.7% 11.9%
10 20.5% 23.5% 21.9% 12.0%
11 14.0% 17.5% 19.1% 8.3%
12 19.0% 14.5% 23.4% 6.0%
13 9.0% 18.9% 43.0% 10.2%

a. Suppose Betsy is completely risk averse. What percentage of her portfolio should 
be invested in each stock and what would the expected risk and return be on the 
resulting portfolio?

b. Suppose Betsy is completely insensitive to risk and wants the maximum possible 
return. What percentage of her portfolio should be invested in each stock and 
what would the expected risk and return be on the resulting portfolio?

c. Suppose Betsy has determined her risk aversion value is r 5 0.95. What percent-
age of her portfolio should be invested in each stock and what is the expected 
risk and return on the resulting portfolio?

 34. Sometimes, the historical data on returns and variances may be poor predictors of 
how investments will perform in the future. In this case, the scenario approach to 
portfolio optimization may be used. Using this technique, we identify several dif-
ferent scenarios describing the returns that might occur for each investment during 
the next year and estimate the probability associated with each scenario. A common 
set of investment proportions (or weights) is used to compute the portfolio return 
ri for each scenario. The expected return and variance on the portfolio are then esti-
mated as: 

Expected Portfolio Return 5 EPR 5 a
i

risi

Variance of Portfolio Return 5 VPR 5 a
i
1ri 2 EPR 2 2si 

  where ri is the portfolio return for a given set of investment proportions under sce-
nario i and si is the probability that scenario i will occur. We can use Solver to find 
the set of investment proportions that generate a desired EPR while minimizing the 
VPR. Given the following scenarios, find the investment proportions that generate 
an EPR of 12% while minimizing the VPR. 

returns

Scenario Windsor Flagship Templeman T-Bills Probability

1 0.14 20.09 0.10 0.07 0.10
2 20.11 0.12 0.14 0.06 0.10
3 0.09 0.15 20.11 0.08 0.10
4 0.25 0.18 0.33 0.07 0.30
5 0.18 0.16 0.15 0.06 0.40

35. Barbara Roberts recently received $30,000 as a small inheritance from a distant rela-
tive. She wants to invest the money so as to earn $900 to buy a notebook computer 
next year when she enters graduate school one year from now. (Barbara plans to 
use her inheritance to pay the tuition for her graduate studies.) She wants to create 
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a portfolio using three stocks, whose annual percentage returns are summarized in 
the following table:

Year Amalgamated industries Babbage Computers Consolidated Foods

1 23.3      5.92 22.4
2 24.7 23.8   28.1
3   11.9 27 27.2
4    9.7    6.6 22.3
5    8.6 24.2   20.4
6    9.4   11.2   17.4
7    5.3    3.2 211.8
8 24.9  16.1 26.6
9    8.5  10.8 213.4

10 28.3 28.3 10.9

Barbara wants to diversify her potential holdings by investing at least $500, but no 
more than $20,000, in any one stock. Barbara wants to minimize the total variance 
(which also involves the covariance between the various pairs of stock) of the portfolio. 
a. Formulate and solve a nonlinear programming model to determine how much 

money Barbara should invest in each stock in order to meet her financial goals. 
What is the optimal solution?

b. Will Barbara have enough money to buy a notebook computer next year?
36. World Delivery Service (WDS) specializes in the pick-up and delivery of packages 

at homes and businesses throughout the US and around the world. WDS utilizes 
a fleet of trucks that leave from local depots and make a number of pick-up and 
delivery stops before returning to the depot. Each such stop requires an average of 
three minutes of time, not including travel time between locations. Additionally, 
many of WDS’ customers specify a specific time window within which pickups and 
deliveries may be made. If a WDS truck arrives at a location before the start of its 
time window the truck and driver must simply wait until the start of the specified 
time window to complete the service at that location. If the truck arrives after the 
close of the specified time window the customer often allows for pickup and deliv-
ery anyway, but sometimes WDS must come back the following day. Either way, 
arriving late creates problems for both WDS and its customers and is a practice best 
avoided if at all possible. The file named WDSData.xlsx that accompanies this book 
contains data describing travel times (in minutes) between 29 customer locations 
for which a given WDS driver must make pickups and deliveries. It also lists the 
time windows for each customer within which these pickups and deliveries are to 
be made. The top priority at WDS is to provide service within its customers’ spec-
ified times windows and, secondarily, to minimize the travel time of its trucks as 
fuel consumption is a major expense to the company. Assume the truck leaves its 
depot at 3:00 pm. In what order the WDS truck service these customers? 
a. Create a spreadsheet model for this problem and solver it using Solver’s evolu-

tionary engine.
b. In what order should the WDS truck service these customers? 
c. How many time windows are violated in the solution you identify?
d. What is the total travel time associated with this solution?

37. A mortgage company owns the following 10 mortgages. Investors will purchase 
packages of mortgages worth at least $1 million. What is the maximum number of 
such packages that can be created from this set of mortgages?

47412_ch08_ptg01_371-446.indd   438 17/08/16   1:36 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Questions and Problems 439

Mortgage

1 2 3 4 5 6 7 8 9 10

Amount
(in $1000s)

$900 $860 $780 $525 $240 $185 $165 $164 $135 $125

a. Create a spreadsheet model for this problem and use Solver’s evolutionary algo-
rithm to solve it.

b. What is the optimal solution?
 38. A small printing shop has 10 jobs it must schedule. The processing times and due 

dates for each job are summarized in the following table. 

Job Processing Time (Days) Due Date

1 10 12
2 11 35
3 7 20
4 5 27
5 3 23
6 7 36
7 5 40
8 5 40
9 12 55

10 11 47

a. Suppose the jobs are scheduled in ascending order by processing time. How 
many jobs will be late? By how many totals days will the jobs be late? What is the 
maximum amount by which any job is late? 

b. Suppose the jobs are scheduled in ascending order by due date. How many jobs 
will be late? By how many totals days will the jobs be late? What is the maximum 
amount by which any job is late? 

c. Use Solver’s Evolutionary algorithm to determine the schedule that minimizes 
the number of jobs that are late. What is the solution? (Note that you may want 
to run Solver several times.)

d. Use Solver’s Evolutionary algorithm to determine the schedule that minimizes 
the total number of days by which the jobs are late. What is the solution?

e. Use Solver’s Evolutionary algorithm to determine the schedule that minimizes 
the maximum number of days by which any job is late. What is the solution?

39. The Major Motors Corporation manufactures heavy trucks at a plant in Dublin,-
Virginia. The factory’s stock of spare and custom parts is stored in a huge shelving 
system that is several stories high and runs the length of several football fields. An 
automated “cherry picking” vehicle runs back and forth along a shelving unit and 
is able to simultaneously raise or lower to any height to pick needed stock items 
from the various bins in the shelving unit. Each bin in the shelving unit is of equal 
size and is identified by a specific row and column number. Typically, each run 
the cherry picker makes involves visiting several different bins to retrieve various 
parts. To help minimize operating costs, the company wants to develop a system 
to determine the most efficient way for the cherry picker to visit each required bin 
site before returning to its initial position. As an example, suppose the cherry picker 
needs to retrieve 10 parts stored in the following bin locations.
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Part row Column

1   3 27
2 14 22
3   1 13
4 20   3
5 20 16
6 28 12
7 30 31
8 11 19
9   7   3

10 10 25

  Assume the cherry picker must start and finish at row 0 and column 0. 
a. Use a spreadsheet to compute the straight-line distance between each pair of bin 

locations.
b. Use Solver’s Evolutionary algorithm to determine the shortest tour for the cherry 

picker to follow.
c. What is the best tour you can find?

40. A regional quality inspector for Green Roof Inns has 16 properties she must visit 
next month. The driving time from one property to the next is proportional to the 
straight-line distance between the properties. The X and Y coordinate for each prop-
erty are given in the following table.

Property
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

X 190 179 170 463 153 968 648 702 811 305 512 481 763 858 517 439
Y 158 797 290 394 853 12 64 592 550 538 66 131 289 529 910 460

  Assume the inspector’s home is located at X coordinate 509 and Y coordinate 414.
a. Create a distance matrix that computes the straight line distance between each 

pair of properties (including the inspector’s home). Round these distances to two 
decimal places.

b. Suppose the inspector starts at her home and visits each property in numerical 
order before returning home. How far would she have traveled?

c. Suppose the inspector wants to start from her home and visit each property 
before returning home and wants to do so traveling the least distance possible. 
Which route should she take and how far will she travel?

d. Suppose the inspector wants to visit all 16 properties over a four week period 
visiting exactly 4 properties each week. Each week, she will leave from her home 
on Monday morning and return to her home on Friday evening. Which proper-
ties should she visit each week and in what order should she visit them if she 
wants to minimize the total distance she must travel?

41. Companies are often interested in segmenting their customers to better target spe-
cific product offerings to meet specific customer needs. The file CustomerData.xlsx 
that accompanies this book contains data on 198 customers for an online retailer. 
Specifically, this file lists demographic data for each customer’s income level (X1)  
and number of dependents (X2) as well as buying behavior data, including the 
number of purchases made last year (X3) and the average value of each purchase  
(X4). Suppose you have been asked to cluster each of these customers to one of three 
groups. After your group assignments are made, you can compute the average val-
ues on each of the four variables within each group. These four average values for 
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each group would represent the typical (or average) customer found in each respec-
tive group. Obviously, you want to group similar customers together. To do so, you 
could generalize the straight-line distance measure to four dimensions to calculate 
each customer’s distance to his or her assigned group.
a. Use Solver to make group assignments that minimize the sum of the distance 

from each customer to his or her assigned group. 
b. How would you describe the differences in the three groups or clusters you 

identify?
42. Max Gooding is tired of losing money in his office’s weekly football pool and has 

decided to try to do something about it. Figure 8.44 (and file Football.xlsx that 
accompanies this book) contains a listing of the teams in the Imaginary Football 
League (IFL) along with the outcomes of all the games played in the league last 
season. 

Figure 8.44

Spreadsheet for the 
Imaginary Football 
League (IFL)

For instance, cell F5 indicates the Minnesota Raiders beat the Atlanta Eagles by two points last year, 
whereas cell F6 indicates that Atlanta beat the Los Angeles Pirates by three points.  Max believes it may 
be possible to use the Evolutionary algorithm in Solver to estimate the margin of victory in a match 
up between any two teams. Using last season’s data, Max wants to identify ratings or weights for each 
team such that the estimated margin of victory for any match-up would be:

Estimated Margin
of Victory

5 aHome Team
Rating

b 1 aHome Field
Advantage

b 2 aVisiting Team
Rating

b
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With this information, Max could estimate the margin of victory in a match up 
between any two teams. He wants to do this in a way that minimizes the sum of the 
squared differences between the actual and estimated margins of victory for each of 
the games last year. (Assume each team’s rating should be between 0 and 100 and 
the home field advantage should be between 0 and 20.)
a. Create a Solver model that achieves Max’s objective.
b. If Max used this model to predict the winner in each of last year’s games, how 

many times would he have correctly picked the winning team?
c. Suppose Max wants to maximize the chance of picking the winning teams. 

Re-solve the problem to achieve this objective.
d. If Max used your model from part c to predict the winner in each of last year’s 

games, how many times would he have correctly picked the winning team?

Tour de Europe
The summer before completing his MBA, Noah Franklin finally decided to take the 
trip to Europe that he had always dreamed about. However, given his limited bank 
account, he knows he will have to plan and budget wisely in order to go everywhere 
and see everything he wants to see. With some quick detective work on the Inter-
net, Noah quickly found inexpensive sleeping quarters in each of the 10 cities he is 
interested in visiting. He also discovered there are several low-cost airlines providing 
no-frills transportation between various European cities. Figure 8.45 summarizes the 
possible airline flights between 10 different European cities with flight costs indicated 
on the arcs. 

Noah would really like to visit each of the 10 cities. Because his round trip flight 
from the United States arrives at and, following his vacation, departs from city 1, his 
tour of Europe needs to begin and end in city 

1. Construct a spreadsheet model Noah could use to determine the least costly way to 
visit all 10 European cities exactly once. What is the optimal itinerary for this prob-
lem and how much airfare would Noah have to pay?

CASe 8.1

Figure 8.45
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2. Suppose the solution to the previous problem requires more money for airfare than 
Noah can afford. Construct a spreadsheet model Noah could use to determine the 
least costly way to visit cities 6, 8, and 10, starting and finishing from city 1. What 
is the optimal itinerary for this problem and how much airfare would Noah have 
to pay?

Electing the Next President
“So it’s come down to this,” thought Roger Mellichamp as he looked around at the 
empty Styrofoam coffee cups and papers littering his office. When he accepted the job 
of campaign manager for his long-time friend’s run for the White House, he knew there 
would be long hours, lots of traveling, and constant media pressure. But the thing he 
most wanted to avoid was a close race with a final showdown just before the elec-
tion. Roger knew that making decisions under those circumstances would be agoniz-
ing because the success of the campaign and, in many ways, the future of the country 
would hinge on those very decisions. Unfortunately, that’s just where things stand.

With only two weeks before the U.S. presidential election, Roger’s friend and the 
incumbent president are running neck-and-neck in the polls. So, Roger’s plans for the 
final two weeks of the campaign will be critical, and he wants to make sure he uses 
the candidate’s time and the campaign’s remaining money in the most effective way. 
Although the outcome of the election has been pretty much decided in most states, 
the electoral votes from the states of Florida, Georgia, California, Texas, Illinois, New 
York, Virginia, and Michigan are still up for grabs by either candidate. Roger knows 
they must win as many of these states as possible if his friend is to become the next 
president. 

Several weeks ago, it became evident that the race was going to be close. So, Roger 
hired a statistical consultant to estimate the percentage of votes the campaign will 
receive in each of the states based on the amount of money the campaign spends and 
the number of times the candidate visits each state during the final two weeks before 
the election. The results of the consultant’s analysis provided the following function:

Percentage of votes state k 5 1 2 EXP 12aVk 2 bDk 2
where: 

Vk 5  the number of times the candidate visits state k in the last two weeks of the 
campaign, 

Dk 5  the dollars (in $1,000,000s) the campaign spends on advertising in state k in the 
last two weeks of the campaign

The following table summarizes the consultant’s estimates of the parameters a and b 
for each state, along with the number of electoral votes at stake in each state:

State a b electoral Votes

Florida 0.085 0.31 25
Georgia 0.117 0.27 13
California 0.098 0.21 54
Texas 0.125 0.28 32
Illinois 0.128 0.26 22
New York 0.105 0.22 33
Virginia 0.134 0.24 13
Michigan 0.095 0.38 18

CASe 8.2
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Roger believes the candidate can make 21 campaign stops in the next two weeks, 
and there is $15 million left in the campaign budget available for advertising. He wants 
to spend at least $500,000 in each of these states in the next two weeks. He also wants 
the candidate to make at least 1, but no more than 5, campaign stops in each of these 
states. Within these constraints, Roger wants to allocate these resources to maximize 
the number of electoral votes his candidate can receive. Assume a candidate needs 51% 
of the vote to win in each state.

a. Formulate an NLP model for this problem.
b. Implement your model in a spreadsheet and solve it.
c. How much money should Roger spend in each state? 
d. How many campaign stops should the candidate make in each state? 
e. What is the expected number of electoral votes generated by this solution?

Making Windows at Wella
Wella Corporation is a privately held manufacturer of doors and windows with annual 
sales in excess of $900 million. Some of the company’s products are “standard size” and 
sold through wholesale and retail building material centers. However, much of their 
business involves manufacturing custom windows that can vary in size from 12 inches 
to 84 inches in quarter-inch increments.

The company has 2 plants, located in Iowa and Pennsylvania. Each plant has 5 pro-
duction lines devoted to custom window manufacturing. Each of these production 
lines operates 8 hours a day, 5 days a week and produces 50 windows per hour.

Sash and frame parts for the windows are cut from standard size ‘stock’ pieces of 
lumber 16 feet in length. These stock pieces are purchased from a supplier who takes 
various pieces of lumber of various lengths, cuts out the defects (knot holes, cracks, 
and so on) and finger joins the pieces together to create the 16 foot stock pieces that are 
basically free of defects.

Wella cuts all the sash and frame parts for a particular window and then immedi-
ately passes that set of parts to the next operation in the production process for further 
assembly (i.e., it does not carry inventories of parts of various length). However, the 
parts for any particular window may be cut in any order. 

The demand for custom windows varies such that no two days (or even hours) of 
production are ever the same. Currently, line workers take a 16 foot piece of stock 
and start cutting parts for a window in the same order as they are listed on the bill 
of materials (BOM) until the remaining piece of stock is too short to cut the next 
required part. 

As a simplified example, suppose the first window being produced has a BOM list-
ing two 3-foot parts and two 4-foot parts (in that order). (Note that most of Wella’s win-
dows actually require 8 or 9 parts.) Those parts might be cut from a 16-foot stock piece 
and leave a 2-foot piece of scrap.

Now suppose the next window has a BOM that requires two 3-foot pieces and two 
1-foot pieces (in that order). Because the 3-foot pieces can’t be cut from the 2-foot scrap 
leftover from the first piece of stock, Wella would start cutting a new piece of stock. It 
seems to make more sense to use the 2-foot piece of scrap from the first piece of stock 
to cut the two 1-foot pieces required by the second window. However, reordering the 
pieces for the second window to eliminate the 2-foot piece of scrap could actually lead 
to the creation of a 3-foot piece of scrap later in the production process. (Any pieces 
of ‘scrap’ at the end of one stock piece that cannot be used in the next job are indeed 
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scrapped as moving these scrap pieces into and out of inventory becomes a logistical 
nightmare.)

Being able to ‘look ahead’ to see the downstream impacts of reordering decisions is 
beyond the capability of most humans – especially when this must be repeated over 
and over on an ongoing basis. As a result, Wella wants to develop a system to optimize 
the production on each line on an hour by hour basis.

The file WellaData.xlsx contains data for a half-hour of production on one of Wella’s 
lines. (This line produces windows that require 8 sash/frame parts per window.) 
Assume Wella wants to produce the windows in the order indicated, but the parts 
for each window can be produced in any order. Wella wants to determine an optimal 
part-cutting sequence that would allow the company to minimize the amount of scrap 
(and the number of stock pieces required to fill all the orders).

a. How many possible solutions are there to this problem?
b. Design a spreadsheet model for this problem. How many pieces of stock would 

have to be cut to produce the windows in this half-hour of production if Wella pro-
cesses the windows and parts in the order given (in WellaData.xlsx)? How much 
scrap is generated by this solution?

c. Use Solver to optimize the problem. How many pieces of stock would have to be 
cut to produce the windows in this half-hour of production if Wella processes the 
windows and parts in the order Solver identifies? How much scrap is generated by 
this solution?

d. Assume that Wella pays $4 for each 16-foot piece of stock. If the results identified in 
the previous question are representative of the results that could be obtained on all 
of Wella’s production lines, how much money could Wella save over the course of a 
year?

e. What other suggestions/issues (if any) do you think Wella should consider before 
implementing your solution on their factory floor?

Newspaper Advertising Insert Scheduling
Advertising is the primary source of revenue for newspaper companies. Over the past 
10 to15 years, the newspaper industry has been adjusting to changes in the mix of ser-
vices that produce this revenue. The two main categories of services are run on press 
(ROP) advertising and preprinted insert advertising. ROP advertising is printed in the 
newspaper during the live press run each night, whereas preprinted inserts are pro-
duced (usually at a commercial printing facility) before the nightly production run and 
inserted into or delivered with the newspaper. Preprinted inserts offer several advan-
tages for advertisers. Different sizes and quality of paper stock can be used to make ads 
unique and more colorful than possible on a newspaper printing press. Also, adver-
tisers can tightly control quality for preprinted inserts unlike newspaper quality that 
varies widely. 

Although revenue has been increasing in both categories of advertising, revenue 
from preprinted inserts has been growing at a higher rate than ROP advertising. For 
many newspaper companies, this shift in revenue mix has created scheduling chal-
lenges in the production area. With inserts, advertisers can select the zones to which 
specific sets of advertisements are distributed. A zone is a distinct geographical area 
where all the papers delivered in the area receive the same set of advertising inserts. 
The challenge for newspaper companies is to schedule the production run to process 
the correct combination of inserts for all the different zones and complete the run early 
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enough to get the papers to the circulation department (and readers) on time. For many 
papers, the problem is exacerbated by advertisers’ desires to “micro-zone” or have 
more zones of smaller size, increasing the specificity with which different groups of 
consumers can be targeted. 

Art Carter is the production manager for a medium-sized newspaper company. Each 
night, he and his employees must design a schedule for combining the appropriate 
advertising inserts for 36 different delivery zones into the newspaper. Art’s company 
owns four inserting machines that can each be loaded with the inserts for a particu-
lar zone. Two of the inserting machines operate at a rate of 12,000 papers per hour, 
whereas the other two machines operate at a rate of 11,000 per hour. The equipment 
inserts the loaded set of inserts into newspapers coming off the production press until 
all the papers for a particular zone are completed. 

When the inserts for a particular zone are completed, the inserting machine is 
stopped and reloaded with the inserts for the next zone. This reloading (or changeover) 
process takes different amounts of time depending on how much work is required to 
load the machine with the next zone’s set of inserts. The zones can be processed in any 
order and on any of the four inserting machines. However, all the advertising for a 
particular zone must be processed on the same inserting machine (i.e., the inserts for a 
single zone are not distributed across multiple inserting machines). 

The file NewspaperData.xlsx that accompanies this book contains sample data for 
a typical night’s inserting workload for this company. In particular, this file contains 
the quantity of newspapers being produced for each of the 36 delivery zones and the 
estimated changeover times required to switch from one zone’s set of inserts to another 
zone. Art has asked you to develop a model to design an optimal production schedule 
for the inserting equipment. In particular, he wants to determine which zones should 
be assigned to each of the four machines and the optimal order for processing the jobs 
assigned to each machine. His objective is to minimize the amount of time is takes (start 
to finish) to complete all the newspapers.
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Chapter 9
Regression Analysis

9.0 Introduction
Regression analysis is a modeling technique for analyzing the relationship between a 
continuous (real-valued) dependent variable Y and one or more independent variables 
X1, X2, c,  Xk. The goal in regression analysis is to identify a function that describes, as 
closely as possible, the relationship between these variables so that we can predict what 
value the dependent variable will assume given specific values for the independent 
variables. This chapter shows how to estimate these functions and how to use them to 
make predictions in a business environment.

9.1 An Example
As a simple example of how regression analysis might be used, consider the relation-
ship between sales for a company and the amount of money it spends on advertis-
ing. Few would question that the level of sales for a company will depend on or be 
influenced by its advertising expenditures. Thus, we could view sales as the depen-
dent variable Y and advertising expenditures as the independent variable X1. Although 
some relationship exists between sales and advertising, we might not know the exact 
functional form of this relationship. Indeed, there probably is not an exact functional 
relationship between these variables.

We expect that sales for a company depend to some degree on the amount of 
money the company spends on advertising. But many other factors might also affect 
a company’s sales, such as general economic conditions, the level of competition in 
the marketplace, product quality, and so on. Nevertheless, we might be interested in 
studying the relationship between the dependent variable sales (Y) and the independent 
variable advertising 1X1 2  and predicting the average level of sales expected for a given 
level of advertising. Regression analysis provides the tool for making such predictions.

In order to identify a function that describes the relationship between advertising 
and sales for a company, we first need to collect sample data to analyze. Suppose that 
we obtain the data shown in Figure 9.1 (and in the file Fig9-1.xlsm that accompanies 
this book) for a company on the level of sales observed for various levels of advertising 
expenditures in 10 different test markets around the country. We will assume that 
the different test markets are similar in terms of size and other demographic and 
economic characteristics. The main difference in each market is the level of advertising 
expenditure.

The data from Figure 9.1 are displayed graphically in Figure 9.2. This graph suggests 
a strong linear relationship between advertising expenditures and sales. Note that 
as advertising expenditures increase, sales increase proportionately. However, the 
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448 Chapter 9 Regression Analysis

relationship between advertising and sales is not perfect. For example, advertising 
expenditures of $70,000 were used in three different test markets and resulted in 
three different levels of sales. Thus, the level of sales that occurs for a given level of 
advertising is subject to random fluctuation.

The random fluctuation, or scattering, of the points in Figure 9.2 suggests that some 
of the variation in sales is not accounted for by advertising expenditures. Because of 
the scattering of points, this type of graph is called a scatter diagram or scatter plot. 

FIGURE 9.1

Sample data 
for advertising 
expenditures and 
observed sales

FIGURE 9.2

Scatter diagram 
for sales and 
advertising data
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So although there is not a perfect functional relationship between sales and advertising 
(where each level of advertising yields one unique level of sales), there does seem to be 
a statistical relationship between these variables (where each level of sales is associated 
with a range or distribution of possible sales values).

C r e a t i n g  a  S c a t t e r  P l o t
To create a scatter plot like the one shown in Figure 9.2, follow these steps:

1. Select cells B4 through C13 shown in Figure 9.1.
2. Click the Insert tab.
3. Click Scatter on the Charts menu.
4. Click Scatter with only Markers.

Excel’s Chart Tool command then appears at the top of the screen, allowing you to 
make several selections concerning the type of chart you want and how it should 
be labeled and formatted. After Excel creates a basic chart, you can customize it in 
many ways. Double-click a chart element to display a dialog box with options for 
modifying the appearance of the element.

9.2 Regression Models
We will formalize the somewhat imprecise nature of a statistical relationship by adding 
an error term to what is otherwise a functional relationship. That is, in regression 
analysis, we consider models of the form:

Y 5 f 1X1, X2, c, Xk 2 1 e 9.1

where e represents a random disturbance, or error, term. Equation 9.1 is a regression 
model. The number of independent variables in a regression model differs from one 
application to another. Similarly, the form of f (.) varies from simple linear functions to 
more complex polynomial and nonlinear forms. In any case, the model in equation 9.1 
conveys the two essential elements of a statistical relationship:

1. A tendency for the dependent variable Y to vary with the independent variable(s) in 
a systematic way, as expressed by f 1X1, X2, c, Xk 2  in equation 9.1.

2. An element of unsystematic or random variation in the dependent variable, as 
expressed by e in equation 9.1.

The regression model in equation 9.1 indicates that for any values assumed by the 
independent variables X1, c, Xk there is a probability distribution that describes the 
possible values that can be assumed by the dependent variable Y. This is portrayed 
graphically in Figure 9.3 for the case of a single independent variable. The curve drawn 
in Figure 9.3 represents the regression line (or regression function). It denotes the 
systematic variation between the dependent and independent variables (represented by 
f 1X1, X2, c, Xk 2  in equation 9.1). The probability distributions in Figure 9.3 denote the 
unsystematic variation in the dependent variable Y at different levels of the independent 
variable. This represents random variation in the dependent variable (represented by e
in equation 9.1) that cannot be accounted for by the independent variable.

Notice that the regression function in Figure 9.3 passes through the mean, or average, 
value for each probability distribution. Therefore, the regression function indicates 
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what value, on average, the dependent variable is expected to assume at various levels 
of the independent variable. If we want to predict what value the dependent variable Y 
would assume at some level of the independent variable, the best estimate we could 
make is given by the regression function. That is, our best estimate of the value that Y 
will assume at a given level of the independent variable X1 is the mean (or average) of 
the distribution of values for Y at that level of X1.

The actual value assumed by the dependent variable is likely to be somewhat 
different from our estimate because there is some random, unsystematic variation in 
the dependent variable that cannot be accounted for by our regression function. If we 
could repeatedly sample and observe actual values of Y at a given level of X1, sometimes 
the actual value of Y would be higher than our estimated (mean) value and sometimes 
it would be lower. So, the difference between the actual value of Y and our predicted 
value of Y would, on average, tend toward 0. For this reason, we can assume that the 
error term e in equation 9.1 has an average, or expected, value of 0 if the probability 
distributions for the dependent variable Y at the various levels of the independent 
variable are normally distributed (bell-shaped) as shown in Figure 9.3.

9.3 Simple Linear Regression Analysis
As mentioned earlier, the function f (.) in equation 9.1 can assume many forms. However, 
the scatter plot in Figure 9.2 suggests that a strong linear relationship exists between 
the independent variable in our example (advertising expenditures) and the dependent 
variable (sales). That is, we could draw a straight line through the data in Figure 9.2 
that would fit the data fairly well. So, the formula of a straight line might account for 

Y

X

Regression
curve

Probability distributions for
Y at different levels of X

FIGURE 9.3 

Diagram of the 
distribution of Y 
values at various 
levels of X
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the systematic variation between advertising and sales. Therefore, the following simple 
linear regression model might be an appropriate choice for describing the relationship 
between advertising and sales:

Yi 5 b0 1 b1X1i
1 ei 9.2

In equation 9.2, Yi denotes the actual sales value for the i 
th observation, X1i denotes 

the advertising expenditures associated with Yi, and ei is an error term indicating that 
when X1i

 dollars are spent on advertising, sales might not always equal b0 1 b1X1i
.

The parameter b0 represents a constant value (sometimes referred to as the Y-intercept 
because it represents the point where the line goes through the Y-axis) and b1

represents the slope of the line (i.e., the amount by which the line rises or falls per 
unit increase in X1). Assuming that a straight line accounts for the systematic variation 
between Y and X1, the error terms ei represent the amounts by which the actual levels 
of sales are scattered around the regression line. Again, if the errors are scattered 
randomly around the regression line, they should average out to 0 or have an expected 
value of 0.

The model in equation 9.2 is a simple model because it contains only one independent 
variable. It is linear because none of the parameters (b0 and b1) appear as an exponent 
in the model or are multiplied or divided by one another.

Conceptually, it is important to understand that we are assuming that a large 
population of Y values occurs at each level of X1. The parameters b0 and b1 represent, 
respectively, the intercept and slope of the true regression line relating these  populations. 
For this reason, b0 and b1 are sometimes referred to as population parameters. We 
usually never know the exact numeric values for the population parameters in a given 
regression problem (we know that these values exist, but we don’t know what they 
are). In order to determine the numeric values of the population parameters, we would 
have to look at the entire population of Y at each level of X1—usually an impossible 
task. However, by taking a sample of Y values at selected levels of X1 we can estimate 
the values of the population parameters. We will identify the estimated values of b0

and b1 as b0 and b1, respectively. The remaining problem is to determine the best values 
of b0 and b1 from our sample data.

9.4 Defining “Best Fit”
An infinite number of values could be assigned to b0 and b1. So, searching for the exact 
values for b0 and b1 to produce the line that best fits our sample data might seem like 
searching for a needle in a haystack—and it is certainly not something we want to do 
manually. To have the computer estimate the values for b0 and b1 that produce the line 
that best fits our data, we must give it some guidance and define what we mean by the 
“best fit.”

We will use the symbol Ŷi to denote our estimated, or fitted, value of Yi, which is 
defined as:

 Ŷi 5 b0 1 b1X1i
 9.3

We want to the find values for b0 and b1 that make all the estimated sales values 1 Ŷi 2
as close as possible to the corresponding actual sales values 1Yi 2 . For example, the data 
shown earlier in Figure 9.1 indicate that we spent $30,000 on advertising 1X11

5 30 2  and 
observed sales of $184,400 1Y1 5 184.4 2 . So in equation 9.3, if we let X1i

5 30, we want Ŷi 
to assume a value that is as close as possible to 184.4. Similarly, in the three instances in 
Figure 9.1 where $70,000 was spent on advertising 1X16

5 X17
5 X18

5 70 2 , we observed  
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sales of $450,200, $423,600, and $410,200 1Y6 5 450.2, Y7 5 423.6, Y8 5 410.2 2 . So in 
equation 9.3, if we let X1i

5 70, we want Ŷi to assume a value that is as close as possible 
to 450.2, 423.6, and 410.2.

If we could find values for b0 and b1 so that all the estimated sales values were exactly 
the same as all the actual sales values (Ŷi 5 Yi for all observations i), we would have the 
equation of the straight line that passes through each data point—in other words, the 
line would fit our data perfectly. This is impossible for the data in Figure 9.2 because 
a straight line could not be drawn to pass through each data point in the graph. In 
most regression problems, it is impossible to find a function that fits the data perfectly 
because most data sets contain some amount of unsystematic variation.

Although we are unlikely to find values for b0 and b1 that will allow us to fit our data 
perfectly, we will try to find values that make the differences between the estimated 
values for the dependent variable and the corresponding actual values for the 
dependent variable 1Yi 2 Ŷi 2  as small as possible. We refer to the difference Yi 2 Ŷi as 
the estimation error for observation i because it measures how far away the estimated 
value Ŷi is from the actual value Yi. The estimation errors in a regression problem are 
also referred to as residuals.

Although different criteria can be used to determine the best values for b0 and b1, 
the most widely used method determines the values that minimize the sum of squared 
estimation errors—or error sum of squares (ESS) for short. That is, we will attempt to 
find values for b0 and b1 that minimize:

 ESS 5 an

i51
1Yi 2 Ŷi 2 2 5 an

i51
1Yi 2 1b0 1 b1X1i

2 2 2 9.4

Several observations should be made concerning ESS. Because each estimation error 
is squared, the value of ESS will always be nonnegative and, therefore, the smallest 
value ESS can assume is 0. The only way for ESS to equal 0 is for all the individual 
estimation errors to be 0 (Yi 2 Ŷi 5 0 for all observations), in which case the estimated 
regression line would fit our data perfectly. Thus, minimizing ESS seems to be a good 
objective to use in searching for the best values of b0 and b1. Because regression analysis 
finds the values of the parameter estimates that minimize the sum of squared estimation 
errors, it is sometimes referred to as the method of least squares.

9.5 Solving the Problem Using Solver
We can calculate the optimal parameter estimates for a linear regression model in a 
number of ways. As in earlier chapters, we can use Solver to find the values for b0 and 
b1 that minimize the ESS quantity in equation 9.4.

The problem of finding the optimal values for b0 and b1 in equation 9.4 is an 
unconstrained nonlinear optimization problem. Consider the spreadsheet in Figure 9.4 
(and the file Fig9-4.xlsm that accompanies this book).

In Figure 9.4, cells C15 and C16 represent the values for b0 and b1, respectively. These 
cells are labeled Intercept and Slope because b0 represents the intercept in equation 9.3 
and b1 represents the slope. Values of 70 and 5 were entered for these cells as rough 
guesses of their optimal values.

To use Solver to calculate the optimal values of b0 and b1, we need to implement a 
formula in the spreadsheet that corresponds to the ESS calculation in equation 9.4. This 
formula represents the objective function to be minimized. To calculate the ESS, we first 
need to calculate the sales values estimated by the regression function in equation 9.3  
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for each observation in our sample. These estimated sales values 1 Ŷi 2  were created in 
column D as:

 Formula for cell D4:    5$C$15 1 $C$16*B4
(Copy to D5 through D13.)

The estimation errors 1Yi 2 Ŷi 2  were calculated in column E as:

 Formula for cell E4:    5C4 2 D4
(Copy to E5 through E13.)

The squared estimation errors 1 1Yi 2 Ŷi 2 2 2  were calculated in column F as:

 Formula for cell F4:    5E4^2
(Copy to F5 through F13.)

Finally, the sum of the squared estimation errors (ESS) was calculated in cell F15 as:

Formula for cell F15:   5SUM 1F4:F13 2
Note that the formula in cell F15 corresponds exactly to equation 9.4.

The graph in Figure 9.4 plots the line connecting the estimated sales values against 
the actual sales values. The intercept and slope of this line are determined by the values 

FIGURE 9.4 Using Solver to solve the regression problem

Key Cell Formulas

Cell Formula Copied to

D4 5$C$151$C$16*B4 D5:D13
E4 5C42D4 E5:E13
F4 5E4^2 F5:F13
F15 5SUM(F4:F13) --

Xi

Yi

Ŷi

Yi2Ŷi

(Yi2Ŷi )2

S(Yi2Ŷi)2

b1

b0
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454 Chapter 9 Regression Analysis

in C15 and C16. Although this line seems to fit our data fairly well, we do not know if 
this is the line that minimizes the ESS value. However, we can use the Solver settings 
and options shown in Figure 9.5 to determine the values for C15 and C16 that minimize 
the ESS value in F15. 

Figure 9.6 shows the optimal solution to this problem. In this spreadsheet, the 
intercept and slope of the line that best fits our data are b0 5 36.34235 and b1 5 5.550294,
respectively. The ESS value of 3,336.244 associated with these optimal parameter 
estimates is better (or smaller) than the ESS value for the parameter estimates shown in 
Figure 9.4. No other values for b0 and b1 would result in an ESS value smaller than the 
one shown in Figure 9.6. Thus, the equation of the straight line that best fits our data 
according to the least squares criterion is represented by:

 Ŷi 5 36.34235 1 5.550294X1i
 9.5

9.6 Solving the Problem Using  
the Regression Tool
In addition to Solver, Excel provides another tool for solving regression problems that 
is easier to use and provides more information about a regression problem. We will 
demonstrate the use of this regression tool by referring back to the original data for the 

FIGURE 9.5 

Solver settings 
and options for the 
regression problem

Solver Settings:

Objective: F15 (Min)
Variable cells: C15:C16
Constraints: 
 None

Solver Options:

 Standard GRG Nonlinear Engine

FIGURE 9.6 Optimal solution to the regression problem
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Solving the Problem Using the Regression Tool  455

current problem in Figure 9.1 (repeated in the file Fig9-7.xlsm that accompanies this 
book). Before you can use the regression tool in Excel, you need to make sure that the 
Analysis ToolPak add-in is available. You can do this by completing the following steps:

1. Click File, Options, Add-Ins.
2. Locate and activate the Analysis ToolPak add-in. (If the Analysis ToolPak is not 

listed among your available add-ins, you will need to install it from your Microsoft 
Office CD.) 

After ensuring that the Analysis ToolPak is available, you can access the regression 
tool by completing the following steps:

1. Click the Data tab.
2. Click Data Analysis in the Analysis menu.
3. Select Regression and click OK.

After you choose the Regression command, the Regression dialog box appears, as 
shown in Figure 9.7. This dialog box presents many options and selections; at this point, 
we will focus on only three options: Input Y Range, Input X Range, and Output Range. 
Input Y Range corresponds to the range in the spreadsheet containing the sample 
observations for the dependent variable (C4 through C13 for the example in Figure 9.1). 
Input X Range corresponds to the range in the spreadsheet containing the sample 
observations for the independent variable (B4 through B13 for the current example). 
You also need to specify the output range where you want the regression results to be 
reported. In Figure 9.7, you will see that the New Worksheet Ply option has been selected 
to indicate the regression results should be placed on a new sheet named “Results.” With 
the dialog box selections complete, you can click the OK button and Excel will calculate 
the least squares values for b0 and b1 (along with other summary statistics).

Figure 9.8 shows the Results sheet for our example. For now, we will focus on only a 
few values in Figure 9.8. Note that the value labeled “Intercept” in cell B17 represents 
the optimal value for b0 1b0 5 36.34235 2 . The value representing the coefficient for “X 
Variable 1” in cell B18 represents the optimal value for b1 1b1 5 5.550294 2 . Thus, the 
estimated regression function is represented by:

 Ŷi 5 b0 1 b1X1i
5 36.34235 1 5.550294X1i

 9.6

Equation 9.6 is essentially the same result we obtained earlier using Solver (refer to 
equation 9.5). Thus, we can calculate the parameter estimates for a regression function 

FIGURE 9.7

Regression dialog 
box
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456 Chapter 9 Regression Analysis

using either Solver or the regression tool shown in Figure 9.7. The advantage of the 
regression tool is that it does not require us to set up any special formulas or cells in the 
spreadsheet, and it produces additional statistical results about the problem under study.

9.7 Evaluating the Fit
Our goal in the example problem is to identify the equation of a straight line that fits 
our data well. Having calculated the estimated regression line (using either Solver or 
the regression tool), we might be interested in determining how well the line fits our 
data. Using equation 9.6, we can compute the estimated or expected level of sales 1 Ŷi 2
for each observation in our sample. The Ŷi values could be calculated in column D of 
Figure 9.9 as follows:

Formula for cell D4:    536.34235 1 5.550294*B4
(Copy to D5 through D13.)

However, we can also use the TREND( ) function in Excel to compute the Ŷi values in 
column D as follows:

 Alternate formula for cell D4: 5TREND 1$C$4:$C$13,$B$4:$B$13,B4 2
(Copy to D5 through D13.)

This TREND( ) function computes the least squares linear regression line using 
a Y-range of C4 through C13 and an X-range of B4 through B13. It then uses this 
regression function to estimate the value of Y using the value of X given in cell B4. 
Thus, using the TREND( ) function, we don’t have to worry about typing the wrong 
values for the estimated intercept or slope. Notice that the resulting estimated sales 
values shown in column D in Figure 9.9 match the predicted Y values shown toward 
the bottom on column B in Figure 9.8.

FIGURE 9.8

Results for 
the regression 
calculations
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Evaluating the Fit 457

A  N o t e  o n  t h e  T R E N D (  )  F u n c t i o n
The TREND( ) function can be used to calculate the estimated values for linear 
regression models. The format of the TREND( ) function is as follows:

TREND(Y-range, X-range, X-value for prediction)

where Y-range is the range in the spreadsheet containing the dependent Y vari-
able, X-range is the range in the spreadsheet containing the independent X vari-
able(s), and X-value for prediction is a cell (or cells) containing the values for 
the independent X variable(s) for which we want an estimated value of Y. The 
TREND( ) function has an advantage over the regression tool in that it is dynam-
ically updated whenever any inputs to the function change. However, it does not 
provide the statistical information provided by the regression tool. It is best to 
use these two different approaches to doing regression in conjunction with one 
another. 

Figure 9.10 shows a graph of the estimated regression function along with the actual 
sales data. This function represents the expected amount of sales that would occur for 
each value of the independent variable (i.e., each value in column D of Figure 9.9 falls 
on this line). To insert this estimated trend line on the existing scatter plot:

1. Right-click on any of the data points in the scatter plot to select the series of data.
2. Select Add Trendline.
3. Click Linear.

Key Cell Formulas

Cell Formula Copied to

D4 5TREND($C$4:$C$13,$B$4:$B$13,B4) D5:D13

FIGURE 9.9

Estimated sales 
values at each level 
of advertising

47412_ch09_ptg01_447-498.indd   457 08/11/16   11:10 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



458 Chapter 9 Regression Analysis

4. Select “Display equation on chart” and “Display R-squared value on chart.”
5. Click Close.

From this graph, we see that the regression function seems to fit the data reasonably 
well in this example. In particular, it seems that the actual sales values fluctuate around 
this line in a fairly unsystematic, or random, pattern. Thus, it appears that we have 
achieved our goal of identifying a function that accounts for most, if not all, of the 
systematic variation between the dependent and independent variables.

9.8 The R2 Statistic
In Figure 9.8, the value labeled “R Square” in cell B5 (or “R2” in Figure 9.10) provides 
a goodness-of-fit measure. This value represents the R2 statistic (also referred to as the 
coefficient of determination). This statistic ranges in value from 0 to 1 10 # R2 # 1 2
and indicates the proportion of the total variation in the dependent variable Y around 
its mean (average) that is accounted for by the independent variable(s) in the estimated 
regression function.

The total variation in the dependent variable Y around its mean is described by a 
measure known as the total sum of squares (TSS), which is defined as:

TSS 5 an

i51
1Yi 2 Y 2 2 9.7

The TSS equals the sum of the squared differences between each observation Yi in the 
sample and the average value of Y, denoted in equation 9.7 by Y. (Note that the sample 
variance of Y is S2

Y 5 TSS/ 1n 2 1 2 .) The difference between each observed value of Yi

and the average value Y can be decomposed into two parts as:

Yi 2 Yi 5 1Yi 2 Ŷi 2 1 1Ŷi 2 Y 2  9.8

FIGURE 9.10

Graph of the 
regression line 
through the actual 
sales data
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The R2 Statistic 459

Figure 9.11 illustrates this decomposition for a hypothetical data point. The value 
Yi 2 Ŷi in equation 9.8 represents the estimation error, or the amount of the total 
deviation between Yi and Y that is not accounted for by the regression function. The 
value Ŷi 2 Y in equation 9.8 represents the amount of the total deviation in Yi from Y
that is accounted for by the regression function.

The decomposition of the individual deviation in equation 9.8 also applies to the TSS 
in equation 9.7. That is, the TSS can be decomposed into the following two parts:

an

i51
1Yi 2 Y 2 2 5 an

i51
1Yi 2 Ŷi 2 2 1 an

i51
1 Ŷi 2 Y 2 2 9.9

TSS 5 ESS 1 RSS

ESS is the quantity that is minimized in least squares regression. ESS represents the 
amount of variation in Y around its mean that the regression function cannot account 
for, or the amount of variation in the dependent variable that is unexplained by the 
regression function. Therefore, the regression sum of squares (RSS) represents the 
amount of variation in Y around its mean that the regression function can account for, 
or the amount of variation in the dependent variable that is explained by the regression 
function. In Figure 9.8, cells C12, C13, and C14 contain the values for RSS, ESS, and TSS, 
respectively.

Now consider the following definitions of the R2 statistic:

 R2 5
RSS
TSS

5 1 2
ESS
TSS

 9.10

From the previous definition of TSS in equation 9.9, we can see that if ESS 5 0 (which 
can occur only if the regression function fits the data perfectly), then TSS 5 RSS and, 

FIGURE 9.11

Decomposition of 
the total deviation 
into error and 
regression 
components

Y

*

Yi

Yi 2Y

Ŷi 2Y 

X

Y

Ŷi 

Ŷ 5 b0 1 b1X

Yi 2Ŷi
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460 Chapter 9 Regression Analysis

therefore, R2 5 1. On the other hand, if RSS 5 0 (meaning the regression function was 
unable to explain any of the variation in the behavior of the dependent variable Y or, 
equivalently, Ŷi 5 Y for all i), then TSS 5 ESS and R2 5 0. So, the closer the R2 statistic 
is to the value 1, the better the estimated regression function fits the data.

From cell B5 in Figure 9.8, we observe that the value of the R2 statistic is 
approximately 0.969. This indicates that approximately 96.9% of the total variation in 
our dependent variable around its mean has been accounted for by the independent 
variable in our estimated regression function. Because this value is fairly close to the 
maximum possible R2 value (1), this statistic indicates that the regression function we 
have estimated fits our data well. This is confirmed by the graph in Figure 9.10.

The multiple R statistic shown in cell B4 of the regression output in Figure 9.8 
represents the strength of the linear relationship between actual and estimated values 
for the dependent variable. As with the R2 statistic, the multiple R statistic varies 
between 0 and 1 with values near 1 indicating a good fit. When a regression model 
includes only one independent variable, the multiple R statistic is equivalent to the 
square root of the R2 statistic. We’ll focus on the R2 statistic because its interpretation is 
more apparent than that of the multiple R statistic.

9.9 Making Predictions
Using the estimated regression in equation 9.6, we can make predictions about the level 
of sales expected for different levels of advertising expenditures. For example, suppose 
the company wants to estimate the level of sales that would occur if $65,000 were spent 
on advertising in a given market. Assuming the market in question is similar to those 
used in estimating the regression function, the expected sales level is estimated as:

Estimated Sales 5 b0 1 b1 3 65 5 36.342 1 5.550 3 65 5 397.092
(in $1,000s)

So, if the company spends $65,000 on advertising (in a market similar to those used 
to estimate the regression function), we would expect (on average) to observe sales of 
approximately $397,092. The actual level of sales is likely to differ somewhat from this 
value due to other random factors influencing sales.

9.9.1 ThE STANDARD ERRoR
A measure of the accuracy of the prediction obtained from a regression model is given by the 
standard deviation of the estimation errors—also known as the standard error, Se. If we let n 
denote the number of observations in the data set, and k denote the number of independent 
variables in the regression model, the formula for the standard error is represented by:

 Se 5 ã
an

i51
1Yi 2 Ŷi 2 2

n 2 k 2 1
 9.11

The standard error measures the amount of scatter, or variation, in the actual data 
around the fitted regression function. Cell B7 in Figure 9.8 indicates that the standard 
error for our example problem is Se 5 20.421.

The standard error is useful in evaluating the level of uncertainty in predictions we 
make with a regression model. As a very rough rule-of-thumb, there is approximately a 
68% chance of the actual level of sales falling within 61 standard error of the predicted 
value Ŷi. Alternatively, the chance of the actual level of sales falling within 62 standard 
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Making Predictions 461

errors of the predicted value Ŷi is approximately 95%. In our example, if the company 
spends $65,000 on advertising, we could be roughly 95% confident that the actual level of 
sales observed would fall somewhere in the range from $356,250 to $437,934 1 Ŷi 6 2Se 2 .

9.9.2 PREDiCTioN iNTERvAlS FoR NEw vAluES oF Y
To calculate a more accurate confidence interval for a prediction, or prediction inter-
val, of a new value of Y when X1 5 X1h

, we first calculate the estimated value Ŷh as:

 Ŷh 5 b0 1 b1X1h
 9.12

A 11 2 a 2% prediction interval for a new value of Y when X1 5 X1h
 is represented by:

 Ŷh 6 t112a/2; n222Sp 9.13

where t112a/2; n222 represents the 1 2 a/2 percentile of a t-distribution with n 2 2
degrees of freedom, and Sp represents the standard prediction error defined by:

 Sp 5 Se

ã
1 1

1
n
1

1X1h
2 X 2 2

an

i51
1X1i

2 X 2 2

 9.14

The rule of thumb presented earlier is a generalization of equation 9.13. Notice that 
Sp is always larger than Se because the term under the square root symbol is always 
greater than 1. Also notice that the magnitude of the difference between Sp and Se

increases as the difference between X1h
 and X increases. Thus, the prediction intervals 

generated by the rule of thumb tend to underestimate the true amount of uncertainty 
involved in making predictions. This is illustrated in Figure 9.12.
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FIGURE 9.12

Comparison 
of prediction 
intervals obtained 
using the rule-
of-thumb and the 
more accurate 
statistical 
calculation
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462 Chapter 9 Regression Analysis

As shown in Figure 9.12, for this example problem, there is not a lot of difference 
between the prediction intervals created using the rule of thumb and the more accurate 
prediction interval given in equation 9.13. In a situation requiring a precise prediction 
interval, the various quantities needed to construct the prediction interval in equation 
9.13 can be computed easily in Excel. Figure 9.13 provides an example of a 95% 
prediction interval for a new value of sales when $65,000 is spent on advertising.

To create this prediction interval, we first use the TREND( ) function to calculate the 
es timated sales level 1 Ŷh 2  when advertising equals $65,000 1X1h

5 65 2 . The value 65 is 
entered in cell B17 to represent X1h

 and the estimated sales level 1 Ŷh 2  is calculated in  
cell D17 as:

 Formula for cell D17: 5TREND 1$C$4:$C$13,$B$4:$B$13,B17 2
The expected level of sales when $65,000 is spent on advertising is approximately 

$397,100. The standard error 1Se 2  shown in cell B19 is extracted from the Results sheet 
shown in Figure 9.8 as:

Formula for cell B19:    5Results!B7

Key Cell Formulas

Cell Formula Copied to

D17 5TREND($C$4:$C$13,$B$4:$B$13,B17) --
B19 5Results!B7 --
B20 5B19*SQRT(111/101(B172AVERAGE(B4:B13))^2/(10*VARP(B4:B13))) --
B21 5TINV(120.95,8) --
E17 5D172B21*B20 --
F17 5D171B21*B20 --

FIGURE 9.13

Example of 
calculating a 
prediction interval
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The standard prediction error 1Sp 2  is calculated in cell B20 as:

Formula for cell B20:  5B19*SQRT 11 1 1/10 1
1B17 2 AVERAGE 1B4:B13 2 2^2/ 110*VARP 1B4:B13 2 2 2

The value 10 appearing in the preceding formula corresponds to the sample size n in 
equation 9.14. The appropriate t-value for a 95% confidence (or prediction) interval is 
calculated in cell B21 as:

Formula for cell B21:  5TINV 1120.95,8 2
The first argument in the preceding formula corresponds to 1 minus the desired 

confidence level (or a 5 0.05). The second argument corresponds to n 2 2 110 2 2 5 8 2 . 
Cells E17 and F17 calculate the lower and upper limits of the prediction interval as:

Formula for cell E17:  5D17 2 B21*B20
Formula for cell F17:  5D17 1 B21*B20

The results indicate that when $65,000 is spent on advertising, we expect to observe 
sales of approximately $397,100, but realize that the actual sales level is likely to deviate 
somewhat from this value. However, we can be 95% confident that the actual sales 
value observed will fall somewhere in the range from $347,556 to $446,666. (Notice that 
this prediction interval is somewhat wider than the range from $356,250 to $437,934 
generated earlier using the rule-of-thumb.)

9.9.3 CoNFiDENCE iNTERvAlS FoR MEAN vAluES oF Y
At times, you might want to construct a confidence interval for the average, or 
mean, value of Y when X1 5 X1h

. This involves a slightly different procedure from 
constructing a prediction interval for a new individual value of Y when X1 5 X1h

.  
A 11 2 a 2% confidence interval for the average value of Y when X1 5 X1h

 is represented by:

 Ŷh 6 t112a/2; n222Sa 9.15

where Ŷh is defined by equation 9.12, t112a/2; n222 represents the 1 2 a/2 percentile of a 
t-distribution with n 2 2 degrees of freedom, and Sa is represented by:

 Sa 5 Se

ã

1
n
1

1X1h
2 X 2 2

an

i51
1X1i

2 X 2 2

 9.16

Comparing the definition of Sa in equation 9.16 with that of Sp in equation 9.14 
reveals that Sa will always be smaller than Sp. Therefore, the confidence interval for the 
average value of Y when X1 5 X1h

 will be tighter (or cover a smaller range) than the 
prediction interval for a new value of Y when X1 5 X1h

. This type of confidence interval 
can be implemented in a similar way to that described earlier for prediction intervals.

9.9.4 ExTRAPolATioN
Predictions made using an estimated regression function might have little or no 
validity for values of the independent variable that are substantially different 
from those represented in the sample. For example, the advertising expenditures 
represented earlier in the sample in Figure 9.1 range from $30,000 to $90,000. Thus, we 
 cannot assume that our model will give accurate estimates of sales levels at advertising 
expenditures significantly above or below this range of values, because the relationship 
between sales and advertising might be quite different outside this range.
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464 Chapter 9 Regression Analysis

9.10 Statistical Tests for Population 
Parameters
Recall that the parameter b1 shown earlier in equation 9.2 represents the slope of the true 
regression line (or the amount by which the dependent variable Y is expected to change 
given a unit change in X1). If no linear relationship exists between the dependent and 
independent variables, the true value of b1 for the model in equation 9.2 should be 0.  
As mentioned earlier, we cannot calculate or observe the true value of b1 but instead 
must estimate its value using the sample statistic b1. However, because the value of b1

is based on a sample rather than on the entire population of possible  values, its value 
is probably not exactly equal to the true (but unknown) value of b1. Thus, we might 
want to determine how different the true value of b1 is from its estimated value b1.
The regression results in Figure 9.8 provide a variety of information addressing this 
issue.

Cell B18 in Figure 9.8, shown earlier, indicates that the estimated value of b1 is 
b1 5 5.550. Cells F18 and G18 give the lower and upper limits of a 95% confidence 
interval for the true value of b1. That is, we can be 95% confident that 4.74 # b1 # 6.35.
This indicates that for every $1,000 increase in advertising, we would expect to see an 
increase in sales of approximately $4,740 to $6,350. Notice that this confidence interval 
does not include the value 0. Thus, we can be at least 95% confident that a linear 
relationship exists between advertising and sales 1b1 2 0 2 . (If we want an interval 
other than a 95% confidence interval, we can use the Confidence Level option in the 
Regression dialog box, shown in Figure 9.7, to specify a different interval.)

The t-statistic and p-value listed in cells D18 and E18 in Figure 9.8 provide another 
way of testing whether b1 5 0. According to statistical theory, if b1 5 0, then the ratio 
of b1 to its standard error should follow a t-distribution with n 2 2 degrees of freedom. 
Thus, the t-statistic for testing if b1 5 0 in cell D18 is:

t-statistic in cell D18 5
b1

standard error of b1
5

5.550
0.35022

5 15.848

The p-value in cell E18 indicates the probability of obtaining an outcome that is more 
extreme than the observed test statistic value if b1 5 0. In this case, the p-value is 0, 
indicating that there is virtually no chance that we will obtain an outcome as large as 
the observed value for b1 if the true value of b1 is 0. Therefore, we conclude that the 
true value of b1 is not equal to 0. This is the same conclusion implied earlier by the 
confidence interval for b1.

The t-statistic, p-value, and confidence interval for the intercept b0 are listed in Figure 
9.8 in row 17, and would be interpreted in the same way as demonstrated for b1. Notice 
that the confidence interval for b0 straddles the value 0, so we cannot be certain that the 
intercept is significantly different from 0. The p-value for b0 indicates that we have a 
13.7% chance of obtaining an outcome more extreme than the observed value of b0 if the 
true value of b0 is 0. Both of these results indicate a fair chance that b0 5 0.

9.10.1 ANAlYSiS oF vARiANCE
The analysis of variance (ANOVA) results, shown in Figure 9.8, provide another way 
of testing whether or not b1 5 0. The values in the MS column in the ANOVA table rep-
resent values known as the mean squared regression (MSR) and mean squared error 
(MSE), respectively. These values are computed by dividing the RSS and ESS values in 
C12 and C13 by the corresponding degrees of freedom values in cells B12 and B13.
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If b1 5 0, then the ratio of MSR to MSE follows an F-distribution. The statistic labeled 
“F” in cell E12 is:

F-statistic in cell E12 5
MSR
MSE

5
104,739.6

417.03
5 251.156

The value in F12 labeled “Significance F” is similar to the p-values described earlier, 
and indicates the probability of obtaining a value in excess of the observed value for 
the F-statistic if b1 5 0. In this case, the significance of F is 0, indicating that there is 
virtually no chance that we would have obtained the observed value for b1 if the true 
value of b1 is 0. Therefore, we conclude that the true value of b1 is not equal to 0. This is 
the same conclusion implied earlier by our previous analysis.

The F-statistic might seem a bit redundant, given that we can use the t-statistic to 
test whether or not b1 5 0. However, the F-statistic serves a different purpose, which 
becomes apparent in multiple regression models with more than one independent 
variable. The F-statistic tests whether or not all of the bi for all of the independent 
variables in a regression model are all simultaneously equal to 0. A simple linear 
regression model contains only one independent variable. In this case, the tests 
involving the F-statistic and the t-statistic are equivalent.

9.10.2 ASSuMPTioNS FoR ThE STATiSTiCAl TESTS
The methods for constructing confidence intervals are based on important assump-
tions concerning the simple linear regression model presented earlier in equation 9.2. 
Throughout this discussion, we assumed that the error terms ei are independent, nor-
mally distributed random variables with expected (or mean) values of 0 and constant 
variances. Thus, the statistical procedures for constructing intervals and performing 
t-tests apply only when these assumptions are true for a given set of data. As long 
as these assumptions are not seriously violated, the procedures described offer good 
approximations of the desired confidence intervals and t-tests. Various diagnostic 
checks can be performed on the residuals 1Yi 2 Ŷi 2  to see whether or not our assump-
tions concerning the properties of the error terms are valid. These diagnostics are dis-
cussed in-depth in most statistics books, but are not repeated in this text. Excel also 
provides basic diagnostics that can be helpful in determining whether assumptions 
about the error terms are violated.

The Regression dialog box (shown in Figure 9.7) provides two options for producing 
graphs that highlight serious violations of the error term assumptions. These options are 
Residual Plots and Normal Probability Plots. Figure 9.14 shows the graphs produced 
by these two options for our example problem.

The first graph in Figure 9.14 results from the Residual Plots option. This graph plots 
the residuals (or estimation errors) versus each independent variable in the regression 
model. Our example problem involves one independent variable—therefore, we have 
one residual plot. If the assumptions underlying the regression model are met, the 
residuals should fall within a horizontal band centered on zero and should display no 
systematic tendency to be positive or negative. The residual plot in Figure 9.14 indicates 
that the residuals for our example problem fall randomly within a range from 230 to 
130. Thus, no serious problems are indicated by this graph.

The second graph in Figure 9.14 results from the Normal Probability Plots option. 
If the error terms in equation 9.2 are normally distributed random variables, the 
dependent variable in equation 9.2 is a normally distributed random variable prior to 
sampling. Thus, one way to evaluate whether we can assume that the error terms are 
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466 Chapter 9 Regression Analysis

normally distributed is to determine if we can assume that the dependent variable is 
normally distributed. The normal probability plot provides an easy way to evaluate 
whether the sample values on the dependent variable are consistent with the normality 
assumption. A plot with an approximately linear rate of increase (such as the one in 
Figure 9.14) supports the assumption of normality.

If the residual plot shows a systematic tendency for the residuals to be positive 
or negative, this indicates that the function chosen to model the systematic variation 
between the dependent and independent variables is inadequate and that another 
functional form would be more appropriate. An example of this type of residual plot is 
given in the first graph in Figure 9.15. 

If the residual plot indicates that the magnitude of the residuals is increasing (or 
decreasing) as the value of the independent variable increases, we would question 
the validity of the assumption of constant error variances. An example of this type 
of residual plot is given in the second graph in Figure 9.15. (Note that checking for 
increasing or decreasing magnitude in the residuals requires multiple observations on Y 
at the same value of X and at various levels of X.) In some cases, a simple transformation 
of the dependent variable can correct the problem of nonconstant error variances. Such 
transformations are discussed in more advanced texts on regression analysis.

9.10.3 STATiSTiCAl TESTS
Regardless of the form of the distribution of the error terms, least squares regression 
can always be used to fit regression curves to data in order to predict the value the 
dependent variable will assume for a given level of the independent variables. Many 
decision makers never bother to look at residual plots or to construct confidence inter-
vals for parameters in the regression models for the predictions they make. However, 
the accuracy of predictions made using regression models depends on how well the 
regression function fits the data. At the very least, we should always check to see how 

FIGURE 9.14

Residual plot and 
normal probability 
plot for the example 
problem
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Introduction to Multiple Regression 467

well a regression function fits a given data set. We can do so using residual plots, 
graphs of the actual data versus the estimated values, and the R2 statistic.

9.11 Introduction to Multiple Regression
We have seen that regression analysis involves identifying a function that relates the 
systematic changes in a continuous dependent variable to the values of one or more 
independent variables. That is, our goal in regression analysis is to identify an appro-
priate representation of the function f (.) in:

Y 5 f 1X1, X2, c, Xk 2 1 e 9.17

FIGURE 9.15

Residual plots
indicating that
the fitted 
regression
model is not
adequate

X

Yi 2Ŷi

X

Yi 2Ŷi

(a) Residuals are not randomly scattered around zero

(b) Residual variance is non-constant

0

0
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468 Chapter 9 Regression Analysis

The previous sections in this chapter introduced some of the basic concepts of 
regression analysis by considering a special case of equation 9.17 that involves a single
independent variable. Although such a model might be appropriate in some situations, 
a businessperson is far more likely to encounter situations involving more than one (or 
multiple) independent variable. We’ll now consider how multiple regression analysis 
can be applied to these situations.

For the most part, multiple regression analysis is a direct extension of simple linear 
regression analysis. Although volumes have been written on this topic, we’ll focus our 
attention on the multiple linear regression function represented by:

Ŷi 5 b0 1 b1X1i
1 b2X2i

1 c 1 bkXki
 9.18

The regression function in equation 9.18 is similar to the simple linear regression 
function except that it allows for more than one (or “k”) independent variables. Here 
again, Ŷi represents the estimated value for the ith observation in our sample whose 
actual value is Yi. The symbols X1i 

, X2i 

, c, Xki
 represent the observed values of the 

independent variables associated with observation i. Assuming that each of these 
variables vary in a linear fashion with the dependent variable Y, the function in 
equation 9.18 might be applied appropriately to a variety of problems.

We can easily visualize the equation of a straight line in our earlier discussion of 
regression analysis. In multiple regression analysis, the concepts are similar but the 
results are more difficult to visualize. Figure 9.16 shows an example of the type of 

FIGURE 9.16

Example of 
a regression 
surface for two 
independent 
variables

Y

X1X2
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A Multiple Regression Example 469

regression surface we might fit using equation 9.18 if the regression function involves 
only two independent variables. With two independent variables, we fit a plane to 
our data. With three or more independent variables, we fit a hyperplane to our data. It 
is difficult to visualize or draw graphs in more than three dimensions, so we cannot 
actually see what a hyperplane looks like. However, just as a plane is a generalization 
of a straight line into three dimensions, a hyperplane is a generalization of a plane into 
more than three dimensions.

Regardless of the number of independent variables, the goal in multiple regression 
analysis is the same as the goal in a problem with a single independent variable. That 
is, we want to find the values for b0, b1, c, bk in equation 9.18 that minimize the sum of 
squared estimation errors represented by:

ESS 5 an

i51
1Yi 2 Ŷi 2 2

We can use the method of least squares to determine the values for b0, b1, c, bk that 
minimize ESS. This should allow us to identify the regression function that best fits  
our data.

9.12 A Multiple Regression Example
The following example illustrates how to perform multiple linear regression.

A real estate appraiser is interested in developing a regression model to help pre-
dict the fair market value of houses in a particular town. She visited the county 
courthouse and collected the data shown in Figure 9.17 (and in the file Fig9-17.xlsm 
that accompanies this book). The appraiser wants to determine if the selling price of 
the houses can be accounted for by the total square footage of living area, the size 
of the garage (as measured by the number of cars that can fit in the garage), and the 
number of bedrooms in each house. (Note that a garage size of 0 indicates that the 
house has no garage.)

FIGURE 9.17

Data for the real 
estate appraisal 
problem
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470 Chapter 9 Regression Analysis

In this example, the dependent variable Y represents the selling price of a house, 
and the independent variables X1, X2, and X3 represent the total square footage, the size 
of the garage, and the number of bedrooms, respectively. To determine if the multiple 
linear regression function in equation 9.18 is appropriate for these data, we should 
first construct scatter plots between the dependent variable (selling price) and each 
independent variable, as shown in Figure 9.18. These graphs seem to indicate a linear 
relationship between each independent variable and the dependent variable. Thus, we 
have reason to believe that a multiple linear regression function would be appropriate 
for these data.

9.13 Selecting the Model
In our discussion of modeling and problem-solving in chapter 1, we noted that the best 
model is often the simplest model that accurately reflects the relevant characteristics of 
the problem being studied. This is particularly true in multiple regression models. The 
fact that a particular problem might involve numerous independent variables does not 
necessarily mean that all of the variables should be included in the regression function. 
If the data used to build a regression model represent a sample from a larger popula-
tion of data, it is possible to over-analyze or overfit the data in the sample. That is, if 
we look too closely at a sample of data, we are likely to discover characteristics of the 
sample that are not representative of (or which do not generalize to) the population 
from which the sample was drawn. This can lead to erroneous conclusions about the 
population being sampled. To avoid the problem of overfitting when building a mul-
tiple regression model, we should attempt to identify the simplest regression function 
that adequately accounts for the behavior of the dependent variable we are studying.

FIGURE 9.18

Scatter plots of 
the real estate 
appraisal problem
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9.13.1 MoDElS wiTh oNE iNDEPENDENT vARiAblE
With this idea of simplicity in mind, the real estate appraiser in our example problem might 
begin her analysis by trying to estimate the selling prices of the houses in the sample using 
a simple regression function with only one independent variable. The appraiser might first 
try to fit each of the following three simple linear regression functions to the data:

Ŷi 5 b0 1 b1X1i
 9.19

 Ŷi 5 b0 1 b2X2i
 9.20

 Ŷi 5 b0 1 b3X3i
 9.21

In equations 9.19 through 9.21, Ŷi represents the estimated or fitted selling price for 
the ith observation in the sample, and X1i 

, X2i 

, and X3i
 represent the total square footage, 

size of garage, and number of bedrooms for this same observation i, respectively.
To obtain the optimal values for the bi in each regression function, the appraiser must 

perform three separate regressions. She would do so in the same way as described 
earlier in our example involving the prediction of sales from advertising expenditures. 
Figure 9.19 summarizes the results of these three regression functions.

FIGURE 9.19

Regression results 
for the three simple 
linear regression 
models

Independent Variable
in the Model SeR2 Adjusted-R2 Parameter Estimates

X1 0.870 0.855 10.299  b0 5 109.503, b1 5 56.394
X2 0.759 0.731 14.030 b0 5 178.290, b2 5 28.382
 X3 0.793 0.770 12.982 b0 5 116.250, b3 5 27.607

The values of the R2 statistic in Figure 9.19 indicate the proportion of the total 
variation in the dependent variable around its mean accounted for by each of the three 
simple linear regression functions. (We will comment on the adjusted-R2 and Se values 
shortly.) The model that uses X1 (square footage) as the independent variable accounts 
for 87% of the variation in Y (selling price). The model using X2 (garage size) accounts 
for roughly 76% of the variation in Y, and the model that uses X3 (number of bedrooms) 
as the independent variable accounts for about 79% of the variation in the selling price.

If the appraiser wants to use only one of the available independent variables in a 
simple linear regression model to predict the selling price of a house, it seems that X1

would be the best choice because, according to the R2 statistics, it accounts for more 
of the variation in selling price than either of the other two variables. In particular, 
X1 accounts for about 87% of the variation in the dependent variable. This leaves 
approximately 13% of the variation in Y unaccounted for. Thus, the best linear 
regression function with one independent variable is represented by:

 Ŷi 5 b0 1 b1X1i
5 109.503 1 56.394 X1i

. 9.22

9.13.2 MoDElS wiTh Two iNDEPENDENT vARiAblES
Next, the appraiser might want to determine if one of the other two variables could 
be combined with X1 in a multiple regression model to account for a significant portion 
of the remaining 13% variation in Y that was not accounted for by X1. To do this, the 
appraiser could fit each of the following multiple regression functions to the data:

 Ŷi 5 b0 1 b1X1i
1 b2X2i

 9.23

 Ŷi 5 b0 1 b1X1i
1 b3X3i

 9.24
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472 Chapter 9 Regression Analysis

To determine the optimal values for the bi in the regression model in equation 9.23, 
we would use the settings shown in the Regression dialog box in Figure 9.20. Input 
X Range in this dialog box is the range in Figure 9.17 that corresponds to the values 
for X1 (total square footage) and X2 (garage size). After we click the OK button, Excel 
performs the appropriate calculations and displays the regression results shown in 
Figure 9.21.

Figure 9.21 lists three numbers in the Coefficients column. These numbers correspond 
to the parameter estimates b0, b1, and b2. Note that the value listed for X Variable 1 is the 

FIGURE 9.20

Regression dialog 
box settings for the 
multiple regression 
model using square 
footage and garage 
size as independent 
variables

FIGURE 9.21 Results of the multiple regression model using square footage and garage size as independent variables
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Selecting the Model 473

coefficient for the first variable in the X Range (which, in some cases, might be X2 or X3,
depending on how the data are arranged in the spreadsheet). The value for X Variable 2 
corresponds to the second variable in the X-range (which might be X3 or X1, depending 
on the arrangement of the data).

From the regression results in Figure 9.21, we know that when using X1 (square 
footage) and X2 (garage size) as independent variables, the estimated regression 
function is:

 Ŷi 5 b0 1 b1X1i
1 b2X2i

5 127.684 1 38.576X1i
1 12.875X2i

 9.25

Notice that adding the second independent variable caused the values of b0 and b1

to change from their earlier values shown in equation 9.22. Thus, the values assumed 
by the parameters in a regression model might vary depending on the number (and 
combination) of variables in the model.

We could obtain the values for the parameters in the second multiple regression 
model (shown earlier in equation 9.24) in the same way. Note, however, that before 
issuing the Regression command again, we would need to rearrange the data in the 
spreadsheet so that the values for X1 (total square footage) and X3 (number of bedrooms) 
are located next to each other in one contiguous block. The regression tool in Excel (and 
in most other spreadsheet software packages) requires that the X-range be represented 
by one contiguous block of cells.

K e e p  t h e  x - R a n g e  C o n t i g u o u s

When using the regression tool, the values for the independent variables must be 
listed in adjacent columns in the spreadsheet and cannot be separated by any inter-
vening columns. That is, the Input X Range option in the Regression dialog box 
must always specify a contiguous block of numbers. (See the file X-RangeExam-
ple.xlsx for an example of how to do this easily using Excel’s INDEX( ) function.)

Figure 9.22 compares the regression results for the model in equation 9.24 and the 
results for the model in equation 9.23 versus the earlier results of the best simple linear 
regression model in equation 9.22, where X1 was the only independent variable in the 
model.

These results indicate that when using X1 (square footage) and X3 (number of 
bedrooms) as independent variables, the estimated regression function is:

 Ŷi 5 b0 1 b1Xli
1 b3X3i

5 108.311 1 44.313X1i
1 6.743X3i

 9.26

FIGURE 9.22

Comparison of 
regression results 
for models with 
two independent
variables versus 
the best model with 
one independent 
variable

Independent Variables
in the Model SeR2 Adjusted-R2 Parameter Estimates

10.299

7.471
10.609

0.855

0.924
0.847

0.870

0.939
0.877

X1 and X2

X1 and X3

X1 b0 5 109.503, b1 5 56.394
b0 5 127.684, b1 5 38.576, b2 5 12.875
b0 5 108.311, b1 5 44.313, b3 5 6.743
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474 Chapter 9 Regression Analysis

The appraiser was hoping that the inclusion of a second independent variable in the 
models in equation 9.23 and equation 9.24 might help to explain a significant portion 
of the remaining 13% of the variation in the dependent variable that was not accounted 
for by the simple linear regression function in equation 9.22. How can we tell if this 
happened?

9.13.3 iNFlATiNg R2

Figure 9.22 indicates that adding either X2 or X3 to the simple linear regression model 
caused the R2 statistic to increase. This should not be surprising. As it turns out, the 
value of R2 can never decrease as a result of adding an independent variable to a 
regression function. The reason for this is easy to see. From equation 9.10, recall that 
R2 5 1 2 ESS/TSS. Thus, the only way R2 could decrease as the result of adding an 
independent variable 1Xn 2  to the model would be if ESS increased. However, because 
the method of least squares attempts to minimize ESS, a new independent variable 
cannot cause ESS to increase because this variable could simply be ignored by setting 
bn 5 0. In other words, if adding the new independent variable does not help to reduce 
ESS, least squares regression would simply ignore the new variable.

When you add any independent variable to a regression function, the value of the 
R2 statistic can never decrease and will usually increase at least a little. Therefore, we 
can make the R2 statistic arbitrarily large simply by including enough independent 
variables in the regression function—regardless of whether or not the new independent 
variables are related at all to the dependent variable. For example, the real estate 
appraiser could probably increase the value R2 to some degree by including another 
independent variable in the model that represents the height of the mailbox at each 
house—which probably has little to do with the selling price of a house. This results in 
a model that overfits our data and may not generalize well to other data not included in 
the sample being analyzed. 

9.13.4 ThE ADjuSTED-R2 STATiSTiC
The value of the R2 statistic can be inflated artificially by including independent vari-
ables in a regression function that have little or no logical connection with the depen-
dent variable. Thus, another goodness-of-fit measure, known as the adjusted-R2

statistic (denoted by R2
a), has been suggested that accounts for the number of indepen-

dent variables included in a regression model. The adjusted-R2 statistic is defined as:

 R2
a 5 1 2 aESS

TSS
b a n 2 1

n 2 k 2 1
b  9.27

where n represents the number of observations in the sample, and k represents the num-
ber of independent variables in the model. As variables are added to a regression model, 
the ratio of ESS to TSS in equation 9.27 will decrease (because ESS decreases and TSS 
remains constant), but the ratio of n 2 1 to n 2 k 2 1 will increase (because n 2 1 remains 
constant and n 2 k 2 1 decreases). Thus, if we add a variable to the model that does not 
reduce ESS enough to compensate for the increase in k, the adjusted-R2 value will decrease.

The adjusted-R2 value can be used as a rule-of-thumb to help us decide if an 
additional independent variable enhances the predictive ability of a model or if it 
simply inflates the R2 statistic artificially. However, using the adjusted-R2 statistic in 
this way is not foolproof and requires a good bit of judgment on the part of the person 
performing the analysis.
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9.13.5 ThE bEST MoDEl wiTh Two iNDEPENDENT 
vARiAblES
As shown in Figure 9.22, when X2 (garage size) is introduced to the model, the adjusted-
R2 increases from 0.855 to 0.924. We can conclude from this increase that the addition of 
X2 to the regression model helps to account for a significant portion of the remaining 
variation in Y that was not accounted for by X1. On the other hand, when X3 is intro-
duced as an independent variable in the regression model, the adjusted-R2 statistic in 
Figure 9.22 decreases (from 0.855 to 0.847). This indicates that adding this variable to the 
model does not help account for a significant portion of the remaining variation in Y if 
X1 is already in the model. The best model with two independent variables is given in 
equation 9.25, which uses X1 (total square footage) and X2 (garage size) as predictors of 
selling price. According to the R2 statistic in Figure 9.22, this model accounts for about 
94% of the total variation in Y around its mean. This model leaves roughly 6% of the 
variation in Y unaccounted for.

9.13.6 MulTiColliNEARiTY
We should not be too surprised that no significant improvement was observed when 
X3 (number of bedrooms) was added to the model containing X1 (total square foot-
age), because both of these variables represent similar factors. That is, the number 
of bedrooms in a house is closely related (or correlated) to the total square footage 
in the house. Thus, if we have already used total square footage to help explain 
variations in the selling prices of houses (as in the first regression function), adding 
information about the number of bedrooms is somewhat redundant. Our analysis 
confirms this.

The term multicollinearity is used to describe the situation when the independent 
variables in a regression model are correlated among themselves. Multicollinearity 
tends to increase the uncertainty associated with the parameters estimates 1bi 2  in a 
regression model and should be avoided whenever possible. Specialized procedures for 
detecting and correcting multicollinearity can be found in advanced texts on regression 
analysis.

9.13.7 ThE MoDEl wiTh ThREE iNDEPENDENT vARiAblES
As a final test, the appraiser might want to see if X3 (number of bedrooms) helps to 
explain a significant portion of the remaining 6% variation in Y that was not accounted 
for by the model using X1 and X2 as independent variables. This involves fitting the fol-
lowing multiple regression function to the data:

 Ŷi 5 b0 1 b1Xli
1 b2X2i

1 b3X3i
 9.28

Figure 9.23 shows the regression results for this model. The results of this model 
are also summarized for comparison purposes in Figure 9.24, along with the earlier 
results for the best model with one independent variable and the best model with two 
independent variables.

Figure 9.24 indicates that when X3 is added to the model that contains X1 and X2, the 
R2 statistic increases slightly (from 0.939 to 0.943). However, the adjusted-R2 drops from 
0.924 to 0.918. Thus, it does not appear that adding information about X3 (number of 
bedrooms) helps to explain selling prices in any significant way when X1 (total square 
footage) and X2 (size of garage) are already in the model.
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476 Chapter 9 Regression Analysis

It is also interesting to note that the best model with two independent variables also 
has the smallest standard error Se. This means that the confidence intervals around 
any predictions made with this model will be narrower (or more precise) than those of 
the other models. It can be shown that the model with the highest adjusted-R2 always 
has the smallest standard error. For this reason, the adjusted-R2 statistic is sometimes 
the sole criterion used to select which multiple regression model to use in a given 
problem. 

Other procedures exist for selecting the best subset of independent variables for 
a regression model and are discussed in advanced texts on regression analysis. The 
XLMiner software package discussed in chapter 10 provides more advanced capabilities 
for conducting regression analysis in Excel, including access to a number of these best 
subset algorithms.

FIGURE 9.23 Results of regression model using all three independent variables

FIGURE 9.24

Comparison of 
regression results 
for the model with 
three independent 
variables versus 
the best models 
with one and 
two independent 
variables

10.299

7.471

7.762

0.855

0.924

0.918

0.870

0.939

0.943

X1 and X2

X1, X2, and X3

X1 b0 5 109.503, b1 5 56.394
b0 5 127.684, b1 5 38.576,
b2 5 12.875
b0 5 126.440, b1 5 30.803,
b2 5 12.567,   b3 5 4.576

Independent Variables
in the Model SeR2 Adjusted-R2 Parameter Estimates
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9.14 Making Predictions
On the basis of this analysis, the appraiser most likely would choose to use the esti-
mated regression model in equation 9.25, which includes X1 (total square footage) and 
X2 (garage size) as independent variables. For a house with X1i

 total square feet and 
space for X2i

 cars in its garage, the estimated selling price Ŷi is:

Ŷi 5 127.684 1 38.576X1i
1 12.875X2i

For example, the expected selling price (or average market value) of a house with 
2,100 square feet and a two-car garage is estimated as:

Ŷi 5 127.684 1 38.576 3 2.1 1 12.875 3 2 5 234.444

or approximately $234,444. Note that in making this prediction, we expressed the 
square footage of the house in the same units in which X1 (total square footage variable) 
was expressed in the sample used to estimate the model. This should be done for all 
independent variables when making predictions.

The standard error of the estimation errors for this model is 7.471. Therefore, we 
should not be surprised to see prices for houses with 2,100 square feet and two-car 
garages varying within roughly 62 standard errors (or 6$14,942) of our estimate. That 
is, we expect prices on this type of house to be as low as $219,502 or as high as $249,386 
depending on other factors not included in our analysis (such as age or condition of the 
roof, presence of a swimming pool, and so on).

As demonstrated earlier in the case of simple linear regression models, more 
accurate techniques exist for constructing prediction intervals using multiple 
regression models. In the case of a multiple regression model, the techniques used 
to construct prediction intervals require a basic knowledge of matrix algebra, which 
is not assumed in this text. The interested reader should consult advanced texts on 
multiple regression analysis for a description of how to construct more accurate 
prediction intervals using multiple regression models. Keep in mind that the simple 
rule-of-thumb described earlier gives an underestimated (narrower) approximation of 
the more accurate prediction interval.

M a x i m u m  R2
a  o r  M i n i m u m  Se ?

In Figure 9.24, notice that the model with the largest adjusted-R2 1Ra
2 2  also has the 

smallest standard error 1Se 2 . That’s not a coincidence and will always be the case. 
Note that:

Ra
2 5 1 2 a ESS

n 2 k 2 1
b an 2 1

TSS
b 5 1 2

Se
2

SY
2 , 

where SY
2  is the sample variance of Y. Thus, the adjusted-R2 statistic is a func-

tion of and varies inversely with the standard error (squared); so the smaller 
the standard error 1Se 2  the larger the adjusted-R2 1Ra

2 2  and vice versa. Of 
course, the standard error determines the width of prediction intervals for any 
estimates made using a regression function. So the regression model with the 
highest adjusted-R2 will also have the narrowest (or most precise) prediction 
intervals.
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478 Chapter 9 Regression Analysis

9.15 Binary Independent Variables
As just mentioned, the appraiser might want to include other independent variables in 
her analysis. Some of these, such as age of the roof, could be measured numerically and 
be included as an independent variable. But how would we create variables to repre-
sent the presence of a swimming pool or the condition of the roof?

The presence of a swimming pool can be included in the analysis with a binary 
independent variable coded as:

Xpi
5 e1, if house i has a pool

0, otherwise 

The condition of the roof could also be modeled with binary variables. Here, however, 
we might need more than one binary variable to model all the possible conditions. If 
some qualitative variable can assume q possible values, we need q 2 1 binary variables 
to model the possible outcomes. For example, suppose that the condition of the roof 
could be rated as good, average, or poor. There are three possible values for the variable 
representing the condition of the roof; therefore, we need two binary variables to model 
these outcomes. These binary variables are coded as:

Xri
5 e1, if the roof of house i is in good condition

0, otherwise 

Xr11i
5 e1, if the roof of house i is in average condition

0, otherwise 

It might appear that we left out a coding for a roof in poor condition. However, 
note that this condition is implied when Xri

5 0 and Xr11i
5 0. That is, if the roof is not 

in good condition (as implied by Xri
5 0) and the roof is not in average condition (as 

implied by Xr11i
5 0), then the roof must be in poor condition. Thus, we need only two 

binary variables to represent three possible roof conditions. For reasons that go beyond 
the scope of this text, the computer could not perform the least squares calculations if 
we included a third binary variable to indicate houses with roofs in poor condition. 
Also, it would be inappropriate to model the condition of the roof with a single variable 
coded as 1 for good, 2 for average, and 3 for poor because this implies that the average 
condition is twice as bad as the good condition, and that the poor condition is three 
times as bad as the good condition and one and a half times as bad as the average 
condition.

As this example illustrates, we can use binary variables as independent variables in 
regression analysis to model a variety of conditions that are likely to occur. In each case, 
the binary variables would be placed in the X-Range of the spreadsheet and appropriate 
bi values would be calculated by the regression tool.

9.16 Statistical Tests for the Population 
Parameters
Statistical tests for the population parameters in a multiple regression model are per-
formed in much the same way as for the simple regression model. As described earlier, 
the F-statistic tests whether or not all of the bi for all of the independent variables are 
all simultaneously equal to 0 (i.e., b1 5 b2 5 c 5 bk 5 0). The value in the regression 
results labeled Significance of F indicates the probability of this condition being true for 
the data under consideration.
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Polynomial Regression 479

In the case of a multiple regression model, the t-statistics for each independent 
variable require a slightly different interpretation due to the possible presence of 
multicollinearity. Each t-statistic can be used to test whether or not the associated 
population parameter bi 5 0 given all the other independent variables in the model. For 
example, consider the t-statistics and p-values associated with the variable X1 shown 
earlier in Figures 9.21 and 9.23. The p-value for X1 in cell E18 of Figure 9.21 indicates 
only a 0.123% chance that b1 5 0 when X2 is the only other independent variable 
in the model. The p-value for X1 in cell E18 of Figure 9.23 indicates a 7.37% chance 
that b1 5 0 when X2 and X3 are also in the model. This illustrates one of the potential 
problems caused by multicollinearity. Because X1 and X3 are highly correlated, it is less 
certain that X1 plays a significant (nonzero) role in accounting for the behavior of the 
dependent variable Y when X3 is also in the model.

In Figure 9.23, the p-value associated with X3 indicates a 54.2% chance that b3 5 0
given the other variables in the model. Thus, if we had started our analysis by including 
all three independent variables in the model, the p-value for X3 in Figure 9.23  suggests 
that it might be wise to drop X3 from the model because there is a fairly good chance 
that it contributes 0 1b3 5 0 2  to explaining the behavior of the dependent variable, 
given the other variables in the model. In this case, if we drop X3 from the model, we 
end up with the same model selected using the adjusted-R2 criterion.

The statistical tests considered here are valid only when the underlying errors around 
the regression function are normally distributed random variables with constant means 
and variances. The graphical diagnostics described earlier apply equally to the case of 
multiple regression. However, the various statistics presented give reasonably accurate 
results if the assumptions about the distribution of the error terms are not violated 
too seriously. Furthermore, the R2 and adjusted-R2 statistics are purely descriptive in 
nature and do not depend in any way on the assumptions about the distribution of the  
error terms.

9.17 Polynomial Regression
When introducing the multiple linear regression function in equation 9.18 earlier, we 
noted that this type of model might be appropriate when the independent variables 
vary in a linear fashion with the dependent variable. Business problems exist where 
there is not a linear relationship between the dependent and independent variables. For 
example, suppose that the real estate appraiser in our earlier example had collected the 
data in Figure 9.25 (and in the file Fig9-25.xlsm that accompanies this book) showing 
the total square footage and selling price for a number of houses. Figure 9.26 shows a 
scatter plot of these data.

Figure 9.26 indicates a very strong relationship between total square footage and 
the selling price of the houses in this sample. However, this relationship is not linear. 
Rather, more of a curvilinear relationship exists between these variables. Does this mean 
that linear regression analysis cannot be used with these data? Not at all.

The data in Figure 9.25 (plotted in Figure 9.26) indicate a quadratic relationship 
between square footage and selling price. So, to account adequately for the variation 
in the selling price of houses, we need to use the following type of regression function:

Ŷi 5 b0 1 b1X1i
1 b2X2

1i
 9.29

where Ŷi represents the estimated selling price of the ith house in our sample, and X1i
represents the total square footage in the house. Notice that the second independent 
variable in equation 9.29 is the first independent variable squared 1X2

1 2 .
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480 Chapter 9 Regression Analysis

FIGURE 9.25

Data for nonlinear 
regression example

FIGURE 9.26

Scatter plot of 
data showing 
relationship 
between total 
square footage and 
selling price

9.17.1 ExPRESSiNg NoNliNEAR RElATioNShiPS  
uSiNg liNEAR MoDElS
Equation 9.29 is not a linear function because it contains the nonlinear variable X2

1. It is 
linear with respect to the parameters the computer must estimate—namely, b0, b1, and 
b2. That is, none of the parameters in the regression function appear as an exponent or  

47412_ch09_ptg01_447-498.indd   480 08/11/16   11:10 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Polynomial Regression 481

are multiplied together. Thus, we can use least squares regression to estimate the 
optimal values for b0, b1, and b2. Note that if we define a new independent variable as 
X2i

5 X2
1i  

, then the regression function in equation 9.29 is equivalent to:

Ŷi 5 b0 1 b1X1i
1 b2X2i

 9.30

Equation 9.30 is equivalent to the multiple linear regression function in  equation 
9.29. As long as a regression function is linear with respect to its parameters, we can use 
Excel’s regression analysis tool to find the least squares estimates for the parameters.

To fit the regression function in equation 9.30 to our data, we must create a second 
independent variable to represent the values of X2i

, as shown in Figure 9.27 (and the file 
Fig9-27.xlsm that accompanies this book).

Because the X-range for the Regression command must be represented as one 
contiguous block, we inserted a new column between the square footage and selling 
price columns and placed the values of X2i

 in this column. Note that X2i
5 X2

1i
 in column 

C in Figure 9.27:

Formula for cell C3:    5B3^2
(Copy to C4 through C13.)

The regression results are generated with a Y-range of D3:D13 and an X-range of 
B3:C13. Figure 9.28 shows the regression results.

In Figure 9.28, the estimated regression function is represented by:

Ŷi 5 b0 1 b1X1i
1  b2X2i

5 294.9714 2 203.3812X1i
1 83.4063X2i

 9.31

According to the R2 statistic, this function accounts for 97.0% of the total variation in 
selling prices, so we expect that this function fits our data well. We can verify this by 
plotting the prices that would be estimated by the regression function in equation 9.31 
for each observation in our sample against the actual selling prices.

FIGURE 9.27

Modification 
of data to 
include squared 
independent 
variable

Key Cell Formulas

Cell Formula Copied to

C3 5B3^2 C4:C13
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482 Chapter 9 Regression Analysis

To calculate the estimated selling prices, we applied the formula in equation 9.31 to 
each observation in the sample, as shown in Figure 9.29 where the following formula 
was entered in cell E3, then copied to cells E4 through E20:

Formula for cell E3:    5TREND 1$D$3:$D$13,$B$3:$C$13,B3:C3 2
(Copy to E4 through E13.)

Figure 9.30 shows a curve representing the estimated prices calculated in column E 
of Figure 9.29. This curve was added to our previous scatter plot as follows:

1. Right-click on any of the data points in the scatter plot to select the series of data.
2. Click Add Trendline.
3. Click Polynomial and use an Order value of 2.
4. Select Display Equation on Chart and Display R-squared Value on Chart.
5. Click Close.

This graph indicates that our regression model accounts for the nonlinear, quadratic 
relationship between the square footage and selling price of a house in a reasonably 
accurate manner.

Figure 9.31 shows the result obtained by fitting a third-order polynomial model to 
our data of the form:

Ŷi 5 b0 1 b1X1i
1 b2X2

1i
1 b3X3

1i
 9.32

This model appears to provide an even better fit than the model shown in Figure  
9.30. As you might imagine, we could continue to add higher order terms to the model 
and further increase the value of the R2 statistic. Here again, the adjusted-R2 statistic 
could help us select a model that provides a good fit to our data without overfitting 
the data.

FIGURE 9.28 Regression results for nonlinear example problem
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FIGURE 9.29

Estimated selling 
prices using a 
second order 
polynomial model

Key Cell Formulas

Cell Formula Copied to

C3 5B3^2 C4:C13
E3 5TREND($D$3:$D$13,$B$3:$C$13,B3:C3) E4:E13

FIGURE 9.30

Plot of estimated 
regression function 
versus actual data
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484 Chapter 9 Regression Analysis

9.17.2 SuMMARY oF NoNliNEAR REgRESSioN
This brief example of a polynomial regression problem highlights the fact that regres-
sion analysis can be used not only in fitting straight lines or hyperplanes to linear data, 
but also in fitting other types of curved surfaces to nonlinear data. An in-depth discus-
sion of nonlinear regression is beyond the intended scope of this book, but a wealth of 
information is available on this topic in numerous texts devoted solely to regression 
analysis.

This example should help you appreciate the importance of preparing scatter plots 
of each independent variable against the dependent variable in a regression problem 
to see if the relationship between the variables is linear or nonlinear. Relatively simple 
nonlinear relationships, such as the one described in the previous example, can often be 
accounted for by including squared or cubed terms in the model. In more complicated 
cases, sophisticated transformations of the dependent or independent variables might 
be required.

9.18 Summary
Regression analysis is a statistical technique that can be used to identify and analyze 
the relationship between one or more independent variables and a continuous depen-
dent variable. This chapter presented an overview of some key issues involved in per-
forming regression analysis and demonstrated some of the tools and methods available 
in Excel to assist managers in performing regression analysis. 

FIGURE 9.31

Plot of estimated 
regression function 
using a third order 
polynomial model
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The goal in regression analysis is to identify a function of the independent variables 
that adequately accounts for the behavior of the dependent variable. The method of 
least squares provides a way to determine the best values for the parameters in a 
regression model for a given sample of data. After identifying such a function, it can 
be used to predict what value the dependent variable will assume given specific val-
ues for the independent variables. Various statistical techniques are available for eval-
uating how well a given  regression function fits a data set and for determining which 
independent variables are most helpful in explaining the behavior of the dependent 
variable. Although regression functions can assume a variety of forms, this chapter 
focused on linear regression models where a linear combination of the independent 
variables is used to model the dependent variable. Simple transformations of the 
independent variables can allow this type of model to fit both linear and nonlinear 
data sets.

9.19 References
Kutner, M., C. Nachtsheim, J. Neter, and W. Li. Applied Linear Statistical Models. Columbus, OH: McGraw-

Hill, 2013.
Montgomery D., E. Peck, and G. Vining. Introduction to Linear Regression Analysis. New York: Wiley, 2012.
Younger, M. A First Course in Linear Regression. Boston: Duxbury Press, 1985.

ThE woRlD oF buSiNESS ANAlYTiCS

Better Predictions Create Cost Savings  
for Ohio National Bank

The Ohio National Bank in Columbus must process checks for clearing in 
a timely manner in order to minimize float. This had been difficult because 
of wide and seemingly unpredictable variations in the volume of checks 
received.

As checks pass through the processing center, they are encoded with the 
dollar amount in magnetic ink at the bottom of the check. This operation 
requires a staff of clerks, whose work schedules must be planned so that staff-
ing is adequate during peak times. Because the bank could not accurately 
predict these peaks, deadlines often were missed and the clerks often were 
required to work overtime.

The variations in check volume seemed to be caused by changes in busi-
ness activity brought about by the calendar—that is, volume was influenced 
by certain months, days of the week, days of the month, and proximity to 
certain holidays. A linear regression model was developed to predict staff-
ing needs using a set of binary (dummy) independent variables representing 
these calendar effects. The regression study was very successful. The resulting 
model had a coefficient of determination 1R2 2  of 0.94 and a mean absolute 
percentage error of 6%. The bank then used these predictions as input to an 
LP shift-scheduling model that minimized the number of clerks needed to 
cover the predicted check volumes.

(Continued)
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486 Chapter 9 Regression Analysis

Questions and Problems
1. Members of the Roanoke Health and Fitness Club pay an annual membership fee of 

$250 1 $3 each time they use the facility. Let X denote the number of times a person 
visits the club during the year. Let Y denote the total annual cost for membership in 
the club.
a. What is the mathematical relationship between X and Y?
b.  Is this a functional or statistical relationship? Explain your answer.

2. In comparing two different regression models that were developed using the same 
data, we might say that the model with the higher R2 value will provide the most 
accurate predictions. Is this true? Why or why not?

 3.  Suppose the variable X is being used to predict Y using a linear regression func-
tion of the form Ŷi 5 b0 1 b1Xi. If there is no linear relation between X and Y what 
is the optimal regression function (i.e., what are the optimal values of b0 and b1)? 
Explain.

 4.  Least squares regression finds the estimated values for the parameters in a regres-
sion model to minimize ESS 5 gn

i51 1Yi 2 Ŷi 2 2. Why is it necessary to square the 
estimation errors? What problem might be encountered if we attempt to minimize 
just the sum of the estimation errors?

 5.  Suppose you are interested in creating a prediction interval for Y at a particular 
value of X1 (denoted by X1h

 ) using a simple linear regression model and data has 
not yet been collected. For a given sample size n, how would you attempt to collect 
the sample data to make the most accurate prediction? (Hint: Consider equation 
9.14.)

 6. An accounting firm that specializes in auditing mining companies collected the 
data found in the file MiningAudit.xlsx that accompanies this book describing the 
long-term assets and long-term debt of its 12 clients.
a.  Prepare a scatter plot of the data. Does there appear to be a linear relationship 

between these variables?
b.  Develop a simple linear regression model that can be used to predict long-term 

debt from long-term assets. What is the estimated regression equation?
c.  Interpret the value of R2.
d.  Suppose that the accounting firm has a client with total assets of $50,000,000. 

Construct an approximate 95% confidence interval for the amount of long-term 
debt the firm expects this client to have.

The planning process required data on check volumes and productivity esti-
mates from the line supervisors in the encoding department. Initial reluctance 
of the supervisors to supply this information presented an obstacle to the imple-
mentation of the system. Eventually, this was overcome by taking time to explain 
the reasons for the data collection to the supervisors.

The new system provides estimated savings of $700,000 in float costs and 
$300,000 in labor costs. The close-out time of 10 p.m. is now met 98% of the time; 
previously, it was rarely met. Management has performed sensitivity analysis 
with the model to study the effects of productivity improvements associated with 
employing experienced full-time encoding clerks instead of part-time clerks.

Source: Krajewski, L. J. and L. P. Ritzman. “Shift Scheduling in Banking Operations: A Case Applica-
tion.” Interfaces, vol. 10, no. 2, April 1980, pp 1–6.
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7. The IRS wants to develop a method for detecting whether or not individuals have 
overstated their deductions for charitable contributions on their tax returns. To 
assist in this effort, the IRS supplied data found in the file IRS.xlsx that accompanies 
this book listing the adjusted gross income (AGI) and charitable contributions for 11 
taxpayers whose returns were audited and found to be correct. 
a. Prepare a scatter plot of the data. Does there appear to be a linear relationship 

between these variables?
b.  Develop a simple linear regression model that can be used to predict the level of 

charitable contributions from a return’s AGI. What is the estimated regression 
equation?

c.  Interpret the value of R2.
d.  How might the IRS use the regression results to identify returns with unusually 

high charitable contributions?
8. Roger Gallagher owns a used car lot that deals solely in used Corvettes. He wants 

to develop a regression model to help predict the price he can expect to receive for 
the cars he owns. He collected the data found in the file Corvettes.xlsx describing 
the mileage, model year, presence of a T-top, and selling price of a number of cars 
he has sold in recent months. Let Y represent the selling price, X1 the mileage, X2 the 
model year, and X3 the presence (or absence) of a T-top.
a.  If Roger wants to use a simple linear regression function to estimate the selling 

price of a car, which X variable do you recommend he use?
b.  Determine the parameter estimates for the regression function represented by:

Ŷi 5 b0 1 b1X1i
1 b2X2i

What is the estimated regression function? Does X2 help to explain the selling 
price of the cars if X1 is also in the model? What might be the reason for this?

c.  Set up a binary variable 1X3i
2  to indicate whether or not each car in the sample 

has a T-top. Determine the parameter estimates for the regression function repre-
sented by:

Ŷi 5 b0 1 b1X1i
1 b3X3i

Does X3 help to explain the selling price of the cars if X1 is also in the model? 
Explain.

d.  According to the previous model, on average, how much does a T-top add to the 
value of a car?

e.  Determine the parameter estimates for the regression function represented by:

Ŷi 5 b0 1 b1X1i
1 b2X2i

1 b3X3i

What is the estimated regression function?
f.  Of all the regression functions considered here, which do you recommend Roger 

use?
9. Refer to question 8. Prepare scatter plots of the values of X1 and X2 against Y.

a.  Do these relationships seem to be linear or nonlinear?
b.  Determine the parameter estimates for the regression function represented by:

Ŷi 5 b0 1 b1X1i
1 b2X2i

1 b3X3i
1 b4X4i

 where X4i
5 X2

2i
. What is the estimated regression function?

c.  Consider the p-values for each bi in this model. Do these values indicate that any 
of the independent variables should be dropped from the model?

10.  A recruiter for Big Box stores has collected the data in the file BigBox.xlsx summa-
rizing the amount of money the company spent on print, web, and TV advertising 
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488 Chapter 9 Regression Analysis

in California over the past 22 months and the resulting number of applications 
received from job applicants during the same months. The recruiter would like to 
build a regression model to predict the number of applications the company should 
expect based on a given advertising mix.
a. Prepare scatter plots showing the relationship between the number of applica-

tions received and each of the independent variables. What sort of relationship 
does each plot suggest?

b. If the recruiter wanted to build a regression model using only one independent 
variable to predict the number of applications received, what variable should be 
used?

c. What set of independent variables results in the highest value for the adjusted-R2

statistic?
d. Suppose the recruiter chooses to use the regression function with all indepen-

dent variables X1, X2 and X3. What is the estimated regression function?
e. Suppose the recruiter wants to generate 800 applications in the next month. 

According to the model estimated in part d, what is the least costly way to 
achieve this objective? 

f. What problem, if any, do you see with the answer obtained in part e and what 
might be done to avoid it?

 11. Golden Years Easy Retirement Homes owns several adult care facilities through-
out the southeast United States. A budget analyst for Golden Years has collected 
the data found in the file GoldenYears.xlsx describing for each facility: the number 
of beds 1X1 2 , the annual number of medical in-patient days 1X2 2 , the total annual 
patient days 1X3 2 , and whether or not the facility is in a rural location 1X4 2 . The ana-
lyst would like to build a multiple regression model to estimate the annual nursing 
salaries (Y) that should be expected for each facility.
a. Prepare scatter plots showing the relationship between the nursing salaries 

and each of the independent variables. What sort of relationship does each plot 
suggest?

b. If the budget analyst wanted to build a regression model using only one inde-
pendent variable to predict the nursing salaries, what variable should be used?

c. If the budget analyst wanted to build a regression model using only two inde-
pendent variables to predict the nursing salaries, what variables should be used?

d. If the budget analyst wanted to build a regression model using three indepen-
dent variables to predict the nursing salaries, what variables should be used?

e. What set of independent variables results in the highest value for the adjusted-R2

statistic?
f. Suppose the personnel director chooses to use the regression function with all 

independent variables X1, X2, and X3. What is the estimated regression function?
g. In your spreadsheet, calculate an estimated annual nursing salary for each facil-

ity using the regression function identified in part f. Based on this analysis which 
facilities, if any, should the budget analyst be concerned about? Explain your 
answer.

 12. The O-rings in the booster rockets on the space shuttle are designed to expand when 
heated to seal different chambers of the rocket so that solid rocket fuel is not ignited 
prematurely. According to engineering specifications, the O-rings expand by some 
amount, say at least 5%, in order to ensure a safe launch. Hypothetical data on the 
amount of O-ring expansion and the atmospheric temperature in Fahrenheit at the 
time of several different launches are given in the file O-ring.xlsx.
a.  Prepare a scatter plot of the data. Does there appear to be a linear relationship 

between these variables?
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b.  Obtain a simple linear regression model to estimate the amount of O-ring expan-
sion as a function of atmospheric temperature. What is the estimated regression 
function?

c.  Interpret the R2 statistic for the model you obtained.
d.  Suppose that NASA officials are considering launching a space shuttle when the 

temperature is 29 degrees. What amount of O-ring expansion should they expect 
at this temperature according to your model?

e.  On the basis of your analysis of these data, would you recommend that the shut-
tle be launched if the temperature is 29 degrees? Why or why not?

 13. An analyst for Phidelity Investments wants to develop a regression model to pre-
dict the annual rate of return for a stock based on the price-earnings (PE) ratio of 
the stock and a measure of the stock’s risk. The data found in the file Phidelity.xlsx 
were collected for a random sample of stocks.
a.  Prepare scatter plots for each independent variable versus the dependent vari-

able. What type of model do these scatter plots suggest might be appropriate for 
the data?

b.  Let Y 5  Return, X1 5 PE Ratio, and X2 5  Risk. Obtain the regression results for 
the following regression model:

Ŷi 5 b0 1 b1X1i
1 b2X2i

Interpret the value of R2 for this model.
c.  Obtain the regression results for the following regression model:

Ŷi 5 b0 1 b1X1i
1 b2X2i

1 b3X3i
1 b4X4i

where X3i
5 X2

1i
 and X4i

5 X2
1i

. Interpret the value of R2 for this model.
d.  Which of the previous two models would you recommend that the analyst 

use?
 14. Oriented Strand Board (OSB) is manufactured by gluing woodchips together to 

form panels. Several panels are then bonded together to form a board. One of the 
factors influencing the strength of the final board is the amount of glue used in the 
production process. An OSB manufacturer conducted a test to determine the break-
ing point of a board based on the amount of glue used in the production process. 
In each test, a board was manufactured using a given amount of glue. Weight was 
then applied to determine the point at which the board would fail (or break). This 
test was performed 27 times using various amounts of glue. The data obtained from 
this testing may be found in the file OSB.xlsx on your data disk.
a. Prepare a scatter plot of this data.
b. What type of regression function would you use to fit this data?
c. Estimate the parameters of the regression function. What is the estimated regres-

sion function?
d. Interpret the value of the R2 statistic.
e. Suppose the company wants to manufacturer boards that will withstand up to 

110 lbs. of pressure per square inch. How much glue should they use?
15. When interest rates decline, Patriot Bank has found they get inundated with 

requests to refinance home mortgages. To better plan its staffing needs in the mort-
gage processing area of its operations, Patriot wants to develop a regression model 
to help predict the total number of mortgage applications (Y) each month as a func-
tion of the prime interest rate 1X1 2 . The bank collected the data shown in the file 
PatriotBank.xlsx representing the average prime interest rate and total number of 
mortgage applications in 20 different months.
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490 Chapter 9 Regression Analysis

a. Prepare a scatter plot of these data. 
b.  Fit the following regression model to the data: 

Ŷi 5 b0 1 b1X1i

Plot the number of monthly mortgage applications that are estimated by this 
model along with the actual values in the sample. How well does this model fit 
the data?

c.  Using the previous model, develop a 95% prediction interval for the number of 
mortgage applications Patriot could expect to receive in a month where the inter-
est rate is 6%. Interpret this interval.

d.  Fit the following regression model to the data:

Ŷi 5 b0 1 b1X1i
1 b2X2i

 

 where X2i
5 X2

1i
. Plot the number of monthly mortgage applications that are esti-

mated by this model along with the actual values in the sample. How well does 
this model fit the data?

e.  Using the previous model, develop a 95% prediction interval for the number of 
mortgage applications Patriot could expect to receive in a month where the inter-
est rate is 6%. Interpret this interval.

f.  Which model would you suggest Patriot Bank use and why?
 16. Creative Confectioners is planning to introduce a new brownie. A small-scale “taste 

test” was conducted to assess consumers’ preferences (Y) with regard to moisture 
content 1X1 2  and sweetness 1X2 2 . Data from the taste test may be found in the file 
Confectioners.xlsx.
a. Prepare a scatter plot of moisture content versus preference. What type of rela-

tionship does your plot suggest?
b. Prepare a scatter plot of sweetness versus preference. What type of relationship 

does your plot suggest?
c. Estimate the parameters for the following regression function:

Ŷi 5 b0 1 b1X1i
1 b2X2

1i
1 b3X2i

1 b4X2
2i

 What is the estimated regression function?
d. Using the estimated regression function in part c, what is the expected prefer-

ence rating of a brownie recipe with a moisture content of 7 and a sweetness 
rating of 9.5? 

 17. AutoReports is a consumer magazine that reports on the cost of maintaining vari-
ous types of automobiles. The magazine collected the data found in the file Auto-
Reports.xlsx describing the annual maintenance cost of a certain type of luxury 
imported automobile along with the age of the car (in years).
a.  Prepare a scatter plot of these data.
b.  Let Y 5  Maintenance Cost and X 5  Age. Fit the following regression model to 

the data: 

Ŷi 5 b0 1 b1X1i
 

 Plot the maintenance costs that are estimated by this model along with the actual 
costs in the sample. How well does this model fit the data?

c.  Fit the following regression model to the data:

Ŷi 5 b0 1 b1X1i
1 b2X2i

 

 where X2i
5 X2

1i
. Plot the maintenance costs that are estimated by this model 

along with the actual costs in the sample. How well does this model fit the data?
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d.  Fit the following regression model to this data: 

Ŷi 5 b0 1 b1X1i
1 b2X2i

1 b3X3i
 

 where X2i
5 X2

1i
 and X3i

5 X3
1i

. Plot the maintenance costs that are estimated by 
this model along with the actual costs in the sample. How well does this model 
fit the data?

 18. Duque Power Company wants to develop a regression model to help predict its 
daily peak power demand. This prediction is useful in determining how much 
generating capacity needs to be available (or purchased from competitors) on a 
daily basis. The daily peak power demand is influenced primarily by the weather 
and the day of the week. The file Duque.xlsx contains data summarizing Duque’s 
daily peak demand and maximum daily temperature during the month of July last 
year. 
a. Build a simple linear regression model to predict peak power demand using 

maximum daily temperature. What is the estimated regression equation?
b. Prepare a line chart plotting the actual peak demand data against the values pre-

dicted by this regression equation. How well does the model fit the data? 
c. Interpret the R2 statistic for this model.
d. Build a multiple linear regression model to predict peak power demand using 

maximum daily temperature and the day of the week as independent variables. 
(Note: This model will have seven independent variables.) What is the estimated 
regression equation?

e. Prepare a line chart plotting the actual peak demand data against the values pre-
dicted by this regression equation. How well does the model fit the data? 

f. Interpret the R2 statistic for this model.
g. Using the model you developed in part d, what is the estimated peak power 

demand Duque should expect on a Wednesday in July when the daily high tem-
perature is forecasted to be 94?

h. Compute a 95% prediction interval for the estimate in the previous question. 
Explain the managerial implications of this interval for Duque.

19. An appraiser collected the data found in the file Appraiser.xlsx describing the auc-
tion selling price, diameter (in inches), and item type of several pieces of early 20th 
century metal tableware manufactured by a famous artisan. The item type variable 
is coded as follows: B 5 bowl, C 5 casserole pan, D 5 dish, T 5 tray, and P 5
plate. The appraiser wants to build a multiple regression model for this data to pre-
dict average selling prices of similar items. 
a. Construct a multiple regression model for this problem. (Hint: Create binary 

independent variables to represent the item type data.) What is the estimated 
regression function?

b. Interpret the value of the R2 statistic for this model.
c.  Construct an approximate 95% prediction interval for the expected selling price 

of an 18 inch diameter casserole pan. Interpret this interval.
d. What other variables not included in the model might help explain the remain-

ing variation in auction selling prices for these items? 
20.  Chris Smith is a sports car enthusiast with a particular love for Mini Coopers. He 

downloaded data from eBay on completed auctions of Mini Coopers and used it 
to create the data set in the file MiniCooper.xlsx showing the selling prices, age, 
mileage, and location of Mini Cooper automobiles. He would like to use this data to 
build a regression model to predict the estimated selling price of Mini Coopers.
a. Prepare scatter plots showing the relationship between selling price and each of 

the independent variables. What sort of relationship does each plot suggest?
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492 Chapter 9 Regression Analysis

b. Using only the variables in this data set, what regression model has the highest 
R2 value? What is the model and what is its R2 value?

c. Using only the variables in this data set, what regression model has the highest 
adjusted-R2 value? What is the model and what is its adjusted-R2 value?

d. Which of the cars in this data set appear to be the best bargains relative to their 
estimated prices using the model identified in part c?

e. What other variables, if available, might help Chris to build a more accurate 
regression model for this problem?

 21. Hydroxyethyl cellulose (HEC) is a gelling and thickening agent created from a molec-
ular combination of cellulose, ethylene oxide (EO), and nitric acid. It is designed to 
mix with a water-based solution to increase the viscosity of the mixture. This added 
viscosity acts as a suspension polymer that, for example, allows the herbs in a salad 
dressing to stay in the solution and not settle to the bottom of the bottle. Gaston 
Moat is a manufacturing engineer for the Atlas Corporation which is one of the 
major manufacturers of HEC in the United States. He has collected the data given 
in the file HEC.xlsx from several production lots of HEC. For each production lot, he 
recorded the viscosity of the HEC (Y) produced along with the viscosity of the cellu-
lose material used 1X1 2 , the square root of the viscosity of the cellulose material used 
1X2 2 , the length of the cellulose fibers used 1X3 2 , the amount (in pounds) of cellulose 
used 1X4 2 , the amount (in pounds) of EO used 1X5 2 , the temperature of the nitric acid 
used 1X6 2 , and the ratio of cellulose to EO used 1X7 2 , Atlas’ customers often specify 
the average viscosity level needed for a particular HEC application. Gaston would 
like to build a multiple regression function to better understand how the various 
inputs in the production process relate to viscosity of the final HEC product. 
a. Prepare scatter plots showing the relationship between HEC viscosity and each 

of the independent variables. What sort of relationship does each plot suggest?
b. Using the variables in this data set, what regression model has the highest R2

value? What is its R2 value?
c. Using the variables in this data set, what regression model has the highest 

adjusted-R2 value? What is its adjusted-R2 value?
d. Suppose a customer wants a batch of HEC with an average viscosity level of 

7000. Gaston plans to fill this order using a batch of cellulose with a viscosity of 
level of 20300, an average fiber length of 30, and a nitric temperature of 50. How 
much EO should he plan to use in this batch to achieve the desired HEC average 
viscosity level?

 22. A cost estimator for a construction company has collected the data found in the file 
Construction.xlsx describing the total cost (Y) of 97 different projects and the fol-
lowing five independent variables thought to exert relevant influence on the total 
cost: regular or premium wages paid (X1), total units of work required (X2), con-
tracted units of work per day (X3), level of equipment required (X4), city/location of 
work (X5). The cost estimator would like to develop a regression model to predict 
the total cost of a project as a function of these five independent variables.
a.  Prepare five scatter plots showing the relationship between the total cost of the 

projects and each of the independent variables. What sort of relationship does 
each plot suggest? 

b.  Which combination of the independent variables would you suggest the estima-
tor use? What is the estimated regression equation for this model and what is its 
adjusted-R2 value?

c.  Suppose the estimator wants to use total units of work (X2) and city/location of 
work (X5) as the only independent variables for the regression model to predict 
total cost. However, he now realizes that the city/location of work variable (X5) 
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might be more appropriately modeled by a collection of binary variables. Modify 
the data set to include the necessary binary variables. Because there are six dis-
tinct city/location values, five binary variables would be needed. Assume city/
location 6 should be represented by values of zero for all the binary variables. 

d.  Which combination of the new set of six independent variables (i.e., X2 + the 
five binary variables representing X5) would you now suggest the estimator use? 
What is the estimated regression equation for this model and what is its adjusted-
R2 value?

e.  Of the regression models identified in parts b and d, which would you recom-
mend the cost estimator use and why?

23. The personnel director for a small manufacturing company has collected the data 
found in the file Manufacturing.xlsx describing the salary (Y) earned by each 
machinist in the factory along with the average performance rating 1X1 2  over the 
past 3 years, the years of service 1X2 2 , and the number of different machines each 
employee is certified to operate 1X3 2 .

  The personnel director wants to build a regression model to estimate the average 
salary an employee should expect to receive based on his or her performance, years 
of service, and certifications.
a. Prepare three scatter plots showing the relationship between the salaries and 

each of the independent variables. What sort of relationship does each plot 
suggest?

b. If the personnel director wanted to build a regression model using only one inde-
pendent variable to predict the salaries, what variable should be used?

c. If the personnel director wanted to build a regression model using only two inde-
pendent variables to predict the salaries, what two variables should be used?

d. Compare the adjusted-R2 statistics obtained in parts b and c with that of a regres-
sion model using all three independent variables. Which model would you rec-
ommend the personnel director use?

e. Suppose the personnel director chooses to use the regression function with all 
three independent variables. What is the estimated regression function?

f. Suppose the company considers an employee’s salary to be fair if it is within 
1.5 standard errors of the value estimated by the regression function in part e. 
What salary range would be appropriate for an employee with 12 years of ser-
vice, who has received average reviews of 4.5, and is certified to operate 4 pieces 
of machinery? 

 24. Caveat Emptor, Inc. is a home inspection service that provides prospective home-
buyers with a thorough assessment of the major systems in a house prior to the 
execution of the purchase contract. Prospective homebuyers often ask the company 
for an estimate of the average monthly heating cost of the home during the winter. 
To answer this question, the company wants to build a regression model to help 
predict the average monthly heating cost (Y) as a function of the average outside 
temperature in winter 1X1 2 , the amount of attic insulation in the house 1X2 2 , the 
age of the furnace in the house 1X3 2 , and the size of the house measured in square 
feet 1X4 2 . Data on these variables for a number of homes was collected and may be 
found in the file CaveatEmptor.xlsx.
a. Prepare scatter plots showing the relationship between the average heating cost 

and each of the potential independent variables. What sort of relationship does 
each plot suggest?

b. If the company wanted to build a regression model using only one independent 
variable to predict the average heating cost of these houses, what variable should 
be used?
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c. If the company wanted to build a regression model using only two independent 
variables to predict the average heating cost of these houses, what variables 
should be used?

d. If the company wanted to build a regression model using only three indepen-
dent variables to predict the average heating cost of these houses, what variables 
should be used?

e. Suppose the company chooses to use the regression function with all four inde-
pendent variables. What is the estimated regression function?

f. Suppose the company decides to use the model with the highest adjusted-R2 sta-
tistic. Develop a 95% prediction interval for the average monthly heating cost of a 
house with 4 inches of attic insulation, a 5-year-old furnace, 2500 square feet, and 
in a location with an average outside winter temperature of 40 degrees. Interpret 
this interval.

 25. Throughout our discussion of regression analysis, we used the Regression com-
mand to obtain the parameter estimates that minimize the sum of squared estima-
tion errors. Suppose that we want to obtain parameter estimates that minimize the 
sum of the absolute value of the estimation errors, or:

MIN: an

i51
0Yi 2 Ŷi 0

a. Use Solver to obtain the parameter estimates for a simple linear regression func-
tion that minimizes the sum of the absolute value of the estimation errors for the 
data in question 12.

b.  What advantages, if any, do you see in using this alternate objective to solve a 
regression problem?

c.  What disadvantages, if any, do you see in using this alternate objective to solve a 
regression problem?

26. Throughout our discussion of regression analysis, we used the Regression com-
mand to obtain the parameter estimates that minimize the sum of squared estima-
tion errors. Suppose that we want to obtain parameter estimates that minimize the 
absolute value of the maximum estimation error, or:

MIN: MAX 1 0Y1 2 Ŷ1 0 , 0Y2 2 Ŷ2 0 , c, 0Yn 2 Ŷn 0 2
a. Use Solver to obtain the parameter estimates for a simple linear regression func-

tion that minimizes the absolute value of the maximum estimation error for the 
data in question 12.

b.  What advantages, if any, do you see in using this alternate objective to solve a 
regression problem?

c.  What disadvantages, if any, do you see in using this alternate objective to solve a 
regression problem?

Diamonds Are Forever
(Inspired from actual events related by former Virginia Tech MBA student Brian Ellyson.)

With Christmas coming, Ryan Bellison was searching for the perfect gift for his wife. 
After several years of marriage, Ryan leaned back in his chair at the office and tried to 
think of the one thing his wife has wanted during the years they pinched pennies to 
get through graduate school. Then he remembered the way her eyes lit up last week 
when they walked by the jewelry store windows at the mall and she saw the diamond 

CasE 9.1
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earrings. He knew he wanted to see that same look on her face Christmas morning. 
And so his hunt began for the perfect set of diamond earrings.

Ryan’s first order of business was to educate himself about the things to look for 
when buying diamonds. After perusing the web, he learned about the “4Cs” of dia-
monds: cut, color, clarity, and carat (see: http://www.adiamondisforever.com). 
He knew his wife wanted round cut earrings mounted in white gold settings, so he 
immediately narrowed his focus to evaluating color, clarity, and carat for that style of 
earring.

After a bit of searching, Ryan located a number of possible earring sets that he 
would consider purchasing. But he knew the pricing of diamonds varied considerably 
and he wanted to make sure he didn’t get ripped off. To assist in his decision making, 
Ryan decided to use regression analysis to develop a model to predict the retail price 
of different sets of round cut earrings based on their color, clarity, and carat scores. He 
assembled the data in the file Diamonds.xlsx for this purpose. Use this data to answer 
the following questions for Ryan.
1. Prepare scatter plots showing the relationship between the earring prices (Y) and 

each of the potential independent variables. What sort of relationship does each 
plot suggest?

2. Let X1, X2, and X3 represent diamond color, clarity, and carats, respectively. If Ryan 
wanted to build a linear regression model to estimate earring prices using these 
variables, which variables would you recommend he use? Why?

 3. Suppose Ryan decides to use clarity 1X2 2  and carats 1X3 2  as independent variables 
in a regression model to predict earring prices. What is the estimated regression 
equation? What is the value of the R2 and adjusted-R2 statistics?

 4. Use the regression equation identified in the previous question to create estimated 
prices for each of the earring sets in Ryan’s sample. Which sets of earrings appear to 
be overpriced and which appear to be bargains? Based on this analysis, which set of 
earrings would you suggest Ryan purchase?

 5. Ryan now remembers that it sometimes helps to perform a square root transforma-
tion on the dependent variable in a regression problem. Modify your spreadsheet 
to include a new dependent variable that is the square root on the earring prices 
(use Excel’s SQRT( ) function). If Ryan wanted to build a linear regression model to 
estimate the square root of earring prices using the same independent variables as 
before, which variables would you recommend he use? Why?

 6. Suppose Ryan decides to use clarity 1X2 2  and carats 1X3 2  as independent variables in 
a regression model to predict the square root of the earring prices. What is the esti-
mated regression equation? What is the value of the R2 and adjusted-R2 statistics?

 7. Use the regression equation identified in the previous question to create estimated 
prices for each of the earring sets in Ryan’s sample. (Remember, your model esti-
mates the square root of the earring prices. So you must square the model’s esti-
mates to convert them to actual price estimates.) Which sets of earrings appear to be 
overpriced, and which appear to be bargains? Based on this analysis, which set of 
earrings would you suggest Ryan purchase?

 8. Ryan now also remembers that it sometimes helps to include interaction terms in 
a regression model—where you create a new independent variable as the prod-
uct of two of the original variables. Modify your spreadsheet to include three 
new independent variables X4, X5, and X6 representing interaction terms where: 
X4 5 X1 3 X2, X5 5 X1 3 X3, and X6 5 X2 3 X3. There are now six potential inde-
pendent variables. If Ryan wanted to build a linear regression model to estimate 
the square root of earring prices using some combination of these six independent 
variables, which variables would you recommend he use? Why?
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9. Suppose Ryan decides to use color 1X1 2 , carats 1X3 2 , and the interaction terms X4

and X5 as independent variables in a regression model to predict the square root of 
the earring prices. What is the estimated regression equation? What is the value of 
the R2 and adjusted-R2 statistics?

 10. Use the regression equation identified in the previous question to create estimated 
prices for each of the earring sets in Ryan’s sample. (Remember, your model esti-
mates the square root of the earring prices. So you must square the model’s esti-
mates to convert them to actually price estimates.) Which sets of earrings appear to 
be overpriced, and which appear to be bargains? Based on this analysis, which set 
of earrings would you suggest Ryan purchase?

Fiasco in Florida 
The 2000 U.S. presidential election was one of the most controversial in history with 
the final outcome ultimately being decided in a court of law rather than in the voting 
booth. At issue were the election results in Palm Beach, Florida. Palm Beach County 
used a so-called “butterfly” ballot where the candidates’ names were arranged to 
the left and right of a center row of holes. Voters were to specify their preference by 
“punching” the appropriate hole next to the desired candidate. According to several 
news accounts, many voters in Palm Beach, Florida claimed they were confused by the 
ballot structure and may have inadvertently voted for Pat Buchanan when in fact they 
intended to vote for Al Gore. This allegedly contributed to Gore not obtaining enough 
votes to overtake George W. Bush’s slim margin of victory in Florida—and ultimately 
cost Gore the election. 

The file Votes.xlsx contains the original vote totals by Florida county for Gore, Bush, 
and Buchanan as of November 8, 2000. (These data reflect the results prior to the hand 
recount that was done due to other problems with the election in Florida (e.g., the 
“hanging chad” problem).) Use the data in this file to answer the following questions. 
1. What was George W. Bush’s margin of victory in Florida?
2. Prepare a scatter plot showing the relationship between the number of votes 

received by Gore (X-axis) and Buchanan (Y-axis) in each county. Does there appear 
to be any outliers? If so, for what counties?

3. Estimate the parameters for a simple linear regression model for predicting the 
number of votes for Buchanan in each county (excluding Palm Beach County) as a 
function of the number of votes for Gore. What is the estimated regression equation?

4. Interpret the value for R2 obtained using the equation from question 3.
 5. Using the regression results from question 3, develop a 99% prediction interval for 

the number of votes you expect Buchanan to receive in Palm Beach County. What 
are the upper and lower limits of that interval? How does this compare with the 
actual number of votes reported for Buchanan in Palm Beach County?

 6. Prepare a scatter plot showing the relationship between the number of votes 
received by Bush (X-axis) and Buchanan (Y-axis) in each county. Does there appear 
to be any outliers? If so, for what counties?

 7. Estimate the parameters for a simple linear regression model for predicting the 
number of votes for Buchanan in each county (excluding Palm Beach County) 
as a function of the number of votes for Bush. What is the estimated regression 
equation?

 8. Interpret the value for R2 obtained using the equation from question 7.

CasE 9.2
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9. Using the regression results from question 7, develop a 99% prediction interval for 
the number of votes you expect Buchanan to receive in Palm Beach County. What 
are the upper and lower limits of that interval? How does this compare with the 
actual number of votes reported for Buchanan in Palm Beach County?

10. What do these results suggest? What assumptions are being made by using regres-
sion analysis in this way? 

The Georgia Public Service Commission
(Inspired by discussions with Mr. Nolan E. Ragsdale of Banks County, Georgia.)

Nolan Banks is an auditor for the Public Service Commission for the state of Georgia. 
The Public Service Commission is a government agency responsible for ensuring that 
utility companies throughout the state manage their operations efficiently so that they 
can provide quality services to the public at fair prices.

Georgia is the largest state east of the Mississippi River, and various communities 
and regions throughout the state have different companies that provide water, power, 
and phone service. These companies have a monopoly in the areas they serve and, 
therefore, could take unfair advantage of the public. One of Nolan’s jobs is to visit 
the companies and audit their financial records to detect whether or not any abuse is 
occurring.

A major problem Nolan faces in his job is determining whether the expenses 
reported by the utility companies are reasonable. For example, when he reviews a 
financial report for a local phone company, he might see cable line maintenance costs of 
$1,345,948, and he needs to determine if this amount is reasonable. This determination 
is complicated by the fact that the companies differ in size—so he cannot compare the 
costs of one company directly to another. Similarly, he cannot come up with a simple 
ratio to determine costs (such as 2% for the ratio of line maintenance costs to total rev-
enue) because a single ratio might not be appropriate for companies of different sizes.

To help solve this problem, Nolan wants you to build a regression model to estimate 
what level of line maintenance expense would be expected for companies of different 
sizes. One measure of size for a phone company is the number of customers it has. 
Nolan collected the data in the file PhoneService.xlsx representing the number of cus-
tomers and line maintenance expenses of 12 companies he audited in the past year and 
determined were being run in a reasonably efficient manner. 
1. Create a scatter diagram of the data.
2. Use regression to estimate the parameters for the following linear equation for the 

data:

Ŷ 5 b0 1 b1X1

What is the estimated regression equation?
3. Interpret the value for R2 obtained using the equation from question 2.

 4. According to the equation in question 2, what level of line maintenance expense 
would be expected for a phone company with 75,000 customers? Show how you 
arrive at this value.

 5. Suppose that a phone company with 75,000 customers reports a line maintenance 
expense of $1,500,000. Based on the results of the linear model, should Nolan view 
this amount as reasonable or excessive?

 6. In your spreadsheet, calculate the estimated line maintenance expense that would 
be predicted by the regression function for each company in the sample. Plot the 
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predicted values you calculate on your graph (connected with a line) along with the 
original data. Does it appear that a linear regression model is appropriate?

7. Use regression to estimate the parameters for the following quadratic equation for 
the data:

Ŷ 5 b0 1 b1X1 1 b2X2
1

To do this, you must insert a new column in your spreadsheet next to the original 
X values. In this new column, calculate the values X2

1. What is the new estimated 
regression equation for this model?

 8. Interpret the value for R2 obtained using the equation in question 7.
 9. What is the value for the adjusted-R2 statistic? What does this statistic tell you?
 10. What level of line maintenance expense would be expected for a phone company 

with 75,000 customers according to this new estimated regression function? Show 
how you arrive at this value.

 11. In your spreadsheet, calculate the estimated line maintenance expense that would 
be predicted by the quadratic regression function for each company in the sample. 
Plot these values on your graph (connected with a line) along with the original data 
and the original regression line.

 12. Suppose that a phone company with 75,000 customers reports a line maintenance 
expense of $1,500,000. Based on the results of the quadratic model, should Nolan 
view this amount as reasonable or excessive?

 13. Which of the two regression functions would you suggest Nolan use for prediction 
purposes?
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Chapter 10
Data Mining

10.0 Introduction
Although many of the resources used by businesses are limited and constrain what 
organizations can do, the one thing that most businesses produce in ever increasing 
amounts is data. Every operation that takes place in a business, every sales or return 
transaction, every customer interaction, and every click in a website generates data that 
can be captured and stored in a database. Most businesses collect massive quantities of 
data at a rate that exceeds their ability to analyze and interpret it. Today, leading orga-
nizations in virtually every industry realize that this data represents a potentially valu-
able strategic asset that can help fuel data-driven decision making. Data mining is the 
process of finding and extracting useful information and insights from large data sets. 
And just like in mining for coal or diamonds or precious metals, it is usually hard and 
dirty work that requires the right tools and preparation. This chapter first describes the 
major steps involved in the data mining process and summarizes the major categories 
of business problems and opportunities that data mining techniques typically address. 
It then provides a description and example of each of the primary data mining tech-
niques using a popular Excel add-in called XLMiner Platform. 

10.1 Data Mining Overview
We begin our exploration of data mining with an overview of the major steps involved 
in any data mining project. Figure 10.1 provides a summary of these steps that are dis-
cussed in greater detail below.

Companies engaged in geological mining do not usually start digging randomly in 
the earth in the hope of finding something valuable. Rather, prior to moving dirt, they 
normally have some idea of what they are looking for (e.g., gold, silver, copper, coal) 
and usually have identified areas where their digging efforts are likely to be profit-
able—and they bring in the right kinds of tools and equipment for the job at hand. 
Data mining is a term that encompasses a variety of analytic techniques that can be 
used to help managers analyze, understand, and extract value from large sets of data. 
But as with geological mining, businesses engaged in data mining should not begin 
by randomly searching through their data for things that look interesting. Instead, it 
is important to begin with the end in mind. That is, data mining should begin with the 
identification of a problem a business would like to solve or an opportunity it would 
like to leverage. 

This leads to the consideration of where to dig—or more specifically, the identifica-
tion of the data to be analyzed that might reasonably lead to answers for the business 
problems to be solved or provide the leverage that the company would like to obtain. 
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500 Chapter 10 Data Mining

Sometimes this will be data the company already has in its corporate databases or data 
warehouse. Other times, it will require the collection of new data (perhaps via experi-
ments) or the purchase of data from external sources. Either way, the challenge today 
usually is not getting data but, instead, getting the right data in the right amount for 
the problem at hand. Today, it is not uncommon to encounter data sets (or databases) 
with millions of records. Running data mining techniques on data sets of that size can 
be very time consuming, sometimes exceeding the limitations of data mining software 
and the capacity of computers. However, a statistically representative sample from a 
large data set can significantly reduce the required processing resources of data mining 
routines while also still identifying important patterns and extracting meaningful busi-
ness information from the full data source. As a very general rule of thumb, if there are 
p variables in a data set, approximately 10 3 p to 15 3 p records of data should enable 
effective data mining. The Get Data command on the XLMiner Platform tab shown in 
Figure 10.2 allows you to select a sample of data from a larger set of data residing either 
in a worksheet or a variety of other external data sources. Details about these sampling 
facilities can be found in XLMiner’s user guide and help system.

Figure 10.1 Steps in the data mining process

Identify  
Opportunity

Collect  
Data

Explore, 
Understand, 
and Prepare 

Data

Identify Task 
and Tools

Partition 
Data

Build and 
Evaluate 
Models

Deploy 
Models

Figure 10.2

XLMiner 
Platform’s Get 
Data Command

Just as physical mining requires an assessment of the underlying geological foun-
dation and structures in the area being excavated, the next step in data mining is 
exploratory in nature: verifying the accuracy and completeness of the data, gaining an 
accurate understanding of the data, and identifying relationships between variables in 
the data. In preparation for mining, an analyst should also “clean” the data to address 
missing values and errors, identify and process outliers, and ensure consistency in time 
periods, units of measure, variable names, and so on. Some variables might be trans-
formed to vary in a more consistent, predictable manner with other variables. The data 
might be normalized so that each variable is expressed on a common scale (e.g., a mean 
of zero and standard deviation of one, or a range from zero to one) so that one vari-
able does not dominate others in importance merely because of differences in the scale 
of measurement. Unimportant variables should be identified and removed, and sub-
sets of highly correlated variables are often replaced by one or two variables that are 
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representative of the subsets (to spare algorithms from having to process multiple vari-
ables that essentially measure the same thing). Additionally, categorical variables (e.g., 
data describing gender, marital status, level of education) with q possible values should 
usually be converted to q 2 1 binary numeric variables. 

Given the business objectives of the data mining project and consideration of the 
data that is available, the next step in the data mining process is to select the appropri-
ate task and tool. Generally, data mining tasks fall into three potential categories: 

•	 Classification, where we attempt to use information in the data set to estimate to 
what discrete group or class an entity (or observation) belongs. (Examples: Will a 
loan applicant repay or default? Will a company be solvent or bankrupt one year in 
the future? Is an insurance applicant a high, medium, or low risk?)

•	 Prediction, where we attempt to use information in the data set to predict the value 
(or range of reasonable values) of a continuous numeric response variable. (Exam-
ples: What is the fair market value of a given house? How much in itemized deduc-
tions might be expected for a given taxpayer? How many units of our product will a 
customer purchase in the next quarter?)

•	 Association/Segmentation, where we attempt to form logical groupings of observa-
tions in our data. (Examples: What items are typically purchased together? Which of 
our customers tend to be the most similar and define logical target groups?)

Different data mining tools apply to each of the previous tasks. Classification prob-
lems can be addressed using discriminant analysis (DA), logistic regression, neural net-
works, and other techniques. Prediction problems can be addressed using regression 
analysis, neural networks, the k-nearest neighbor technique, time series analysis, and 
other methods. Finally, association problems can be addressed using affinity analysis, 
cluster analysis, and other techniques. Notice there are icons on the XLMiner Platform 
tab in Figure 10.2 corresponding to each of these data mining categories. Most of these 
tools (and others) will be discussed later in this chapter. 

Data mining techniques for classification and prediction problems are often referred 
to as supervised learning algorithms because they apply to data sets where a desired 
outcome or target value is available for each record in the data. In contrast, segmen-
tation and association techniques are unsupervised learning algorithms because they 
apply to data sets that do not have a predefined outcome or target value for each record.

Usually, several different data mining tools are applied to the same set of data—or 
the same tool is run repeatedly with different settings for the parameters that control 
the underlying algorithm—in an effort to find the “best” or most accurate model for the  
problem at hand. Finding the best model in a data mining context can be elusive 
because our ultimate goal is to accurately classify, predict, or segment future data (asso-
ciated with records not currently in our data sets). That is, we want whatever mod-
els and rules we identify for classifying, predicting, or segmenting our current data to 
work well on (or generalize to) new data. 

The underlying idea is that the data that we have is a sample from a larger pop-
ulation of possible data. Any sample will, to some extent, be representative of the 
population from which it is drawn. However, a sample might also contain noise—or 
sample-specific anomalies that are not representative of the population from which the 
data was drawn. Obviously, we would prefer to build data mining models that ignore 
the noise in our data as much as possible and instead reflect those characteristics of 
the population that are present in the sample. Placing too much attention on the sam-
ple-specific noise in a set of data results in a malady known as overfitting—where a 
modeling technique might be very accurate on the data used to estimate or create the 
model but is significantly less accurate on new data. 
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A common approach to detecting and avoiding overfitting is to partition the available 
records of data into different groups, typically called the training sample, the validation 
sample, and (optionally) the test sample. The training sample (or training data) is used 
for calibrating data mining tools and fitting models to the data. The validation sample is 
used for assessing and, at times, preventing overfitting of the training data. Finally, the 
test sample is sometimes used to perform an honest assessment of how well our model 
will work on new data that was not part of the model building or selection process. Data 
mining is an exceedingly pragmatic field where what works (results) tends to be valued 
over why it works (theory). Just as acid can be used to distinguish gold from other met-
als, the process of honest assessment provides an acid test of how well a model works. 

Analysis of the results on the validation or test sample usually drives the decision 
about what modeling techniques to deploy on an operational basis within the organiza-
tion. Operational deployment involves integrating the models with other systems and 
using them on real data to help make decisions or determine actions that, if successful, 
create a positive return of investment for the data mining efforts. Model deployment 
often also involves training users, monitoring the results and accuracy of the models, 
and looking for opportunities to continue to improve their performance. While our 
focus in this chapter is on the details of the modeling techniques, the task of model 
deployment is equally important because the finest model is of little value if it is not 
readily available to those who need it. 

10.2 Classification
Classification refers to a type of data mining problem that uses the information avail-
able in a set of independent variables to predict the value of a discrete, or categorical, 
dependent variable. Typically, the dependent variable in a classification problem is 
coded as a series of integer values representing various groups to which the observa-
tions in a sample belong. The goal in classification is to develop a method for predict-
ing to what group a new observation is most likely to belong based on the values of 
the independent variables. To gain an understanding of the purpose and value of DA, 
consider the following business situations where DA could be useful.

•	 Credit scoring. The credit manager of a mortgage company classifies the loans it has 
made into two groups: those resulting in default and those that are current. For each 
loan, the manager has data describing the income, assets, liabilities, credit history, 
and employment history of the person who received the loan. The manager wants 
to use this information to develop a rule for predicting whether or not a new loan 
applicant will default if granted a loan.

•	 Insurance rating. An automotive insurance company uses claims data from the past 
five years to classify its current policyholders into three categories: high risk, moder-
ate risk, and low risk. The company has data describing each policyholder’s age, mar-
ital status, number of children, educational level, employment record, and number 
of traffic citations received during the past five years. The company wants to analyze 
how the three groups differ with regard to these characteristics and use this informa-
tion to predict into which risk category a new insurance applicant is likely to fall.

Classification techniques differ from most other predictive statistical methods (e.g., 
regression analysis) because the dependent variable is discrete, or categorical, rather 
than continuous. For instance, in the first example given previously, the credit manager 
wants to predict whether a loan applicant will (1) default or (2) repay the loan. Simi-
larly, in the second example, the company wants to predict into which risk category a 
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new client is most likely to fall: (1) high risk, (2) moderate risk, or (3) low risk. In each 
example, we can arbitrarily assign a number 11, 2, 3, c 2  to each group represented in 
the problem, and our goal is to predict to which group 11, 2, 3, c 2  a new observation 
is most likely to belong.

XLMiner offers several different classification techniques, including discriminant 
analysis, logistic regression, classification trees, k-nearest neighbor, naïve Bayes, and 
neural networks. A brief explanation and example of each technique is provided 
below. Throughout this discussion of classification techniques, we will assume there 
are n records to be classified into one of m groups (denoted G1, G2, c, Gm), where 
each record i is defined by p independent variables 1xi1, xi2, c, xip 2 . Additionally, we 
assume that any categorical independent variable with q values has been converted 
into q 2 1 binary variables. In many classification problems with m . 2 groups, there 
is one group of particular interest relative to the others. It is not uncommon to reduce 
such a problem into an m 5 2 group problem where one group is the group of interest, 
and the remaining groups are combined into a single “other” group. Thus, the discus-
sion here will focus on two-group classification problems. 

When faced with a classification problem, careful consideration should be given 
to the composition of the training sample. As stated earlier, the training sample (or 
training data) is used for calibrating data mining tools and fitting models to the data. 
In many classification problems, data records associated with the group of greatest 
interest occur far less frequently than for the other groups in the sample. For instance, 
suppose an advertisement for a home security service is shown to 1,000 potential cus-
tomers, and only 10 customers actually respond to the ad by purchasing the service. 
A data set representing the 1,000 exposures of this ad would contain only 10 records 
(1% of the total) corresponding to responders (also called “successes” or “positives”). 
Thus, a classification rule predicting that everyone who sees the advertisement will not 
respond to it will be 99% accurate overall but 100% inaccurate on identifying records 
belonging to the group we care most about. As a result, when there is a large imbal-
ance in the frequency with which groups are represented in a classification data set, it 
is often wise to create a training sample where the less frequently appearing group is 
oversampled—or appears with greater frequency than occurs in the actual data. Over-
sampling forces a classification method to focus on discriminating between the groups 
rather than just classifying the most records correctly. We will employ oversampling in 
the example used here to illustrate various classification techniques. 

10.2.1 A ClAssifiCAtion ExAmplE
Many data mining tasks center on the problem of predicting whether or not a potential 
customer will respond to a particular advertisement. Countless companies use direct 
mail marketing to try to entice potential customers to accept credit card offers or sign 
up for any number of services from pest control to satellite television. Many other non-
profit organizations use similar mail pieces to solicit funds for political parties, social 
causes, or humanitarian relief work. We will use the following example (adapted from 
the Universal Bank data set distributed with XLMiner) to illustrate how various classi-
fication techniques work.

Universal Bank is a mid-size regional bank serving customers throughout the states 
of Iowa, Illinois, and Missouri. Eve Watson is a marketing analyst for the bank and 
has been asked to investigate ways to improve the profitability associated with the 
bank’s personal loans operations. There are a number of ways this could be done, 
from raising interest rates on new loans to reducing costs associated with bad debts 
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and loan origination costs. Because interest rates are largely tied to market forces 
and what other lenders are offering, Eve has decided there is better opportunity 
to increase the bank’s profits on personal loans by more accurately targeting cus-
tomers who are likely to respond to solicitations to take out a personal loan. Eve 
collected a random sample of 2,500 records of current bank customers that have all 
received a solicitation for personal loans. The data set includes variables on a num-
ber of demographic and financial measures for each customer along with a record of 
whether or not each customer has responded to the solicitation and taken out a per-
sonal loan. Looking at this data, Eve discovered that about 10% of customers who 
had received solicitations had subsequently taken out personal loans with the bank. 
Although this is not a bad response rate, each solicitation sent to a customer costs 
the bank money. So Eve would like to determine if there is a fairly accurate way to 
predict if a given customer will respond to a solicitation for a personal loan, as this 
would allow the bank not to waste money sending solicitations to customers who 
are unlikely to take out a personal loan. The data Eve collected is available in the file 
Fig10-3.xlsx that accompanies this book, a portion of which is shown in Figure 10.3.

Figure 10.3

Data for the 
Universal Bank 
example

In this example, the first two steps of the data mining process identified in Figure 
10.1 have already been completed. The business opportunity (step 1) was identified as 
the potential increase in profit that would arise if more accurate estimates were made 
of the solicitation response, and a sample of data (step 2) has been collected. From the 
outset, it is important to gain an accurate understanding of the meaning, scale, and 
coding of all the variables in the data set. Ideally, much of this information is conveyed 
by the names/titles assigned to the variables. However, it is best to create a formal 
variable dictionary that allows for more detailed definitions than can be conveniently 
expressed in variable names. These definitions are given in Figure 10.4 and also appear 
on the Description worksheet in the data file (Fig10-3.xlsx) for this problem.

Next, it is important to inspect the data for errors, outliers, and missing values and 
take appropriate actions to resolve those issues. We will assume those tasks have been 
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completed for this data, but it should be noted that the Transform icon on the XLMiner 
Platform tab shown in Figure 10.2 has a utility that assists in identifying and handling 
missing values by either deleting the associated record or replacing missing values in 
one of a variety of possible ways. 

In the exploratory phase of data mining, it is often helpful to create a table of sum-
mary descriptive statistics for the data set such as the one shown in Figure 10.5. Such 
a table can help to spot errors, outliers, and missing data. For instance, we can quickly 
scan the minimum and maximum values for each variable to verify they are within 
reasonable limits. A negative minimum value for a variable will often indicate an error. 
Similarly, a maximum value of 135 for a variable representing a customer’s age likely 
suggests either an error or an outlier that requires additional consideration. Note that 
the values in row 13 of this table use Excel’s COUNTIF( ) function to detect empty cells 
within the data that would likely represent missing values. Also note that the value in 
cell M2 indicates that 10.24% (or 256 of the 2500 values in this sample) correspond to 
customers who accepted loan offers in response to the latest solicitation.

After cleaning the data, attention should turn to higher level data consider-
ations. For instance, while the Education variable in this data set might be free 
of errors, it probably should not be used in its present form. Note that this vari-
able takes on three values representing different categories of education (i.e., 
1 5 Undergraduate, 2 5 Graduate, 3 5 Advanced/Professional). Such categorical (or 
nominal) variables are quite common but, because there is often no intrinsic meaning 
or ordering to the values used for each category, mathematical manipulation of these 
variables tends to be meaningless or misleading. 

For example, if a data mining algorithm assigns some weight or value to the Educa-
tion variable, this implicitly assumes that a graduate degree (coded as a 2) carries twice 
as much weight or value as an undergraduate degree (coded as a 1). Clearly, that might 

Variable Name Description

ID Sequential customer ID number

Age Customer’s age in years

Experience Number of years of professional work experience

Income Estimated annual income of the customer ($1,000s)

Family Size Family size of the customer

Credit Card Avg Average spending on bank-issued credit cards per month (in $1,000s)

Education Highest education level attained (1 5 Undergraduate; 2 5 Graduate;  
3 5 Advanced/Professional)

Mortgage Value of house mortgage held by bank (in $1,000s)

Securities Account Does the customer have a securities account with the bank? (1 5 yes, 0 5 no)

CD Account Does the customer have a Certificate of Deposit (CD) account with the bank?  
(1 5 yes, 0 5 no)

Online Banking Does the customer use Internet banking facilities? (1 5 yes, 0 5 no)

Credit Card Does the customer use a credit card issued by the bank? (1 5 yes, 0 5 no)

Personal Loan Did this customer accept the personal loan offered in the last solicitation?  
(1 5 yes, 0 5 no)

Figure 10.4 Variable dictionary for the Universal Bank example
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not be the case. To avoid this problem, it is best to transform a categorical variable 
with q categories into a set of q 2 1 binary (or dummy) variables. Because our Educa-
tion variable has three categories, we might replace it with two binary variables named 
EdLevel-1 and EdLevel-2, where EdLevel-1 equals 1 for records in which the Educa-
tion variable is 1 (and is 0 otherwise), and EdLevel-2 equals 1 for records in which 
the Education variable is 2 (and is 0 otherwise). Of course, EdLevel-1 and EdLevel-2 
both equal 0 for records where the Education variable is 3. Thus, the q 5 3 values for 
the Education variable can be represented using q 2 1 5 2 binary variables. XLMiner’s 
Transform command (shown in Figure 10.2) offers a utility for transforming categorical 
data into binary (or dummy) variables. However, it is also easy to create the necessary 
binary variables using IF( ) functions in Excel, which is the approach taken here to cre-
ate the new variables shown in columns H and I in Figure 10.6 (and the file Fig10-6.xlsx 
that accompanies this book).

Another useful technique for exploratory data analysis is to create a table showing 
the correlations between each pair of variables in the data set. To create a correlation 
table for the data in Figure 10.6, follow these steps:

1. Click Data, Data Analysis.
2. Select the Correlation option, and click OK.

Key Cell Formulas

Cell Formula Copied to

B2 5AVERAGE(Data!B$4:B$2503) C2:M2
B3 5STDEV.S(Data!B$4:B$2503)/SQRT(B15) C3:M3
B4 5MEDIAN(Data!B$4:B$2503) C4:M4
B5 5MODE(Data!B$4:B$2503) C5:M5
B6 5STDEV.S(Data!B$4:B$2503) C6:M6
B7 5VAR.S(Data!B$4:B$2503) C7:M7
B8 5KURT(Data!B$4:B$2503) C8:M8
B9 5SKEW(Data!B$4:B$2503) C9:M9
B10 5B122B11 C10:M10
B11 5MIN(Data!B$4:B$2503) C11:M11
B12 5MAX(Data!B$4:B$2503) C12:M12
B13 5COUNTIF(Data!B$4:B$2503,””) C13:M13
B14 5SUM(Data!B$4:B$2503) C14:M14
B15 5COUNT(Data!B$4:B$2503) C15:M15

Figure 10.5

Descriptive 
statistics for the 
Universal Bank 
example
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3. Complete the resulting Correlation dialog box as shown in Figure 10.7.
4. Click OK.

The resulting correlation table is shown in Figure 10.8 (after some minor formatting 
was applied). The correlation statistic varies from 21 to 11 and indicates the strength 
of the linear relationship between two variables. The conditional formatting command 
on the Home tab in Excel was used to add color scales (also known as a heat map) to the 
correlation table. This formatting helps highlight the more significant correlations in the 
table. Not surprisingly, fairly strong correlations exist among the Education variable 
and the two binary variables we added to model the three categories for this variable. 
(We will use only the binary Education variables when using the classification tech-
niques described here.) Additionally, there is a fairly strong correlation between the 
Income variable and the Credit Card Average and Personal Loan variables. But perhaps 

Figure 10.6

Converting 
categorical 
Education variable 
to binary variables

Key Cell Formulas

Cell Formula Copied to

I4 5IF(H451,1,0) I5:I2503
I5 5IF(H452,1,0) J5:J2503

Figure 10.7

Excel’s Correlation 
dialog
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most strikingly, there is a 0.994 correlation between the Age and Work Experience vari-
ables. This, of course, makes sense because older people will naturally have had the 
opportunity to work longer than younger people. But the magnitude of this correlation 
suggests that the Age and Work Experience variables measure a nearly identical feature 
of the bank’s customers. So it really serves no modeling purpose to have both of these 
variables in our data set. As a result, we will omit the Age variable when demonstrating 
the various classification techniques using this data set. 

Graphical visualization is another important way of exploring and better under-
standing a data set. The Explore command on the XLMiner Platform tab provides a 
very powerful utility for graphing data in a variety of ways. With the Data sheet acti-
vated, clicking Explore, Chart Wizard launches the Chart Wizard dialog box shown 
in Figure 10.9, which summarizes the various graphing options that are available 
via XLMiner.

Figure 10.8 Correlation table for Universal Bank’s data

Figure 10.9

XLMiner’s Chart 
Wizard dialog

47412_ch10_ptg01_499-565.indd   508 08/11/16   1:28 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Classification 509

Selecting the Variable option in the first dialog box in Figure 10.9 and selecting all 
the variables except for ID, Age, and Education in the second dialog box produces the 
univariate bar charts and histograms shown in Figure 10.10. These types of graphs 
help us understand the distribution of values associated with each individual vari-
able. A nice feature of this utility is that as you adjust the filters in the right pane of 
the display, all of the charts will be updated dynamically to show the effects on the 
various graphs. 

Figure 10.11 shows a scatterplot created with the Chart Wizard showing the 
Income variable plotted against Credit Card Average and broken out (or paneled) 
by Personal Loan. This chart makes it very clear that customers with incomes below 
$100,000 and average monthly credit card spending below $3,000 tended not to 
respond to the last personal loan solicitation. Identifying patterns such as this would 
be very difficult without a flexible, dynamic data visualization tool such as XLMin-
er’s Chart Wizard. But also note that interesting relationships like those shown in 
Figure 10.11 don’t magically appear on their own. Again, as in geological mining, it 
takes some digging, some exploration, and some trial and error to uncover the inter-
esting patterns and bits of information in a data set that can help solve problems and 
leverage opportunities. 

Having explored, processed, and gained a good understanding of the data, our next 
task is to see how various data mining tools can be used to solve classification prob-
lems. Generally speaking, you cannot usually tell which of several data mining tech-
niques will be most effective on a particular problem in advance of trying them and 
comparing their results. So we will use the same example data set discussed previously 
with several different data mining classification techniques to compare and contrast 
their complexity, efficiency, and effectiveness. 

Figure 10.10

Univariate plots for 
selected variables in 
the data set
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Figure 10.11

A scatterplot of 
Income versus 
Credit Card average, 
paneled by Personal 
Loan

10.3 Classification Data Partitioning
A variety of data mining techniques can be used to solve classification problems. In this 
section, we will cover several such techniques, providing a brief conceptual descrip-
tion of how they work and then illustrating their use on the Universal Bank data set 
described earlier. Because the outcome group of interest in our data set (i.e., responders 
to the solicitation for a personal loan) occurs far less frequently than the other group 
(i.e., nonresponders to the solicitation), we will use oversampling to create the training 
sample. As explained earlier, oversampling forces a classification method to focus on 
discriminating between the groups.

To create the training and validation data set for this example, follow these steps:

1. Click the Partition icon in the Data Mining section of the XLMiner Platform tab.
2. Click Partition with Oversampling.

This launches the Partition with Oversampling dialog box shown in Figure 10.12, 
showing the settings needed for this problem. Note that you must first select the vari-
ables to be included in the partitioned data (including the Personal Loan variable) and 
then choose Personal Loan as the output variable. Also note that while the percentage of 
“successes” (i.e., records where Personal Loan 5 1) in the full data set is 10.24%, here we 
are asking for a training set with 50% successes. Because there were 256 success records 
in the original data, 128 of those will be selected for the training data, and the remaining 
128 will be allocated to the validation set. To achieve 50% success records in the training 
data, there will also be 128 nonsuccess records. Because there are 128 success records in 
the validation set, 1,122 non-success records will be added to that set to result in a 10.24% 
success rate in the validation set. Clicking the OK button on the Partition with Oversam-
pling dialog box in Figure 10.12 causes XLMiner to automatically select and extract the 
desired training and validation samples from the original data set. The worksheet named 
Data_Partition shown in Figure 10.13 is automatically inserted in the workbook and will 
now serve as the input source for the classification algorithms we discuss next. 
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Figure 10.12

Settings for the data 
partitioning dialog

Figure 10.13 New worksheet containing training and validation data
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512 Chapter 10 Data Mining

10.4 Discriminant Analysis
Discriminant analysis (DA) is one of the oldest techniques for solving classification 
problems. If the independent variables in each group are all normally distributed with 
equal covariance matrices across the groups, it can be shown that DA provides theo-
retically optimal classification results. If those conditions are not met, DA may still be 
used as a heuristic and often provides good classification results. 

To understand how DA works, consider the data shown in Figure 10.14 where two 
independent variables (representing mechanical and verbal test scores) are plotted for 
two different groups (representing satisfactory and unsatisfactory employees). The 
average values for each of the independent variables were calculated for each group 
and are indicated by the points labeled C1 and C2. These points are called centroids and 
represent where each group is centered. 

Figure 10.14

Hypothetical data 
for a two-group 
classification 
problem with two 
variables

25
25

30

35

40 Group 2
centroid

c2

c1

Mechanical Aptitude

Ve
rb

al
 A

pt
itu

de

Group 1
centroid

Satisfactory Employees
Unsatisfactory Employees

45

30 35 40 45 50

One intuitive approach to classification is to calculate the distance from each obser-
vation in Figure 10.14 to the centroid for each of the two groups and assign each obser-
vation to its closet group based on these distances. (If they occur, ties may be broken in 
a number of ways.) Several different distance measures could be used for this purpose, 
including straight-line or Euclidean distance. 

You might recall from high school algebra (or chapter 8) that the Euclidean (straight-line) 
distance between two points 1A1, B1 2  and 1A2, B2 2  in two dimensions can be measured by:

 Distance 5 "1A1 2 A2 2 2 1 1B1 2 B2 2 2 10.1

For example, the distance between two arbitrary points (3, 7) and (9, 5) is:

"13 2 9 2 2 1 17 2 5 2 2 5 "40 5 6.324

This distance formula generalizes easily to any number of dimensions. We could use 
this formula to measure the distance from a given observation to the centroid of each 
group, and then assign the observation to the group it is closest to. However, from a sta-
tistical viewpoint, the distance measure in equation 10.1 is somewhat weak because it 
ignores the variances of the independent variables. To see this, suppose that X1 represents 
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Discriminant Analysis 513

one of the independent variables and X2 the other. If X2 has a much larger variance than X1,
the effects of small but important differences in X1 could be masked or dwarfed in equation 
10.1 by large but unimportant differences in X2. Figure 10.15 illustrates this problem, where 
the ellipses represent regions containing 99% of the values belonging to each group.

c1

c2

x2

x1

p1

Figure 10.15

Boundary lines of 
regions containing 
99% of observations 
in each of two groups

Consider the observation labeled P1 in Figure 10.15. This observation appears to be 
closest to C2 and, indeed, if we used the standard distance measure in equation 10.1, we 
would assign it to group 2 because its distance from C1 with respect to the X2-axis is rel-
atively large. However, it is extremely unlikely that this observation belongs to group 2 
because its location with respect to the X1-axis exceeds the typical values for group 2. 
Thus, it would be helpful to refine our distance measure in equation 10.1 to account for 
possible differences in the variances of the independent variables.

If we let Dij represent the distance from observation i to the centroid for group j, we 
can define this distance as

 Dij 5 Åa
k

1xik 2 xjk 2 2

s2
jk

 10.2

where xik represents the value of observation i on the kth independent variable, xjk  rep-
resents the average value of group j on the kth independent variable, and s2

jk represents 
the sample variance of group j on the kth independent variable. Numerous variations 
exist on the distance measure in equation 10.2. One of the most popular variations—
known as the Mahalanobis distance measure—refines the calculation in equation 10.2 
to account for differences in the covariances between all possible pairings of the inde-
pendent variables. 

The line drawn in Figure 10.14 indicates points that are exactly the same distance to 
the centroids for groups 1 and 2. This line of equidistance divides the sample space into 
two regions, where points falling in each region would be assigned to the correspond-
ing group.
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514 Chapter 10 Data Mining

A related technique, known as Fisher’s Linear Discriminant Function (FLDF), identi-
fies a linear function for each of the m groups in a classification problem. Geometrically, 
each of the m linear functions defines a p-dimensional hyperplane that may be thought 
of as measuring the strength of an observation’s “membership” to the corresponding 
group. For any observation i with values 1xi1, xi2, c, xip 2 , we may use these linear func-
tions to compute m classification scores c1 1 i 2 , c2 1 i 2 , c, cm 1 i 2 . For each observation, 
one of these classification scores will be higher (or larger in value) than the other ones 
(except for points where the hyperplanes intersect with each other). An observation is 
then classified as belonging to the group associated with the maximum classification 
score. Again, ties may be broken in a variety of ways. (Under certain conditions, the 
points where the FLDF hyperplanes intersect correspond to the lines of equal Mahala-
nobis distance; in which case, the two techniques provide identical classification results.)

FLDF classification scores can be converted into probabilities of group member-
ship via the following formula where Pk 1 i 2  represents the probability of observation i 
belonging to group k:

 Pk 1 i 2 5
eck1i2

ec11i2 1 ec21i2 1 # # # 1 ecm1i2 10.3

Using these probabilities, an observation is usually classified into the group associated 
with the highest probability.

10.4.1 DisCRiminAnt AnAlYsis ExAmplE
To perform DA using XLMiner, follow these steps:

1. Click the Data_Partition worksheet shown in Figure 10.16 (and the file Fig10-16.
xlsm that accompanies this book).

2. On the XLMiner Platform tab, click Classify, Discriminant Analysis.
3. Make the Step 1 selections shown in Figure 10.16, and click Next.
4. Make the Step 2 selections shown in Figure 10.17, and click Next.
5. Make the Step 3 selections shown in Figure 10.17, and click Finish.

Figure 10.16

Discriminant 
Analysis Step 1 
selections
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Discriminant Analysis 515

Figure 10.17 Discriminant Analysis Step 2 and Step 3 selections

XLMiner inserts several new worksheets into the workbook containing the results of 
the DA. Figure 10.18 shows the portion of the primary output sheet (DA_Output) that 
summarizes the classification functions for each of the linear discriminant functions for 
each group in our data set. Note that the top of this sheet contains an “Output Naviga-
tor” that provides hyperlinks to various components of the output that was produced.

Scrolling down a bit on the DA_Output sheet reveals the reports in Figure 10.19 
summarizing the accuracy of the DA predictions for our training and validation data 
sets. The classification confusion matrix for the training data indicates that 115 of the 
128 observations belonging to group 1 were accurately classified into this group, and 
the remaining 13 observations belonging to group 1 were misclassified into group 0 
(for a 13/128 5 10.16% error rate for group 1). Similarly, 116 of the 128 observations in 
the training data that belong to group 0 were accurately classified into this group, and 
the remaining 12 observations were misclassified into group 1 (for a 12/128 5 9.38%
error rate for group 0). Overall then, 25 of the 256 observations in our training data 
were misclassified, for an overall error rate of 9.77%. 

The classification confusion matrix for the validation data shows fairly similar levels 
of accuracy, suggesting that this technique generalizes well to new data that was not 
involved in the training process. In this case, 106 of the 128 observations belonging to 
group 1 were accurately classified into this group, and the remaining 22 observations 
belonging to group 1 were misclassified into group 0 (for a 22/128 5 17.19% error rate 
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516 Chapter 10 Data Mining

Figure 10.18 Classification functions for the Universal Bank data 

Figure 10.19

lassification results 
for the trainings and 
validation samples
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Discriminant Analysis 517

for group 1). Similarly, 1,025 of the 1,122 observations in the validation data that belong 
to group 0 were accurately classified into this group, and the remaining 97 observations 
were misclassified into group 1 (for a 97/1122 5 8.65% error rate for group 0). This 
results in an overall error rate of 9.52% on the validation data.

In binary classification problems, it is possible that misclassifying a true group 1 
observation into group 0 might be regarded as being a more costly mistake than mis-
classifying a true group 0 observation into group 1. In the present Universal Bank 
example, misclassifying a true group 1 observation into group 0 results in lost profit 
on the personal loan that individual would have taken whereas misclassifying a true 
group 0 observation into group 1 only causes the bank to incur the cost of wasted solic-
itation to that person. If the costs of misclassification (or their ratio) can be estimated, 
these relative costs can be indicated in the dialog box shown in Figure 10.17. Increasing 
the relative misclassification costs of “successes” (group 1 observations) would tend to 
reduce the number of errors on true group 1 observations (i.e., the values in cells D79 
and D102 in Figure 10.19). Conversely, increasing the relative misclassification costs of 
“failures” (group 0 observations) would tend to reduce the number of errors on true 
group 0 observations (i.e., the values in cells D80 and D103 in Figure 10.19).

Figure 10.20 summarizes four additional measures of predictive accuracy often used 
to describe the results of a binary classification technique: precision, recall (or sensitiv-
ity), specificity, and the F1 score. Precision is a measure of how accurate the classifier is 
when it predicts a “success” (or makes a class 1 prediction in our example). Looking at 
the confusion matrix for the training data in Figure 10.19 we see that when the classifier 
predicted “success” (class 1) it was correct in 115 out of 127 cases, resulting in a preci-
sion score of 115/127 5 0.9055 (shown in cell D85). 

Figure 10.20

Summary of 
precision, recall, 
specificity, and the 
F-1 score

Precision 5 
 Number of correct “Success” predictions

Number of all “Success” predictions

Recall 5 
 Number of correct “Success” predictions

Total number of “Success” observations

Specificity 5 
 Number of correct “Failure” predictions

Total number of “Failure” observations

F1 Score 5 2 aPrecision 3  Recall
Precision 1 Recall

b

Recall (or sensitivity) measures how well the classifier recognizes “successes” 
(group 1 observations) when they present themselves. Looking again at the results for 
the training data in Figure 10.19 we see that when the classifier encountered a “success” 
(group 1 observation), it classified it correctly 115 out of 128 times, resulting in a recall 
score of 115/128 5 0.8984 (shown in cell D86). 

Specificity is the same as recall, but for “failures” (i.e., group 0 observations). For 
the training data in Figure 10.19 we see that when the classifier encountered a “failure” 
(group 0 observation), it classified it correctly 116 out of 128 times, resulting in a recall 
score of 116/128 5 0.9063 (shown in cell D87). 

Note that there is a direct trade-off between recall (sensitivity) and specificity. That 
is, a classifier can achieve a perfect recall score of 100% by classifying every observation 
as a “success”—but in that case, its specificity score would drop to 0%. Conversely, if 
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518 Chapter 10 Data Mining

every observation is classified as a “failure” the specificity score would be 100% but 
the recall would be 0%. In most binary classification problems there is a cutoff score 
(or probability) that determines the threshold for classifying observations into group 1. 
The results in Figure 10.19 use a default cutoff probability of 0.5, shown in cells F69 and 
F92 for the training and validation results, respectively. Changes to the cutoff value will 
impact the various accuracy statistics in the associated confusion matrix, error report, 
and performance summary shown in Figure 10.19. 

The F1 score (shown in cell D88 in Figure 10.19 for the training data) combines the 
precision and recall measures to provide an overall measure of a classifier’s accuracy. 
It is calculated as, 

F1 score 5 2aPrecision 3 Recall
Precision 1 Recall

b 

and ranges between a maximum value of 1 (when precision and recall both equal their 
maximum values of 1) and a minimum value of 0 (when either the precision or recall 
equal their minimum values of 0). Notice that the F1 score of 0.64048 for the validation 
data (cell D111) is much worse than the F1 score of 0.90196 for the training data (cell 
D88) due mostly to the classifier’s loss of precision on the validation data. 

Additional information about the effectiveness of DA on this problem is given in 
the worksheet named DA_ValidationLiftChartLDA shown in Figure 10.21. A lift chart 
provides a visual summary of the improvement that a data mining model provides on 

Figure 10.21 Lift chart and ROC graph for the validation sample
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Discriminant Analysis 519

a binary classification problems compared to a random guess. The diagonal line in this 
chart represents the cumulative number of group 1 observations we would have pre-
dicted by guessing. The curved line indicates how many group 1 observations we can 
identify by sorting the model’s predictions in reverse order (from highest probability 
of belonging to group 1 to lowest). This chart indicates that the majority of the group 1 
observations “rise to the top” of that sorted list. The decile-wise lift chart provides sim-
ilar information. For instance, the first bar in this chart indicates that the first 10% of the 
sorted observations contain approximately 6.7 times the number of group 1 observa-
tions than would a random selection of 10% of the records. 

As noted earlier, there is a trade-off between recall (sensitivity) and specificity in 
binary classification problems. The receiver operating characteristic (ROC) curve in 
Figure 10.21 summarizes this trade-off and the effectiveness of the classifier associated 
with the graph. (Note that the x-axis in a ROC graph represents 1-specificity.) This 
graph indicates that if a very high cutoff probability is used to classify observations as 
“successes” this classifier will have a very low sensitivity and a high specificity. How-
ever, as that cutoff probability is lowered there is a dramatic increase in sensitivity with 
a relatively small loss of specificity—suggesting that the classifier does indeed have 
valuable discriminatory power. The area under the curve (AUC) reported in the title of 
the ROC chart summarizes the power of the classifier in question relative to a random 
classifier (which would have an AUC value of 0.5). Generally speaking, AUC values 
of 0.8 or better are associated with “good” classifiers with an AUC of 1 representing a 
perfect classifier. 

The worksheets named DA_TrainingScoreLDA and DA_ValidationScoreLDA show 
the probability of each observation belonging to group 1 for the training and valida-
tion data, respectively. Figure 10.22 shows the results for the validation data. The prob-
abilities of success (group 1 membership) shown in column E are calculated by first 
applying the classification functions shown in Figure 10.18 to the data for each observa-
tions and then computing the final probabilities using equation 10.3. Note that cell F16 

Figure 10.22 Predictions for the validation data
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520 Chapter 10 Data Mining

assumes a default minimum cut-off probability of 0.5 for membership in group 1. This 
value can be changed manually to “fine-tune” the cut-off value, but in most cases, the 
default value works well.

Finally, the worksheet named DA_Stored is where XLMiner stores the information, 
parameter settings, and classification functions for the DA model. This worksheet can 
be used in conjunction with the Score command on the XLMiner Platform tab to clas-
sify new data for which true group members are not known. For instance, the work-
sheet named New Data shown in Figure 10.23 contains records for 10 new customers 
who have not received a solicitation for a personal loan. To use our DA model to pre-
dict whether or not these customers would respond positively to a solicitation for a 
person loan, follow these steps:

1. Click Score on the XLMiner Platform tab.
2. Complete the dialog box as shown in Figure 10.23 and click Match by Name.
3. Click OK.

The resulting group predictions for these new observations are shown in Figure 
10.24. Based on these scores, it appears that observations 1 and 4 are good prospects for 
personal loan solicitations. 

10.5 Logistic Regression
Logistic regression is a classification technique that estimates the probability of an 
observation belonging to a particular group using a set of independent variables 
(including appropriate interactions and transformations of our original variables). In 
theory, logistic regression can be used for classification problems with any number of 

Figure 10.23

Scoring new data
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groups 1m $ 2 2 . However, it is most often used for two-group classification problems, 
and, in fact, XLMiner does not currently allow for more than two groups in its imple-
mentation of logistic regression. Although this is somewhat of a limitation, recall that in 
many classification problems with more than two groups, there is really one group that 
is of primary interest, and it is not uncommon to convert such a problem into an m 5 2
group problem. Logistic regression is also a very robust classification technique that 
often outperforms other classification techniques across a variety of data conditions.

For two-group (binary) classification problems, the logistic regression model esti-
mates the probability of an observation 1xi1, xi2, c, xip 2  belonging to group 1 as 
follows:

 P1 1 i 2 5
1

1 1 e21b01b1xi11b2xi21 # # #1bpxip2  10.4

This function is based on the cumulative logistic probability function and maps 
the  values of the input observation into probability values strictly between 0 and 1. 
The probability of the observation belonging to the other group (i.e., group 0) is 
P0 1 i 2 5 1 2 P1 1 i 2 . 

Figure 10.25 illustrates the shape of the cumulative logistic distribution for a single 
independent variable. The slope of the cumulative logistic distribution is greatest when 
P1 1 i 2 5 0.5. This implies that changes in the independent variables will have their great-
est impact at the midpoint of the distribution. Conversely, the relatively low slopes at 
the tails of the distribution imply that large changes in the independent variables are 
required to bring about changes in the estimated probabilities in those regions.

It can be shown that equation 10.4 is equivalent to the regression equation shown in 
equation 10.5. The dependent variable in equation 10.5 is simply the natural logarithm 
of the odds that an observation belongs to group 1.

 LNa P1 1 i 2
1 2 P1 1 i 2 b

5 b0 1 b1xi1 1 b2xi2 1 # # # 1 bpxip  10.5

Unfortunately, we rarely can use regression to estimate the parameters in equation 
10.5 because we usually do not know the probabilities represented by P1 1 i 2  for the 

Figure 10.24

Classification 
results for new data 
with discriminant 
analysis
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522 Chapter 10 Data Mining

observations in our training data. For example, in a credit scoring problem, we might 
know (after the fact) which loan applicants did and did not prove to be creditworthy, 
but we would not know the probability that they would be creditworthy prior to accept-
ing their application and giving them a loan. (By analogy, knowing the outcome that a 
flipped coin has landed on “heads” is not the same as knowing the probability that it 
would land on “heads” prior to flipping it.) Additionally, even if we knew the values of 
P1 1 i 2 , if any of them happened to equal 0 or 1, the logarithm of the odds needed for the 
dependent variables in equation 10.5 will be undefined. As a result, the parameters for 
a logistic regression model are usually derived using a nonlinear maximum likelihood 
estimation (MLE) procedure. In a nutshell, the MLE technique derives values for the 
model parameters that maximize the probability of obtaining the observed data (i.e., 
the values for bo, b1, c, bp that maximize the product Pi[G1 

P1 1 i 2Pi[G0 

P0 1 i 2 , where Gj is 
the set of values belonging to group j).

10.5.1 loGistiC REGREssion ExAmplE 
To perform logistic regression using XLMiner, follow these steps:

1. Click the Data_Partition worksheet shown in Figure 10.26 (and the file Fig10-26.
xlsm that accompanies this book).

2. On the XLMiner Platform tab, click Classify, Logistic Regression.
3. Make the Step 1 selections shown in Figure 10.26, and click Next.
4. Make the Step 2 selections shown in Figure 10.27, and click Next.
5. Make the Step 3 selections shown in Figure 10.27, and click Finish.

Once again, XLMiner inserts several new worksheets into the workbook containing 
the logistic regression results. Figure 10.28 shows estimated coefficients for each of the 
independent variables in the logistic regression model. Note that all the input variables 
selected in Figure 10.26 appear in the model. However, in some cases, a subset of the 
input variables does the best job of classification (for instance, if the original set of input 
variables results in overfitting). In Figure 10.27, the command button labeled Variable 
Selection provides access to another dialog box (not shown) with different options for 
determining what input variables to use. Part of the data mining process with logistic 
regression would involve trying different subsets of variables in an attempt to identify 
the best model. 
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Example of a 
cumulative logistic 
distribution function
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Figure 10.26

Logistic Regression 
Step 1 selections

Figure 10.27 Logistic Regression Step 2 and Step 3 selections
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524 Chapter 10 Data Mining

Figure 10.29 provides a classification confusion matrix and error report for both the 
training and validation samples. Comparing these results with those in Figure 10.19 for 
DA, it appears that the classification accuracy for logistic regression is slightly better on 
the training data and slightly worse on the validation data. However, logistic regres-
sion does a slightly more accurate job classifying observations in the validation sample 
belonging to group 1. 

Figure 10.28 Logistic regression model results

Figure 10.29

Logistic regression 
accuracy summary
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Figure 10.30 shows the lift charts and ROC curve for the validation data for the 
logistic regression. These charts are also very similar to those obtained using DA and 
suggest that logistic regression is quite effective at identifying the true group 1 observa-
tions in our validation sample.

XLMiner’s Score command can be used to create classification predictions for 
new data in exactly the same manner as demonstrated earlier in Figure 10.23 and 
Figure 10.24 for DA. (Of course, here we would use the logistic regression results stored 
on the sheet named LR_Stored as the stored model used to generate the classifications.) 
These scoring results are given in Figure 10.31. Note that the predictions from logistic 
regression for observations 1 and 4 match those obtained using DA (shown in earlier 
Figure 10.25). Additionally, while observation 6 was classified into group 0 using DA, 
logistic regression places it into group 1. 

10.6 k-Nearest Neighbor
As its name suggests, the k-nearest neighbor (k-NN) technique identifies the k obser-
vations in the training data that are most similar (or nearest) to a new observation we 
want to classify. We then assign the new record to the most frequently occurring group 
among its k nearest neighbors. 

Note that the k-NN algorithm does not make any assumptions about the functional 
form of the relationship between the dependent group variable (Y) and the independent 

Figure 10.30

Lift chart and 
ROC graph on the 
validation sample for 
logistic regression
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variables 1xi1, xi2, c, xip 2 . As a result, the primary issue in the k-NN technique involves 
how to quantify the distance or similarity between two records based on the values 
of their independent variables. While a number of distance metrics can be used, the 
computational simplicity of the Euclidean distance measure makes it the most popular 
choice for the k-NN technique due to the large number of distance measures required 
by this classification technique. For instance, if a data set contains 10,000 observations, 
then 10,000 distance measures are required to determine the k observations that are 
closest to a single new observation being classified. 

Recall that the Euclidean distance between two observations 1xi1, xi2, c, xip 2  and 
1xj1, xj2, c, xjp 2  is given by:

 Dij 5 "1xi1 2 xj1 2 2 1 1xi2 2 xj2 2 2 1 # # # 1 1xip 2 xjp 2 2 10.5

Because the variables used in this metric are often measured on very different scales, 
it is wise to standardize (or normalize) all the variables before computing the Euclid-
ean distances so that it is not dominated or unduly influenced by the scale or magni-
tude of the variables. (A variable x is standardized by replacing each observed value 
xi with 1xi 2 x 2/sx, where x and sx represent the mean and standard deviation of x, 
respectively. The resulting standardized values of x will have a mean of 0 and stan-
dard deviation of 1.)

In order to implement the k-NN technique, we obviously must choose an appropri-
ate value for k. At one extreme, we can let k 5 1 and classify each observation accord-
ing to the group membership of its closest neighbor. This results in classifications that 
are very sensitive to (and possibly overfit) the sample-specific characteristics of our 
training data. At the other extreme, we can let k 5 n and classify all observations into 
the most frequently occurring group in our training data. Clearly, this inhibits the tech-
nique’s ability to exploit the structure and patterns that might exist in the data. The pre-
ferred way to resolve this dilemma is to try several values of k and choose the one that 
minimizes the error rate on a validation sample. Generally speaking, the more complex 
and irregular the structure of the data, the smaller will be the optimum value of k. Val-
ues of k often fall in the range from 1 to 20, and an odd value is frequently chosen in an 
attempt to avoid ties.

Figure 10.31

Classification results 
for new data with 
logistic regression
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10.6.1 k-nEAREst nEiGHBoR ExAmplE
To perform k-nearest neighbor classification using XLMiner, follow these steps:

1. Click the Data_Partition worksheet shown in Figure 10.32 (and the file Fig10-32.
xlsm that accompanies this book).

2. On the XLMiner Platform tab, click Classify, k-Nearest Neighbors.
3. Make the selections for Step 1 shown in Figure 10.32, and click Next.
4. Make the selections for Step 2 shown in Figure 10.33, and click Next.
5. Make the selections for Step 3 shown in Figure 10.33, and click Finish.

Figure 10.32

k-Nearest Neighbors 
Step 1 selections

Note that the settings in Figure 10.33 ask XLMiner to normalize the input data. We 
have also asked it to try all (integer) values of k between 1 and 15 and provide classifi-
cations (scores) on whichever value of k works best for the validation sample. This is a 
computationally intensive task that might take a bit of time depending on the speed of 
your computer. 

A portion of the results for the k-nearest neighbor analysis is shown in Figure 10.34 
for the optimal k value (in this case, k 5 13). Comparing these results with those in 
Figure 10.19 for DA, it appears that the classification accuracy for the k-nearest neigh-
bor technique is somewhat worse at classifying observations in the validation sample 
belonging to group 1. The lift and ROC results for the k-nearest neighbor technique are 
very similar to those shown earlier for DA and logistic regression and, as a result, are 
not repeated here.

Figure 10.35 shows the estimated group predictions for our 10 new observations 
obtained using XLMiner’s Score command with the k-nearest neighbor model stored 

k-Nearest Neighbor 527
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528 Chapter 10 Data Mining

on the sheet named KNNC_Stored. Note that the predictions from the k-nearest neigh-
bor technique classify observations 2, 4, 6, and 10 as group 1 observations. This is some-
what different than the classifications obtained using DA and logistic regression. The 
more agreement there is among classifiers about the classification of a given observa-
tion the more confidence we can have in those predictions. 

10.7 Classification Trees
A classification tree is a graphical representation of a set of rules for classifying obser-
vations into two or more groups. Classification trees use a hierarchical sorting process 
consisting of splitting nodes and terminal nodes to group records from a data set into 
increasingly homogeneous groups. Classification trees are popular because the result-
ing classification rules are very apparent and easy to interpret (as long as the trees are 
not too large). 

Figure 10.36 shows a hypothetical classification tree for classifying 1,400 individuals 
who receive an offer for a free two-night visit to a timeshare resort as either nonac-
ceptors (0) or acceptors (1) based on information related to their income, family size, 

Figure 10.33 k-Nearest Neighbors Step 2 and Step 3 selections
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Figure 10.34

k-nearest neighbors 
results

Figure 10.35

Classification results 
for new data with 
k-nearest neighbors
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530 Chapter 10 Data Mining

years of education, and credit score. Each circular node in the tree represents a splitting 
(or decision) node, with the number in the node representing the splitting (or cut-off) 
value. Each square node in the tree is a terminal node, with the number in the node 
representing the class identifier (or group number) associated with that node. Classifi-
cation trees start at the top with an initial (or root) node and then grow in a downward 
direction.

Decision rules can be extracted from a classification tree to describe how individ-
uals end up in each terminal node. For example, the left-most branch in the tree cor-
responds to the decision rule: IF 1Income # 65 2  THEN Class 5 0 (non-acceptor). A 
total of 1033 of the 1400 hypothetical individuals in this example fall into this terminal 
node. The rest of the tree shows how the remaining 367 individuals are classified. For 
instance, the right-most set of branches in the tree corresponds to the decision rule: 
IF 1Income . 65 2  AND 1Family Size . 2.5 2  AND 1Income . 130 2  THEN Class 5 1
(acceptor). Seventy-eight (78) individuals in this example fall into that category. (Note 
that left branches from splitting nodes correspond to values that are less than or equal 
to the splitting-values in the nodes while right branches correspond to values that are 
greater than the splitting-values in the nodes.) After a classification tree is constructed 
from the training data, new observations may be classified by following the decision 
rules expressed in the tree.

The first step in creating a classification tree involves recursively partitioning the 
independent variables—where each partition operates on the results of the previous 
partitions. As illustrated in the previous example, recursive partitioning works by 
first selecting one of the p independent variables, say xi, and a value of xi, say si, to 
use as a split point. This divides the p-dimensional space into two partitions: one con-
taining all observations where xi #  si and another with the remaining observations 
where xi . si. This results in two p-dimensional rectangular partitions. If either of the 

65

Income

Income

Education

Family Size

Credit
Score

Family
Size

1,033 367

235

2 233

193 40 11 43
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54 78
130

6
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0 4.5

Figure 10.36

Example of a 
classification tree
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Classification Trees 531

resulting partitions is not homogenous or “pure” enough, the impure partition(s) are 
subdivided by again choosing an independent variable and split point for that vari-
able. This process continues, creating smaller and smaller p-dimensional rectangu-
lar partitions until the entire space is composed of p-dimensional rectangles that are 
pure enough. (A perfectly pure or homogenous partition contains points belonging 
to a single group or class. Note that perfect purity or homogeneity is not possible 
when observations that belong to different groups have exactly the same values for 
all the independent variables. As discussed shortly, perfect purity is also not always 
desirable.) 

Each time a partition is subdivided, an independent variable and splitting value for 
that independent variable must be chosen. Classification tree algorithms typically make 
these choices in a way that minimizes the average weighted impurity of the resulting 
partitions. The two most common ways of measuring impurity are the Gini Index and 
the Entropy Measure. The Gini Index for a given partition j is defined as

GIj 5 1 2 am
k51

p2
k  10.6

where pk is the proportion of observations in partition j that belong to group k. If all 
the observations in partition j belong to the same group, its Gini Index value will 
be 0—indicating perfect purity. Alternatively, when all m groups are represented 
in equal proportion in partition j, its Gini Index will reach its maximum value of 
1m 2 1 2/m. 

Similarly, the Entropy Measure for a given partition j is defined as: 

 EMj 5 2am
k51

pklog2 1pk 2  10.7

The Entropy Measure ranges between 0 (when all observations belong to the same 
class) and log2 1m 2  (when all m groups are represented in equal proportion). A variety of 
similar impurity measures exist and are used by various classification tree algorithms, 
but they all serve the same purpose of attempting to create splits in the tree that result 
in the most accurate possible partitions of the training data.

Classification trees created from a set of training data with the goal of perfect purity 
in the terminal nodes are obviously prone to overfitting. Intuitively, as the tree grows, 
the splits are based on smaller and smaller numbers of observations. So the final nodes 
in the tree are likely to be fitting sample specific characteristics (or noise) in the training 
data. Such trees are likely to classify new observations less accurately than trees that 
do not overfit the training data. Many classification tree algorithms try to avoid over-
fitting the training data by using heuristic stopping rules to limit tree growth and/or 
by pruning back fully grown trees. Tree growth (i.e., the number of splits and terminal 
nodes) can be limited by requiring a minimum number of observations per node or 
by requiring a minimum reduction in impurity for partitions to be subdivided. The 
difficulty with these approaches is that it is not easy to determine what the required 
minimum number of observations per node or minimum reduction in impurity should 
be to avoid overfitting. 

Another remedy for overfitting is to “prune” a fully grown classification tree to 
identify the reduced tree that does a good job of classifying data in the validation sam-
ple. Starting with a fully grown tree with D decision nodes, pruning chooses a deci-
sion node and turns it into a terminal node, resulting in a tree with D 2 1 decision 
nodes. The eliminated decision node is chosen so that the resulting tree (with D 2 1
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532 Chapter 10 Data Mining

decision nodes) fits or classifies the training data as accurately as possible. This process 
is then repeated, creating a sequence of trees that are successively smaller until the last 
tree consists of just a single root node. From this sequence of possible classification 
trees, we can identify the one that produces the lowest misclassification (error) rate on 
the validation sample. In theory, pruning should help to identify a tree that captures 
the true generalizable patterns present in the training data while ignoring the noise 
(or sample-specific anomalies) in the data. Of course, selecting a classification tree that 
minimizes the misclassification error in the validation data might result in a tree that is 
biased toward noise in the validation data. To guard against this, we can select the tree 
with “a few” less decision nodes than the tree that minimizes the error on the valida-
tion sample, but there is no one right way of determining how many fewer nodes this 
should be.

10.7.1 ClAssifiCAtion tREE ExAmplE
To create a classification tree for our partitioned data set using XLMiner, follow these 
steps:

1. Click the Data_Partition worksheet shown in Figure 10.37 (and the file Fig10-37.
xlsm that accompanies this book).

2. On the XLMiner Platform tab, click Classify, Classification Tree, Single Tree.
3. Make the Step 1 selections shown in Figure 10.37, and click Next.
4. Make the Step 2 selections shown in Figure 10.38, and click Next.
5. Make the Step 3 selections shown in Figure 10.38, and click Finish.

Figure 10.37

Classification Tree 
Step 1 selections
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Classification Trees 533

Note that the settings in Figure 10.38 ask XLMiner to normalize the input data. To avoid 
overfitting, we have also specified that nodes may only be split if they contain at least 
13 records. This ensures that each terminal splitting node contains at least 5% of the 
observations in the training sample (because 0.05 3 256 5 12.8). As with many data 
mining techniques, there is no single correct way to prevent overfitting, and, normally, 
you would try several values for the number of records per terminal node to determine 
a value that provides good predictive results.

A portion of the results for the classification tree is shown in Figure 10.39. Compar-
ing these results with those in Figure 10.19 for DA, it appears that the classification 
accuracy for the classification tree technique is considerably better on the training and 
validation samples than any of the previous techniques we have considered. The clas-
sification tree technique correctly classifies approximately 90% or more of the group 
1 observations in both the training and validation samples and misclassifies less than 
3% of the group 0 observations in both samples. Of course, classification trees do not 
always work this well and are not always the best classification technique to use. 

Figure 10.40 shows the classification tree XLMiner constructed for this example 
annotated with pseudocode showing the decision rules that correspond to the tree. 
The classification tree (and pseudocode) also shows the number of training sample 

Figure 10.38 Classification Tree Step 2 and Step 3 selections
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534 Chapter 10 Data Mining

observations falling into each category. Also note that the tree in Figure 10.40 could 
be simplified by omitting the Credit Card node and replacing it with a single node for 
group 0 observations. 

Figure 10.41 shows the estimated group predictions for our 10 new observations, 
obtained using XLMiner’s Score command with the classification tree model stored on 
the sheet named CT_Stored. Note that the predictions from the classification tree tech-
nique only classify observation 2 as a group 1 observation while the remaining obser-
vations are all classified into group 0. Some of these predictions differ markedly from 
those of the earlier techniques. Of course, the classification tree’s predictions would 
also likely change somewhat if we had allowed final node splits to occur with some-
thing other than at least 5% of the observations in the training sample. But such is the 
nature of data mining. 

The classification tree used in this example was built using the Single Tree option 
under XLMiner’s Classification Tree command. However, the Classification Tree com-
mand also offers options labeled Boosting, Bagging, and Random Trees. Each of these 
options are ensemble techniques that automatically build multiple classification trees 
and combine them to produce final predictions. By using multiple trees and combining 
their results, ensemble methods tend to avoid or average out biases that might be pres-
ent in any single tree. 

Figure 10.39

Classification tree 
results
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Figure 10.40 Classification tree

Figure 10.41

Classification 
results for new 
data with using the 
classification tree
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536 Chapter 10 Data Mining

10.8 Neural Networks
Neural networks are often described as a pattern recognition technique that attempts 
to learn what (if any) relationship exists between a set of input and output vari-
ables. The “learning” aspect of neural networks may be traced to their origin, where 
researchers in the field of artificial intelligence were attempting to create computing 
devices that work in a manner similar to the way the human brain works or learns. 
At a very high level, we constantly receive stimuli from our five senses that are fed 
through our brains, where various processing occurs, and then we respond to those 
stimuli in some way. The processing of stimuli within the brain occurs via a massively 
interconnected set of neurons that respond with output signals of differing strengths 
(excited or inhibited by chemical neurotransmitters) that are sent across synapses to 
other neurons. The neural networks described here (sometimes more aptly referred 
to as artificial neural networks) are relatively crude and simplified computer pro-
grams modeled after this astoundingly complex and effective physiological comput-
ing architecture. 

The basic idea behind neural networks is to identify a function that accurately maps 
a set of input values to a corresponding set of output values. Although this is very 
similar in spirit to other statistical modeling techniques such as regression analysis, the 
key difference is that regression analysis requires the analyst to specify the functional 
form (e.g., linear, quadratic, interactions) of the relationship between the dependent 
and independent variables. In comparison, neural networks attempt to automatically 
discover such relationships from the data. 

A feedforward neural network (the sole focus of this discussion) is essentially 
a mapping function f( ) that associates an input record xi1, xi2, c, xip with an out-
put value yi in the form yi 5 f 1xi1, xi2, c, xip 2 . Figure 10.42 illustrates the key com-
ponents of this sort of computational device. There is one input node for each of 
the p input variables, and each input value is sent to each node in the first hidden 
layer over a weighted arc. (Figure 10.42 shows a single hidden layer, but, in gen-
eral, neural networks may have more than one hidden layer.) Each hidden node i 
computes its net input Ni as the weighted sum of input values flowing into it via 
Ni 5 bi 1 g k 

aik 
xik, where bi is a constant representing a bias value for hidden node i.  

A response Ri is computed for each hidden node i. This can be done is a variety of 
ways but typically is of the form Ri 5 11 1 EXP 12Ni 2 221, which takes on a sigmoidal 
shape like that shown earlier in Figure 10.25. The response Ri of each hidden node 
is sent to each node in the next hidden layer, where the same sort of weighted input 
and response is calculated for each node in that layer. This process is repeated for 
each hidden layer in the network. Finally, the output node computes its output yi

as some function of the weighted sum of values flowing into it via yi 5 bi 1 g k 
aik 

Rk,
where again bi is a constant representing a bias value for the output node. (Figure 
10.42 shows a single output node, but, in general, neural networks may have more 
than one output node.)

The objective of a neural network is to “learn” and be able to accurately predict the 
output values that are associated with a given set of input values. This learning occurs 
by adjusting the weights on the arcs in the network so that for a given set of values 
for the inputs, the neural network’s estimated output value will closely approximate 
the actual output value associated with the inputs. This requires iteratively presenting 
the network with a set of training data containing known pairings of input and output 
values and adjusting the weights to reduce any error in the network’s predictions. A 
technique known as the backpropagation algorithm is often used during this training 
process to adjust the weights in a neural network. 
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Neural Networks 537

In order to create a neural network for a given problem, an analyst must decide how 
many hidden layers to use and how many nodes to use in each of the hidden layers. 
Unfortunately, there are no definitive answers for these issues, so we must rely on trial 
and error or defaults that most neural network software packages offer. Usually, a sin-
gle hidden layer is adequate for capturing most complex relationships in a data set. 
The number of nodes in the hidden layers also impacts the level of complexity that a 
neural network captures. However, as you might expect, having too many nodes can 
result in overfitting the data while too few nodes may be inadequate to model complex 
relationships. One common heuristic is to use p hidden nodes (where p is the number 
of input variables) and gradually increase and decrease this number while checking for 
overfitting with the validation sample (in much the same manner as pruning may be 
used with classification trees). 

Often, there are also choices that can be made regarding the number of output nodes 
in a neural network. For a two group 1m 5 2 2  classification problem, a single node may 
be used with a cut-off value for classification purposes. For a classification problem 
with more than two groups 1m . 2 2 , the output variable in training data could be con-
verted to m binary variables, and m output nodes could be used in the neural network 
with observations being classified into the group associated with the output node with 
the largest response value. 

10.8.1 nEURAl nEtWoRK ExAmplE
To create a neural network for our partitioned data set using XLMiner, follow these 
steps:

1. Click the Data_Partition worksheet shown in Figure 10.43 (and the file Fig10-43.
xlsm that accompanies this book).

2. On the XLMiner Platform tab, click Classify, Neural Network, Manual Network.

Input Layer Hidden Layer (s) Output Layer

xi 1

xi 2

xi 3

yi

xi p

Figure 10.42

Example of a neural 
network
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538 Chapter 10 Data Mining

Note that the Step 2 dialog box in Figure 10.44 offers several selections related to 
the network architecture and training options. In the example shown, we have manu-
ally specified a network architecture consisting of one hidden layer with three nodes. 
Instead of selecting the Manual Network option in step 2 above, XLMiner also offers 
an Automatic Network option that will automatically create and train several neural 
networks in an attempt to find one that works well. This is a very useful feature but can 
be time consuming. The training options listed in the Step 2 dialog box in Figure 10.44 
allow you to change several parameters used in the backpropagation algorithm as it 
attempts to optimize the weights in the network. Note that the # Epochs option controls 
how many times the complete data set is run through the backpropagation algorithm. 
Here again we see that data mining with neural networks can involve a lot of experi-
mentation and work on the part of the analyst.

A portion of the summary results for the neural network is shown in Figure 10.45. 
These results suggest that the classification accuracy for the neural network technique 
is considerably better on the training sample than the validation sample. This could 
suggest that the neural network is overfitting the training sample, and the number of 
training epochs might be too large. On the other hand, the neural network is more accu-
rate on the group 1 observations in the validation sample than most of the other classi-
fication techniques we have considered (aside from the classification tree). Of course, 
many other neural networks could be created for this data set by varying the network 
architecture and training options. In practice, we would want to consider many such 
networks before selecting one for model deployment.

3. Make the Step 1 selections shown in Figure 10.43, and click Next.
4. Make the Step 2 selections shown in Figure 10.44, and click Next.
5. Make the Step 3 selections shown in Figure 10.44, and click Finish.

Figure 10.43

Neural Network 
Step 1 selections
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Naïve Bayes 539

Figure 10.44 Neural Network Step 2 and Step 3 selections

Figure 10.46 shows the estimated group predictions for our 10 new observations, 
obtained using XLMiner’s Score command with the neural network model stored on 
the sheet named NNC_Stored. The predictions from the neural network technique clas-
sify observations 1, 2, 4, and 6 as group 1 observations, and the rest of the observa-
tions are all classified into group 0. These predictions are similar to those of the logistic 
regression technique but differ from some of the other classification techniques covered 
earlier. Again, the neural network’s predictions would also likely change somewhat if 
we use a different network architecture or training options. 

As with the classification tree technique, XLMiner also offers the bagging and boost-
ing ensemble techniques in conjunction with neural networks. A data mining analyst 
should explore with the automatic network option and these ensemble techniques to 
find the neural network that works best for a given problem.

10.9 Naïve Bayes
Another approach to classifying a new record of unknown origin is to find identical 
records in our training sample, determine to which group the majority of those sam-
ple records belong, and assign the new record to the same group. While this simple 

47412_ch10_ptg01_499-565.indd   539 08/11/16   1:28 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



540 Chapter 10 Data Mining

Figure 10.45

Neural network 
results

Figure 10.46

Classification results 
for new data with 
using the neural 
network
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strategy (known as the full or exact Bayesian classifier) holds considerable intuitive 
appeal, it suffers from a number of practical problems. First, if any of the independent 
variables are continuous, it is extremely unlikely that identical records will exist. Sec-
ond, even with a relatively small number of independent variables, there is no guar-
antee that each record to be classified will have an exact match. For instance, if there 
are eight independent variables with four category levels per variable, there are a total 
of 48 5 65,536 distinct possible records. A sample with less than 65,536 records can-
not possibly contain each possible record; and a sample with considerably more than 
65,536 records won’t necessarily contain each possible record either.

Because of the difficulties that can arise in finding exact matches for a new record, 
the naïve Bayes technique focuses on the rates at which the values for each individual 
variable (rather than the record as a whole) fall into each group. That is, the naïve Bayes 
classifier assumes that the value of a particular independent variable is unrelated to 
(or statistically independent of) the value of any other independent variable. Although 
this assumption is rarely true (and hence, a bit “naïve”), the naïve Bayes classifier often 
works well in practice. 

When applying the naïve Bayes technique, you should first “bin” any continuous 
variables. That is, any continuous variable (and also discrete variables with many 
observed values) should be replaced by a new categorical variable that maps the val-
ues of the original variable (with lots of distinct values) into a relatively modest num-
ber of groups or bins. For example, if we have a variable representing our customers’ 
heights, we might replace this with a coded variable with three categories represent-
ing 1-short, 2-medium, and 3-tall. If we then encounter a new customer whose height 
does not match exactly the height of an existing customer in our training sample, we 
can still map that customer’s height into one of the short, medium, or tall categories. 
(Choosing Transform, Bin Continuous Data, in XLMiner provides a utility for binning 
continuous data.) 

The naïve Bayes technique is summarized as follows:

1. Select a record 1xi1, xi2, c, xip 2  to be classified.
2. Compute the individual probabilities that the value of each independent variable in 

1xi1, xi2, c, xip 2  occurs in group j 1Gj 2 . Multiply these probabilities by each other, 
and then multiply the result by the probability of a record belonging to Gj.

3. Repeat step 2 for each group Gj (where j 5 1, c, m).
4. For each group Gj (where j 5 1, c, m), estimate the probability of the record 

belonging to Gj by taking the value computed in step 2 for Gj and dividing it by the 
sum of those (step 2) values for all the groups.

5. Assign the record to the group Gj with the highest probability from step 4.
6. Return to step 1 if there are more records to be classified.

The naïve Bayes classification technique is based on the idea of conditional proba-
bility, or the probability of event A occurring given that event B has occurred (denoted 
P 1A 0B 2 ). In this case, we are interested in computing the probability of the record in 
question belonging to group j given that its independent variables take on the values 
xi1, xi2, c, xip. That is, for a given record, we want to compute P 1Gj 0xi1, xi2, c, xip 2
for each possible group 1Gj 2  and then assign the record to the group with the highest 
conditional probability. Due to the assumed statistical independence of the variables 
xi1, xi2, c, xip we compute this probability as follows:

P 1Gj 0xi1, xi2, c, xip 2 5
P 1Gj 2 3P 1xi1 0Gj 2P 1xi2 0Gj 2 cP 1xip 0Gj 2 4

P 1G1 2 3P 1xi1 0G1 2   
c

  P 1xip 0G1 2 4 1 # # #1 P 1Gm 2 3P 1xi1 0Gm 2   
c

  P 1xip 0Gm 2 4
 

 10.8
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542 Chapter 10 Data Mining

Note that the numerator in this equation corresponds to step 2 in the preceding 
algorithm for the naïve Bayes classifier. The denominator is the sum of possible 
numerators (i.e., for j 5 1, c, m 2  and provides the divisor needed in step 4 of the 
algorithm.

As an example of how the naïve Bayes classifier works, suppose we have the data 
summarized in Figure 10.47 describing the GMAT scores (low, medium, and high), 
years of work experience (less than 2 years, or more than two years), and faculty per-
formance ratings (poor, average, good) for 10 recent graduates of an MBA program. 
The program director would like to use this data to determine whether a new appli-
cant with a medium GMAT score and more than two years of work experience is most 
likely to be a poor, average, or good student. 

Figure 10.47

MBA applicant data 
for simple Naïve 
Bayes example

Student GMAT Work Rating

1 Low , 2 Poor

2 Low 21 Avg.

3 Low 21 Avg.

4 Med. 21 Poor

5 Med. 21 Good

6 Med. 21 Avg.

7 Med. , 2 Poor

8 High 21 Good

9 High , 2 Avg.

10 High , 2 Avg.

Using the data given, we can easily estimate the (unconditional) probabilities of any 
applicant being a poor, average, or good student as follows: P 1Poor 2 5 3/10 5 0.3,
P 1Average 2 5 5/10 5 0.5, and P 1Good 2 5 2/10 5 0.2. Next, applying equation 10.8, 
we calculate the estimated conditional probabilities of an applicant being a poor, aver-
age, or good student given that he has a medium GMAT score (“Med.”) and more than 
two years of work experience (“21”). 

P 1Poor 0Med., 21 2   5 0.3 12/3 2 11/3 2/ 30.3 12/3 2 11/3 210.5 11/5 2 13/5 210.2 11/2 2 12/2 2 4
5 0.06667/0.226667 5 0.2941

P 1Avg 0Med., 21 2   5 0.5 11/5 2 13/5 2/ 30.3 12/6 2 11/3 210.5 11/5 2 13/5 210.2 11/2 2 12/2 2 4
5 0.06/0.2266667 5 0.2647

P 1Good 0Med., 21 2 5 0.2 11/2 2 12/2 2/ 30.3 12/6 2 11/3 210.5 11/5 2 13/5 210.2 11/2 2 12/2 2 4
5 0.1/0.2266667 5 0.4412

Thus, we see that an applicant with a medium GMAT score and at least two years of 
work experience has a 0.4412 probability of being a good MBA student. Of course, this 
also implies that the probability of the applicant not being a good student (i.e., being a 
poor or average student) is 0.5588 11 2 0.4412 5 0.5588 2 . 
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10.9.1 nAÏVE BAYEs ExAmplE
To use the naïve Bayes technique on the Universal Bank data set, we should first 
consider what, if any, variables should be binned. In this case, the work experience, 
income, credit card average, and mortgage variables are good candidates for binning. 
Figure 10.48 shows XLMiner’s Bin Continuous Data dialog box (accessible via XLMin-
er’s Transform, Bin Continuous Data command) and the options that can be used for 
creating binned variables (see file Fig10-48.xlsm that accompanies this book). In this 
case, for each of the four variables, we allowed XLMiner to select the number of bins 
for each variable, selected the Equal Count option, and specified that the values used 
for each binned variable will be the rank of each bin (or, in other words, a series of 
consecutive integers starting at 1 for each bin in each variable). These selections must 
be made for each variable one at a time, followed by clicking the Apply to Selected 
Variable button. 

Figure 10.48

Binning continuous 
data for the 
Universal Bank 
data set

When you click the Finish button on the dialog box in Figure 10.48, XLMiner inserts 
a new sheet in the workbook named BinnedData as shown in Figure 10.49. The dis-
played portion of the BinnedData worksheet shows the intervals for each binned vari-
able. (Clicking the Outputs link in cell D5 allows you to navigate to the data.) Note 
that it is important to use these same intervals to create the appropriate binned vari-
ables for any new data we want to classify. Although we asked XLMiner (in Figure 
10.48) to create binned variables with equal counts (or equal numbers of records), this 
is not always possible. However, in most cases, the number of records in each interval 
is fairly similar. 
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544 Chapter 10 Data Mining

The next step is to partition the new data set on the sheet named BinnedData with 
the additional binned variables. This is done in the same manner as described earlier 
in Section 10.3 except that we would now use the newly created binned variables for 
work experience, income, credit card average, and mortgage. The resulting partitioned 
data is shown on the sheet named Data_Partition in Figure 10.50 (and the file Fig10-50.
xlsm that accompanies this book).

Figure 10.50

Naïve Bayes Step 1 
selections

Figure 10.49 Bin ranges for continuous variables in the Universal Bank data
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To use the naïve Bayes for our partitioned data set using XLMiner, follow these 
steps:

1. Click the Data_Partition worksheet shown in Figure 10.50.
2. On the XLMiner Platform tab, click Classify, Naïve Bayes.
3. Make the Step 1 selections shown in Figure 10.50, and click Next.
4. Make the Step 2 selections shown in Figure 10.51, and click Next.
5. Make the Step 3 selections shown in Figure 10.51, and click Finish.

Figure 10.51 Naïve Bayes Step 2 and Step 3 selections

A portion of the summary results for the naïve Bayes technique is shown in Figure 
10.52. Here again, it appears that the classification accuracy for the naïve Bayes tech-
nique is considerably better on the training sample than the validation sample, calling 
into question the generalizability of this classification technique on this data set. How-
ever, it should be noted that when we bin continuous variables (as we did in this exam-
ple), we are losing some of the information contained in those variables. As a result, it 
is somewhat surprising that the naïve Bayes technique performs relatively well here 
in comparison to most of the other techniques that accommodate and leverage all the 
information available in the continuous variables.
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546 Chapter 10 Data Mining

Figure 10.53 shows the estimated group predictions for our 10 new observations, 
obtained using XLMiner’s Score command with the naïve Bayes model stored on the 
sheet named NNB_Stored. The predictions from the naïve Bayes technique classify 
observations 1, 2, 4, 6, and 7 as group 1 observations, and the rest of the observations 
are all classified into group 0. Again, these predictions differ from some of the other 
classification techniques covered earlier. However, these predictions might change 
somewhat if we used different options for binning the continuous variables in this 
example. 

10.10 Comments on Classification
The descriptions of the various classification techniques given above should provide 
you with a good introductory idea about how these techniques operate. Additional 
details about these techniques may be found in the materials referenced at the end of 
this chapter. However, a few more general comments about classification techniques 
for data mining are also in order.

Figure 10.52

Naïve Bayes results
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10.10.1 ComBininG ClAssifiCAtions
Throughout our discussion of classification techniques for data mining, we have seen 
that different techniques can produce different estimated classifications for our new 
observations. So one approach to making group classification estimates for new obser-
vations is to create several models using multiple classification techniques (or multiple 
instances of the same technique) and use each model to make group estimates for the 
new observations. We could then assign new observations to whichever group receives 
the highest number of votes (or highest weighted votes) from the constituent models in 
an ensemble-like fashion. 

10.10.2 tHE RolE of tEst DAtA
In Section 10.1, we noted that data mining often uses three different partitions of 
our data: training, validation, and testing. Throughout our discussion of classifi-
cation techniques, we have only considered the use of training and validation data 
and not addressed test data. In practice, an analyst will often build several differ-
ent classification models using different options, architectures, and algorithmic set-
tings to find a model that works best for a given data set. The determination of 
what works best is often made using the validation sample. That is, the analyst will 
often choose a model that works well for the validation data. If a model is selected 
because it works well on the validation data, its performance on the validation data 
is likely to be favorably biased. In that situation, a third test data set should be used 
to obtain an honest (unbiased) assessment of how well the chosen model is likely to 
work on new data that has played no role in the training, development, or selection 
of the model. Due to space limitations, we have not illustrated that process here. 
However, it is important to understand the role that test data plays in the data min-
ing process.

Figure 10.53

Classification results 
for new data with 
using Naïve Bayes

47412_ch10_ptg01_499-565.indd   547 08/11/16   1:28 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203
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10.11 Prediction
In Section 10.1, we noted that data mining tasks generally fall into three potential cat-
egories: classification, prediction, and association/segmentation. As we have seen, 
classification problems involve an attempt to use information available in a set of inde-
pendent variables to estimate the value of a discrete or categorical dependent variable 
(representing group membership of an observation). In contrast, prediction problems 
attempt to use information available in a set of independent variables to estimate the 
value of a continuous dependent variable. XLMiner also offers a number of tools that 
address prediction problems; but fortunately, we have largely already covered these 
techniques. 

If you click XLMiner’s Predict command you will see options for Multiple Linear 
Regression, k-Nearest Neighbor, Regression Tree, and Neural Network. As covered 
in chapter 9, Excel includes a number of native commands and tools for conducting 
regression analysis. XLMiner offers the same capability with some nice enhancements 
such as not limiting the number of independent variables to 16 and automated routines 
for determining the best set of independent variables to use in a regression model. 

The other prediction techniques offered by XLMiner are actually just slight modifi-
cations of several classification techniques. For instance, the k-Nearest Neighbor tech-
nique that we covered earlier for classification problems assigns a record to the most 
frequently occurring group among its k-nearest neighbors. For a prediction problem, 
we could find a record’s k-nearest neighbors and take an average (or weighted average) 
of the dependent variable values for those neighboring records and use that value as 
the prediction for the record in question. 

 Similarly, classification trees create a series of rules (based on values of the indepen-
dent variables) that assign an observation to the group represented by a terminal node 
in the tree. Regression trees take the same exact approach but average the values of the 
dependent variables for the observations in each terminal node and use that value as 
the prediction for any records falling into that terminal node. Thus, the concepts cov-
ered for classification trees for the classification problem generalize easily to regression 
trees and the problem of prediction.

Finally, we described a neural network as a mapping function f( ) that associates an 
input record xi1,xi2, c, xip with an output value yi in the form yi 5 f 1xi1,xi2, c, xip 2 .
In the case of a classification problem, the value of the output variable yi is discrete 
(binary or categorical). But neural networks (and the backpropagation algorithm used 
to train them) work in much the same manner if the output variable yi is continuous. 
Thus, the neural network concepts covered for classification problems readily general-
ize to prediction problems.

Because of the substantial overlap in concepts between these techniques for predic-
tion problems and classification problems and the consistency of XLMiner’s interface 
design in each domain, we will not cover these prediction techniques in further detail. 
However, you are encouraged to explore these prediction tools on your own and apply 
them to the data mining problems you encounter that involve continuous dependent 
variables. 

10.12 Association Rules (Affinity Analysis)
Association rules (or affinity analysis) is a popular data mining technique aimed at dis-
covering “what goes with what.” This technique is often applied in marketing research 
studies (where it is called market basket analysis) that attempt to identify groups of 
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products that tend to be purchased together. However, association rules can be applied 
in other domains also. For instance, medical researchers might want to analyze data to 
determine what symptoms go with specific diagnoses. 

Many companies collect large amounts of data about what groups of products their 
customers buy together. The most obvious example of this is the use of barcode scan-
ners at supermarkets and retailers that collect data on all the items bought by a cus-
tomer in a given shopping trip. If a company found that particular groups of items 
are frequently purchased together, the company might want to offer specials on these 
items or use this information to optimize product layout within the store. Similarly, 
online retailers such as Amazon keep a history of what customers buy—both in one 
transaction and over time. Online retailers mine this data using association rules to 
devise recommender systems. Recommender systems watch what current custom-
ers are looking at (or have in their online shopping carts) and suggest other items 
that are often purchased along with those items by other customers. Judicious use of 
these types of systems can be highly effective at boosting sales and profits for savvy 
retailers.

Affinity analysis delivers its “what goes with what” discoveries in the form of 
“If-Then” rules such as “If A is purchased, then B is also likely to be purchased.” The 
“If” part of this statement is called the antecedent, and the “then” part of the state-
ment is the consequent. The antecedent and consequent represent distinct sets of 
items that are disjoint (or do not have any items in common). For example, consider 
the rule “If paint and brushes are purchased, then rollers are likely to be purchased.” 
The antecedent consists of the item set {paint, brushes}, and the consequent is the set 
{rollers}.

The challenge in affinity analysis is to identify the most meaningful rules from all 
the possible rules that could be generated. If a transaction database contains p different 
products, there are 2p-p-1 sets of items to consider as antecedents and consequents for 
possible rules. Thus, the number of possible rules is very large even for relatively small 
values of p. However, many of these possible rules might include antecedents and con-
sequents that rarely or never actually occur as transactions in the database. So, we want 
to focus on rules that are suggested or supported by the data. The support of a rule 
is defined as the percentage of the total records in the database that include both the 
antecedent and the consequent. It is the estimated probability that a randomly selected 
transaction contains all the items in the antecedent and consequent:

Support 5 P 1antecedent AND consequent 2
A related metric, known as the confidence, measures the uncertainty of an “If-Then” 

rule. The confidence of a rule is the estimated conditional probability that a randomly 
selected transaction will include all the items in the consequent given that it includes all 
the items in the antecedent:

Confidence 5 P 1consquent  0  antecedent 2 5 P 1antecedent AND consequent 2/P 1antecedent 2
For example, suppose that an online music merchandise retailer’s sales data-

base contains 100,000 transactions. Among these transactions, suppose that 20,000 
include both guitar strings and guitar picks, and 10,500 of those 20,000 transac-
tions also include purchases of electronic tuners. The rule “If guitar strings and 
guitar picks are purchased, then an electronic tuner is purchased” has a support of 
20% 120,000/100,000 5 20% 2  and a confidence of 52.5% 110,500/20,000 5 52.5% 2 .
Although this rule’s confidence score of 52.5% might not seem very high, it is import-
ant to evaluate that score in light of the underlying rate at which customers purchase 
electronic tuners. 
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For instance, suppose that a total of 18,500 of the transactions in the database 
included sales of electronic tuners. Then the probability of a randomly selected record 
including the purchase of an electronic tuner is 0.185 118,500/100,000 5 0.185 2 . So if 
there was no higher tendency for the 20,000 customers who purchased guitar strings 
and picks to also purchase tuners, we would have expected those customers to pur-
chase only about 3,700 tuners 10.185 3 20,000 5 3,700 2 ; but, in fact, those customers 
purchased 10,500 tuners. So the antecedent in the rule “If guitar strings and guitar picks 
are purchased, then an electronic tuner is purchased” increases (or “lifts”) the accuracy 
of our ability to identifying purchasers of electronic tuners from 18.5% to 52.5%—or by 
a ratio of 2.838 10.525/0.185 5 2.838 2 . That is, the strength of the association between 
the antecedent and the consequent is higher than we would expect if they were inde-
pendent of each other. Thus, the lift ratio of a rule is defined as the confidence of a rule 
divided by the estimated probability of its consequent:

Lift Ratio 5 Confidence/P 1consequent 2
The lift ratio is a measure of the usefulness of a rule. A lift ratio greater than 1.0 sug-

gests there is some usefulness to a rule—and the greater the lift ratio, the greater the 
usefulness of the rule.

Algorithms used to identify association rules first identify item sets that exceed a 
user-specified minimum support level. Using those qualifying item sets, the algorithms 
then generate If-Then rules, retaining those that exceed a user-supplied minimum con-
fidence level. 

10.12.1 AssoCiAtion RUlEs ExAmplE
We will use the following example (derived from the Charles Book Club example that 
accompanies XLMiner) to illustrate the creation and use of association rules.

University Bookstore is an off-campus book seller in a large university town. The 
company has collected the data shown in Figure 10.54 (and file Fig10-54.xlsm that 
accompanies this book) summarizing 2,000 sales transactions of different kinds of 
books at a bookstore. Each row corresponds to an individual transaction and con-
tains binary values indicating what types of books were purchased in each transac-
tion. For instance, the third transaction (on row 7) included a cookbook and a Do It 
Yourself (DIY) book of some sort. The company would like to identify what, if any, 
groups of books tend to be purchased together.

To create association rules for the University Bookstore example data set using XLM-
iner, follow these steps:

1. On the XLMiner Platform tab, click Associate, Association Rules.
2. Make the selections shown in Figure 10.55, and click OK.

Figure 10.56 displays the resulting association rules for this example. A total of 18 
rules were identified that met the minimum support and minimum confidence require-
ments indicated in Figure 10.55. An analyst must sift through these rules to identify 
those that seem to have value and weed out those that do not, as many association 
rules tend to be somewhat redundant or circular. For example, the first rule indicates 
that if a customer buys art books and children’s books, then they also tend to buy his-
tory books. The second rule indicates that if a customer buys children’s and history 
books, then they also tend to buy art books. Rule 7 is also a similar variation on this 
purchasing theme. So, these rules are somewhat redundant and it is not entirely clear 
how these purchases might be related. 
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On the other hand, rule 3 indicates that if a customer buys children’s books and 
cookbooks, then they also tend to buy DIY books. This might indicate that those who 
have children and cook for themselves are on a limited budget and also tend to take 
on DIY projects. In any event, association rules might “discover” interesting buying 
patterns in a transaction database; however, once again, it is up to the analyst to sift 
through the suggested rules and find any nuggets of insight that might have been 
uncovered in the mining process.

10.12 Cluster Analysis
Cluster analysis (or clustering) is a data mining technique used to identify meaning-
ful groupings or segmentations of records within a data set. Marketers often want 
to identify clusters or segments of customers based on demographics or purchase 
history and design a tailored marketing strategy for each segment. Alternatively, a 

Figure 10.54

Data for book 
transaction affinity 
analysis example

Figure 10.55

XLMiner’s 
Association Rules 
dialog box
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company might want to segment all the product offerings within its industry to eval-
uate the positioning of its own product offerings relative to the competition. Invest-
ment firms might use clustering to identify different clusters of stocks and create a 
diversified portfolio by investing in representative stocks from each cluster. Cluster 
analysis has been applied in a wide variety of areas, including astronomy, biology, 
medicine, and linguistics.

There are basically two approaches to clustering: k-means clustering, and hierarchi-
cal clustering. In k-means clustering, the analyst prespecifies the desired number of 
clusters (k), and the clustering algorithm assigns each record to one of the k clusters with 
the objective of minimizing the sum of the total dispersion within the clusters. Total 
dispersion within each cluster is typically measured by the sum of squared Euclidean 
distances from each record in the cluster to the centroid of the cluster. This problem 
can be formulated as an integer programming problem, but the number of decision 
variables and solution time quickly become prohibitive as the number of records in the 
database increases. As a result, a greedy heuristic algorithm is usually used for k-means 
clustering. 

The k-means algorithm begins by randomly assigning each record to one of k clus-
ters. The centroids for each cluster are then calculated. Next, distances are calculated 
from each record to each of the k centroids, and each record is assigned to its near-
est (closest) cluster. The k cluster centroids are then recomputed, and the assignment 
process is repeated. This continues until no further improvement is possible or until a 
specified number of iterations through the data have occurred. 

The results obtained via this algorithm vary depending on the choice of k and the 
initial assignment of records to clusters. So it is a common practice to run the algorithm 
several times with different values of k and different initial cluster assignments. It falls 

Figure 10.56

Association rules 
results
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to the analyst to inspect the results and identify the groupings of records that provide 
the most meaningful distinctions between clusters.

The other approach to cluster analysis is hierarchical clustering. Hierarchical clus-
tering begins by assigning each of the n records in the data set to its own cluster. That 
is, it starts with n clusters, each consisting of a single record. Next, the two closest (or 
most similar) clusters are combined into a single cluster, resulting in n 2 1 clusters. The 
process of combining the two closest clusters is then repeated again and again until 
there is a single cluster consisting of all n records in the data set. 

The following metrics can be used to measure cluster closeness (or similarity) when 
choosing which clusters to combine during the execution of the hierarchical clustering 
algorithm described previously: 

•	 Single Linkage. The distance between two clusters is given by the distance between 
the closest (minimum distance) pair of records in the two clusters. 

•	 Complete Linkage. The distance between two clusters is given by the distance 
between the farthest (maximum distance) pair of records in the two clusters. 

•	 Average Linkage. The distance between two clusters is given by the average dis-
tance between all pairs of records in the two clusters.

•	 Average Group Linkage. The distance between two clusters is given by the distance 
between the centroids of the two clusters.

•	 Ward’s Method. Clusters are combined based on minimizing the dispersion (or mul-
tivariate variance) in the resulting cluster. When records are grouped together, infor-
mation about the individual records is “lost” as it is replaced by the group centroid. 
This method attempts to minimize the loss of information that occurs as records are 
merged into fewer and fewer clusters.

Here again, the analyst must inspect the results and identify the number of clusters 
and distance metric that provides the most meaningful segmentation of the data. As we 
will see a bit later, the results of hierarchical clustering can be summarized graphically 
in the form of a dendrogram to help compare the many different clustering options 
provided by this technique.

10.12.1 ClUstER AnAlYsis ExAmplE
We will use the following example to illustrate the application of k-means and hierar-
chical clustering.

Hampton Farms is a small but growing company in the food industry. The com-
pany is preparing to venture into the breakfast foods market and is trying to deter-
mine the two most prominent product segments within the cold cereal industry. 
The company collected the data shown in Figure 10.57 (and file Fig10-57.xlsm that 
accompanies this book) summarizing the per-serving nutritional profiles of 74 dif-
ferent cold breakfast cereals.

10.12.2 k-mEAn ClUstERinG ExAmplE
To perform k-means clustering on the Hampton Foods example data set using XLM-
iner, follow these steps:

1. On the XLMiner Platform tab, click Cluster, k-Means Clustering.
2. Make the Step 1 selections shown in Figure 10.58, and click Next.
3. Make the Step 2 selections shown in Figure 10.59, and click Next.
4. Make the Step 3 selections shown in Figure 10.59, and click Finish.
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Figure 10.57

Data for the 
Hampton Farms 
clustering example

Figure 10.58

k-Means Clustering 
Step 1 selections

A portion of the results for k-means clustering for the Hampton Farms data set in 
shown in Figure 10.60. As requested, two clusters have been identified, one contain-
ing 16 observations and the other containing 58 observations. The centroids for each 
cluster are shown in cells D43 through L44 in the variables’ original (non-normalized) 
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Figure 10.59 k-Means Clustering Step 2 and Step 3 selections

Figure 10.60 k-means clustering results
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scales. The line graph in Figure 10.60 was created manually using the data for the clus-
ter centroids to help visualize the differences in the centroids. From this graph, it is 
easy to see that the product offerings comprising cluster 2 are significantly lower in 
calories, sodium, and potassium than those in cluster 1 and slightly lower in carbohy-
drates and vitamins. So this analysis might suggest that product offerings in the cold 
breakfast cereal market consist of (at least) a health-conscious segment and a taste seg-
ment. Details about which specific cereals are in cluster 1 and cluster 2 are found on 
the worksheet named KM_Cluster (not shown here). Ordinarily, we would rerun the 
k-means clustering technique several times using different values of k to see if a differ-
ent number of segments would better capture the differences in these products. 

10.12.3 HiERARCHiCAl ClUstERinG ExAmplE
To perform hierarchical clustering on the Hampton Foods example data set using 
XLMiner, follow these steps:

1. On the XLMiner Platform tab, click Cluster, Hierarchical Clustering.
2. Make the Step 1 selections shown in Figure 10.61 (using the file Fig10-61.xlsm that 

accompanies this book), and click Next.
3. Make the Step 2 selections shown in Figure 10.62, and click Next.
4. Make the Step 3 selections shown in Figure 10.62, and click Finish.

A dendrogram of the results of hierarchical clustering for the Hampton Farms data 
set is shown in Figure 10.63. A dendrogram is a diagram that summarizes the hier-
archical clustering process at various levels of granularity. The vertical lines in the 
dendrogram reflect the distance between the records or clusters being joined. We can 
determine the number of clusters by sliding a horizontal line up and down across the 
dendrogram until the number of vertical lines intersecting with the horizontal line 
equals the number of desired clusters. If you imagine a horizontal line positioned at the 

Figure 10.61

Hierarchical 
Clustering Step 1 
selections
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35 level on the y-axis in the dendrogram, that line would intersect two of the vertical 
lines. Following those two lines downward leads to the component clusters making up 
two clusters. In this example, the leftmost of the two clusters consists of subclusters 2, 
8, 4, 9, 5, 6, 10, 17, 23, 12, 13, 26, 28, and 29. The other cluster consists of the remaining 
subclusters. 

The observations making up each subcluster are listed (in part) further down on the 
sheet named HC_Dendrogram and in Figure 10.64. For instance, subcluster 2 is com-
prised of observations 2 and 52, and subcluster 9 consists of observations 11, 58, 64, 
and 71. Here again, we would rerun the hierarchical clustering technique several times 
using different clustering methods (e.g., average linkage, complete linkage) and inspect 
the results to see which dendrogram and number of clusters best captures the differ-
ences in these products. 

10.13 Time Series
XLMiner also offers a number of tools for mining time series data—or data collected 
at equal intervals over time. Chapter 11 discusses various time series analysis tech-
niques in detail and shows how they can be implemented using the inherent capa-
bilities of Excel. After covering that material, you should understand most of the 
techniques and appreciate the user-friendly interfaces XLMiner provides for these 
time series analysis tools. 

Figure 10.62 Hierarchical Clustering Step 2 and Step 3 selections
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558 Chapter 10 Data Mining

10.14 Summary
This chapter presented an introduction to the topic of data mining. It surveyed the var-
ious steps involved in the data mining process and described the three broad categories 
of problems typically associated with data mining. The chapter presented a survey of 
several commonly used techniques for classification, including: discriminant analysis, 
logistic regression, classification trees, k-nearest neighbor, naïve Bayes, and neural net-
works. It then described how several of these techniques may also be applied to predic-
tion problems in data mining, where we attempt to estimate the value of a continuous 

Figure 10.63
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Figure 10.64
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dependent variable using the information available in a set of independent variables. 
The technique of affinity analysis was introduced for determining “what goes with 
what,” and a market basket analysis example was given to illustrate the “If-Then” rules 
produced by this technique. Finally, the chapter discussed the techniques for identify-
ing logical groupings of records within a data set via clustering analysis. 
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tHE WoRlD of BUsinEss AnAlYtiCs

La Quinta Motor Inns Predicts Successful Sites  
with Discriminant Analysis

Management at La Quinta Motor Inns wanted a fast, reliable method for pre-
dicting whether potential sites for new inns would be successful. One of the first 
issues to be resolved in designing a regression model was to define a measure 
of success that would be useful in making predictions. After considering several 
alternatives, operating margin—defined as profit plus depreciation and interest 
expenses as a percentage of total revenue—was chosen. Total revenue and total 
profit were unsuitable measures because they are too highly correlated with the 
size of the inn. Occupancy was also considered unsuitable because it is too sensi-
tive to the economic cycle.

Data were collected on all 151 existing inns operated by La Quinta at the time 
of the study. The regression model was developed using 57 inns, and the other 
94 were set aside for validation. During the selection of independent variables, 
care was taken to measure collinearity and keep it under control. A coefficient of 
determination 1R2 2  of 0.51 was obtained for a model showing that operating mar-
gin is positively influenced by the price of the inn (a measure of the competitive 
room rate of the market area) and the location of nearby colleges. Negative influ-
ences were distance to the nearest La Quinta Inn (a reverse measure of market 

(Continued)
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560 Chapter 10 Data Mining

Questions and Problems
1. Explain the purpose of the training, validation, and test data sets in data mining.
2. What is a centroid?
3. It can be argued that regression analysis and discriminant analysis both use a set of 

independent variables to predict the value of a dependent variable. What, then, is 
the difference between regression analysis and discriminant analysis?

4. What would a lift chart look like for a classification technique with 100% accuracy? 
5. Consider the file named EmployeeData.xlsx that accompanies this book. What 

errors (or potential errors) can you find in this data set?
6. Refer to the Universal Bank example used to demonstrate the various classification 

techniques in this chapter. Suppose the Universal Bank data had included the home 
zip code for each customer. What issues might arise in using the customer’s zip 
code as an independent variable in this problem and what would be the best way of 
using this information? 

7.  The director of the MBA program at Salterdine University wants to develop a pro-
cedure to determine which applicants to admit to the MBA program. The director 
believes that an applicant’s undergraduate grade point average (GPA) and score on 
the GMAT exam are helpful in predicting which applicants will be good students. To 
assist in this endeavor, the director asked a committee of faculty members to classify 
70 of the recent students in the MBA program into two groups: (1) good students 
and (2) weak students. The file MBAStudents.xlsm that accompanies this book sum-
marizes these ratings, along with the GPA and GMAT scores for the 70 students.
a. What are the coordinates of the centroids for the good students and the weak 

students?
b.  Use XLMiner’s standard data partition command to partition the data into a 

training set (with 60% of the observations) and validation set (with 40% of the 
observations) using the default seed of 12345. 

c.  Use discriminant analysis to create a classifier for this data. How accurate is this 
procedure on the training and validation data sets?

penetration) and median income in the market area (suggesting an industrial eco-
nomic base). After careful analysis, one outlier was deleted from the data, sub-
stantially improving the model.

The regression model itself was not the tool that management had in mind, 
however. Management needed a criterion to use for either choosing or rejecting 
potential sites. After specifying an acceptable risk of choosing a bad site, classi-
fication tables were used to develop a decision rule for discriminating between 
“good” sites and “bad” sites. The cut-off value was a predicted operating margin 
of 35%.

The model was then tested on the 94 inns set aside for validation, and the error 
rates were as expected. Set up as a spreadsheet, the model is now used to screen 
potential sites for possible development, with the final decision made by the pres-
ident of the company.

Source: Sheryl E. Kimes and James A. Fitzsimmons. “Selecting Profitable Hotel Sites at La Quinta 
Motor Inns.” Interfaces, vol. 20, no. 2, March–April 1990, pp. 12–20.
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d.  Use logistic regression to create a classifier for this data. How accurate is this pro-
cedure on the training and validation data sets?

e.  Use the k-nearest neighbor technique to create a classifier for this data (with nor-
malized inputs). What value of k seems to work best? How accurate is this proce-
dure on the training and validation data sets?

f. Use a single classification tree to create a classifier for this data (with normalized 
inputs and at least 4 observations per terminal node). Create a graphic depiction 
of the best pruned tree using the validation data. How accurate is this procedure 
on the training and validation data sets?

g. Use a manual neural network to create a classifier for this data (use normalized 
inputs and a single hidden layer with 3 nodes). How accurate is this procedure 
on the training and validation data sets?

h. Return to the Data sheet and use the Transform, Bin Continuous Data command 
to create binned variables for GPA and GMAT. Use XLMiner’s standard data par-
tition command to partition the data into a training set (with 60% of the observa-
tions) and validation set (with 40% of the observations) using the default seed of 
12345. Now use the naïve Bayes technique to create a classifier for the data using 
the new binned variables for GPA and GMAT. How accurate is this procedure on 
the training and validation data sets?

i. Which of the classification techniques would you recommend the MBA program 
actually use?

j.  Suppose that the MBA director receives applications for admission to the MBA 
program from the following individuals. According to your recommended clas-
sifier, which of these individuals do you expect to be good students and which 
do you expect to be weak?

Name gPA gMAT

Mike Dimoupolous 3.02 450
Scott Frazier 2.97 587
Paula Curry 3.95 551
Terry Freeman 2.45 484
Dana Simmons 3.26 524

 8.  The Royalty Gold Corporation prospects for undiscovered gold deposits around 
the world. The company is currently investigating a possible site on the island of 
Milos off the coast of Greece in the Mediterranean. When prospecting, the company 
drills to collect soil and rock samples and then analyzes the chemical properties of 
the samples to help determine whether or not the site is likely to contain signifi-
cant gold deposits. Gold-bearing ore is made up of various minerals including cala-
verite, sylvanite, and petzite. Sites with higher concentrations of these minerals are 
more likely to contain significant gold deposits. The company has collected the data 
found in the file RoyalGold.xlsm accompanying this book representing the average 
levels of calaverite, sylvanite, and petzite in samples collected from previous var-
ious sites examined in previous prospecting expeditions. These data are grouped 
according to whether or not significant gold deposits were found at the location 
(1=significant, 2=insignificant).
a.  What are the coordinates of the centroids for the significant sites and the insignif-

icant sites?
b.  Use XLMiner’s standard data partition command to partition the data into a 

training set (with 60% of the observations) and validation set (with 40% of the 
observations) using the default seed of 12345. 
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562 Chapter 10 Data Mining

c.  Use discriminant analysis to create a classifier for this data. How accurate is this 
procedure on the training and validation data sets?

d.  Use logistic regression to create a classifier for this data. How accurate is this pro-
cedure on the training and validation data sets?

e.  Use the k-nearest neighbor technique to create a classifier for this data (with nor-
malized inputs). What value of k seems to work best? How accurate is this proce-
dure on the training and validation data sets?

f. Use a single classification tree to create a classifier for this data (with normalized 
inputs and at least 4 observations per terminal node). Create a graphic depiction 
of the best pruned tree using the validation data. How accurate is this procedure 
on the training and validation data sets?

g. Use a manual neural network to create a classifier for this data (use normalized 
inputs and a single hidden layer with 3 nodes). How accurate is this procedure 
on the training and validation data sets?

h.  Return to the Data sheet and use the Transform, Bin Continuous Data command 
to create binned variables for Calaverite, Sylvanite, and Petzite. Use XLMiner’s 
standard data partition command to partition the data into a training set (with 
60% of the observations) and validation set (with 40% of the observations) using 
the default seed of 12345. Now use the naïve Bayes technique to create a classifier 
for the data using the new binned variables for Calaverite, Sylvanite, and Petzite. 
How accurate is this procedure on the training and validation data sets?

i. Which of the classification techniques would you recommend the company actu-
ally use?

j. Suppose the company analyzes five sites on Milos that produce the following 
average levels of calaverite, sylvanite, and petzite. According to your recom-
mended classifier, which of these sites, if any, should be considered for further 
analysis?

Site Calaverite Sylvanite Petzite

1 0.058 0.041 0.037
2 0.045 0.023 0.039
3 0.052 0.023 0.044
4 0.043 0.042 0.056
5 0.050 0.032 0.038

 9.  The manager of the commercial loan department for a bank wants to develop a 
rule to use in determining whether or not to approve various requests for loans. 
The manager believes that three key characteristics of a company’s performance are 
important in making this decision: liquidity, profitability, and activity. The manager 
measures liquidity as the ratio of current assets to current liabilities. Profitability is 
measured as the ratio of net profit to sales. Activity is measured as the ratio of sales 
to fixed assets. The manager has collected the data found in the file Loans.xlsm 
accompanying this book containing a sample of 98 loans that the bank has made in 
the past five years. These loans have been classified into two groups: (1) those that 
were acceptable and (2) those that should have been rejected.
a.  What are the coordinates of the centroids for the acceptable loans and the unac-

ceptable loans?
b.  Use XLMiner’s standard data partition command to partition the data into a 

training set (with 60% of the observations) and validation set (with 40% of the 
observations) using the default seed of 12345. 
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c.  Use discriminant analysis to create a classifier for this data. How accurate is this 
procedure on the training and validation data sets?

d.  Use logistic regression to create a classifier for this data. How accurate is this pro-
cedure on the training and validation data sets?

e.  Use the k-nearest neighbor technique to create a classifier for this data (with nor-
malized inputs). What value of k seems to work best? How accurate is this proce-
dure on the training and validation data sets?

f. Use a classification tree to create a classifier for this data (with normalized inputs 
and at least 4 observations per terminal node). Create a graphic depiction of the 
best pruned tree using the validation data. How accurate is this procedure on the 
training and validation data sets?

g. Use a neural network to create a classifier for this data (use normalized inputs 
and a single hidden layer with 2 nodes). How accurate is this procedure on the 
training and validation data sets?

h. Return to the Data sheet and use the Transform, Bin Continuous Data command 
to create binned variables for liquidity, profitability, and activity. Use XLMiner’s 
standard data partition command to partition the data into a training set (with 
60% of the observations) and validation set (with 40% of the observations) using 
the default seed of 12345. Now use the naïve Bayes technique to create a classifier 
for the data using the new binned variables for liquidity, profitability, and activ-
ity. How accurate is this procedure on the training and validation data sets?

i. Which of the classification techniques would you recommend the company actu-
ally use?

j.  Suppose that the manager receives loan applications from companies with the 
following financial information. According to your recommended classifier, 
which of these companies do you expect to be acceptable credit risks?

Company Liquidity Profitability Activity

A 0.78 0.27 1.58
B 0.91 0.23 1.67
C 0.68 0.33 1.43
D 0.78 0.23 1.23
E 0.67 0.26 1.78

10. Home Basics is a home improvement retail store selling all manner of products that 
are needed by home owners to repair, remodel, and redecorate their homes. The 
management of Home Basics is analyzing buying patterns of its customers to eval-
uate the layout of its stores. Products within a Home Basics store are organized into 
the following categories: Paint, Wallpaper, Lawn Care, Flooring, Hardware, Plumb-
ing, Tools, Electrical, Building Materials, Cleaning, Appliances. The file named 
HomeBasics.xlsm that accompanies this book contains a sample of 1,500 recent 
transactions from a Home Basics store. Management would like to determine what, 
if any, categories of products tend to be purchased together.
a. Create association rules for the data using a minimum support of 150 records 

and a 50% minimum confidence percent.
b. What managerial implications might be suggested by the rules with a minimum 

lift ratio of 2?
11. Colleges and universities are often interested in identifying their peer institutions. 

The file named Colleges.xlsm that accompanies this book contains a number of 
(artificial) metrics for 307 higher education institutions in the U.S. 
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a. Use k-means clustering to create 4 clusters for this data (use normalized input 
data and 100 iterations).

b. How many schools are in each cluster? 
c. How would you characterize each of the clusters?
d. Now use hierarchical clustering (with Ward’s method) for this data and produce 

a dendrogram.
e. If four clusters are desired, how many schools would be in each cluster?
f. Which clustering technique would you recommend be used and why?

Detecting Management Fraud
In the wake of the Enron scandal in 2002 two public accounting firms, Oscar Anderson 
(OA) and Trice-Milkhouse-Loopers (TML), merged (forming OATML) and are review-
ing their methods for detecting management fraud during audits. The two firms had 
each developed their own set of questions that auditors could use in assessing manage-
ment fraud. 

To avoid a repeat of the problems faced by Enron’s auditors, OATML wants to 
develop an automated decision tool to assist auditors in predicting whether or not their 
clients are engaged in fraudulent management practices. This tool would basically ask 
an auditor all the OA or TML fraud detection questions and then automatically render 
a decision about whether or not the client company is engaging in fraudulent activities. 
The decision problem OATML faces is really two-fold: 1) Which of the two sets of fraud 
detection questions are best at detecting fraud? and, 2) What’s the best way to translate 
the answers to these questions into a prediction or classification about management 
fraud?

To assist in answering these questions, the company has compiled an Excel spread-
sheet (the file Fraud.xlsm accompanying this book) that contains both the OA and TML 
fraud detection questions and answers to both sets of questions based on 382 audits 
previously conducted by the two companies (see sheets OA and TML, respectively). 
(Note: for all data 1=yes, 0=no.) For each audit, the last variable in the spreadsheet indi-
cates whether or not the respective companies were engaged in fraudulent activities 
(i.e., 77 audits uncovered fraudulent activities, 305 did not). 

You have been asked to perform the following analysis and provide a recommenda-
tion as to what combination of fraud questions OATML should adopt.
1. For the OA fraud questions, create a correlation matrix for all the variables. Do any 

of the correlations pose a concern? 
2. Using the 8 questions that correlate most strongly with the dependent fraud vari-

able, partition the OA data with oversampling to create a training and validation 
data sets with a 50% success rate in the training data. (Use the default seed of 12345.)

3. Use each of XLMiner’s classification techniques to create classifiers for the parti-
tioned OA dataset. Summarize the classification accuracy of each technique on the 
training and validation sets. Interpret these results and indicate which technique 
you would recommend OATML use. 

4. For the TML fraud questions, create a correlation matrix for all the variables. Do 
any of the correlations pose a concern? 

5. Using the 8 questions that correlate most strongly with the dependent fraud vari-
able, partition the TML data with oversampling to create training and validation 
data sets with a 50% success rate in the training data. (Use the default seed of 12345.)

CASe 10.1

47412_ch10_ptg01_499-565.indd   564 08/11/16   1:28 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Case 10.1 565

6. Use each of XLMiner’s classification techniques to create classifiers for the parti-
tioned TML dataset. Summarize the classification accuracy of each technique on the 
training and validation sets. Interpret these results and indicate which technique 
you would recommend OATML use. 

7. Suppose OATML wants to use both fraud detection instruments and combine their 
individual results to create a composite prediction. Let LR1 represent the logistic 
regression probability estimate for a given company using the OA fraud detection 
instrument and LR2 represent the same company’s logistic regression probability 
estimate using the TML instrument. The composite score for the company might 
then be defined as C = w1LR1 + (1 2 w1)LR2 where 0 # w1 # 1. A decision rule could 
then be created where we classify the company as non-fraudulent if C is less than 
or equal to some cut-off value, and is otherwise considered fraudulent. Use Solver’s 
evolutionary optimizer to find the optimal value of w1 and the cut-off value that 
minimizes the number of classification errors for the training data. What do you 
obtain for w1 and the cut-off value? Summarize the accuracy of this technique for 
the training and validation data sets. How do these results compare with the logis-
tic regression results in questions 3 and 6?

 8. What other techniques can you think for combining OA’s and TML’s fraud detec-
tion questionnaires that might be beneficial to OATML?
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Chapter 11
Time Series Forecasting

11.0 Introduction
A time series is a set of observations on a quantitative variable collected over time. 
For example, every night the evening news reports the closing value of the Dow 
Jones Industrial Average. These closing values represent a series of values for a 
quantitative variable over time—or a time series. Most businesses keep track of a 
number of time series variables. Examples might include daily, weekly, monthly, 
or quarterly figures on sales, costs, profits, inventory, back orders, customer counts, 
and so on.

Businesses often are interested in forecasting future values of a time series vari-
able. For example, if we could accurately predict future closing values of the Dow 
Jones Industrial Average, we could become very wealthy investing in the stock mar-
ket by “buying low and selling high.” In constructing business plans, most com-
panies make some attempt to forecast the expected levels of sales, costs, profits, 
inventory, back orders, customer counts, and so on. These types of forecasts often 
are required inputs to the other types of modeling techniques discussed throughout 
this text.

In chapter 9, we investigated how to build and use regression models to predict the 
behavior of a dependent variable using one or more independent variables that are 
believed to be related to the dependent variable in a causal fashion. That is, when build-
ing a regression model, we often select independent variables that are believed to cause 
the observed behavior of the dependent variable. Although we can sometimes use this 
same approach to build a causal regression model for a time series variable, we cannot 
always do so.

For example, if we do not know which causal independent variables are influenc-
ing a particular time series variable, we cannot build a regression model. And even if 
we do have some idea which causal variables are affecting a time series, there might 
not be any data available for those variables. If data on the causal variables are avail-
able, the best regression function estimated from these data might not fit the data 
well. Finally, even if the estimated regression function fits the data well, we might 
have to forecast the values of the causal independent variables in order to estimate 
future values of the dependent (time series) variable. Forecasting the causal inde-
pendent variables might be more difficult than forecasting the original time series 
variable.
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O n  t h e  I m p o r t a n c e  o f  F o r e c a s t i n g …
“You do not plan to ship goods across the ocean, or to assemble merchandise for 
sale, or to borrow money without first trying to determine what the future may 
hold in store. Ensuring that the materials you order are delivered on time, see-
ing to it that the items you plan to sell are produced on schedule, and getting 
your sales facilities in place all must be planned before that moment when the 
customers show up and lay their money on the counter. The successful business 
executive is a forecaster first: purchasing, producing, marketing, pricing, and 
organizing all follow.”—Peter Bernstein. Against the Gods: The Remarkable Story of 
Risk. New York: John Wiley & Sons, 1996, pp. 21–22.

11.1 Time Series Methods
In many business planning situations, it is difficult, undesirable, or even impossible to 
forecast time series data using a causal regression model. However, if we can discover 
some sort of systematic variation in the past behavior of the time series variable, we 
can attempt to construct a model of this behavior to help us forecast its future behav-
ior. For example, we might find a long-term upward (or downward) trend in the time 
series that might be expected to continue in the future. Or, we might discover some 
predictable seasonal fluctuations in the data that could help us make estimates about 
the future. As you may have surmised, time series forecasting is based largely on the 
maxim that history tends to repeat itself.

Techniques that analyze the past behavior of a time series variable to predict the 
future are sometimes referred to as extrapolation models. The general form of an 
extrapolation model is:

Ŷt11 5 f 1Yt, Yt21,Yt22 , c 2  11.1

where Ŷt11 represents the predicted value for the time series variable in time period 
t 1 1, Yt represents the actual value of the time series variable in time period t, Yt21

represents the actual value of the time series variable in time period t 2 1, and so on. 
The goal of an extrapolation model is to identify a function f ( ) for equation 11.1 that 
produces accurate forecasts of future values of the time series variable.

This chapter presents a variety of methods for analyzing time series data. We’ll 
first discuss several techniques that are appropriate for stationary time series, where 
there is no significant upward or downward trend in the data over time. Then, we’ll 
discuss techniques for handling nonstationary time series, where there is some upward 
or downward trend in the data over time. We’ll also discuss techniques for modeling 
seasonal patterns in both stationary and nonstationary time series data.

11.2 Measuring Accuracy
Many methods are available for modeling time series data. In most cases, it is impos-
sible to know in advance which method will be the most effective for a given set of 
data. Thus, a common approach to time series analysis involves trying several mod-
eling techniques on a given data set and evaluating how well they explain the past 
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568 Chapter 11 Time Series Forecasting

behavior of the time series variable. We can evaluate these techniques by constructing 
line graphs that show the actual data versus the values predicted by the various mod-
eling techniques. More formal quantitative measures of the accuracy (or “goodness of 
fit”) of time series modeling techniques also exist. Four common accuracy measures 
are the mean absolute deviation (MAD), the mean absolute percent error (MAPE), the 
mean square error (MSE), and the root mean square error (RMSE). These quantities are 
defined as follows:

MAD 5
1
n a

i
 0Yi 2 Ŷi 0

MAPE 5
100
n a

i
`  Yi 2 Ŷi

Yi
 `

MSE 5
1
n a

i
1Yi 2 Ŷi 2 2

RMSE 5 !MSE

In each of these formulas, Yi represents the actual value for the ith observation in 
the time series and Ŷi is the forecasted or predicted value for this observation. These 
quantities measure the differences between the actual values in the time series and the 
predicted, or fitted, values generated by the forecasting technique. The MSE and RMSE 
measures are closely related to the sum of square estimation errors criterion introduced 
in our discussion of regression analysis. Although all of these measures are commonly 
used in time series modeling, we will focus on the MSE measure because it is somewhat 
easier to calculate.

11.3 Stationary Models
The following example will be used to demonstrate several of the most common time 
series techniques for stationary data.

Electra-City is a retail store that sells audio and video equipment for the home 
and car. Each month, the manager of the store must order merchandise from 
a distant warehouse. Currently, the manager is trying to estimate how many 
digital video recorders (DVRs) the store is likely to sell in the next month. To 
assist in this process, he has collected the data shown in Figure 11.1 (and in 
the file Fig11-1.xlsm that accompanies this book) on the number of DVRs sold 
in each of the previous 24 months. He wants to use these data in making his 
prediction.

After collecting the data for a time series variable, the next step in building a time 
series model is to inspect the data plotted over time. Figure 11.1 includes a plot of 
the DVR data. Notice that this plot does not suggest a strong upward or downward 
trend in the data. This plot suggests that the number of DVRs sold each month fell 
somewhere between 30 and 40 units over the past 2 years with no continuing pattern 
or regularity from month to month. Thus, we expect that one of the extrapolation 
techniques discussed in the following sections would be an appropriate method for 
modeling these data.
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Moving Averages 569

C r e a t i n g  a  L i n e  G r a p h
To create a scatter plot like the one shown in Figure 11.1:

1. Select cells A1 through B26.
2. Click Insert.
3. Click the Scatter Chart option.
4. Click Scatter with Straight Lines and Markers.

After Excel creates a basic chart, you can customize it in many ways. Right-
clicking a chart element displays a dialog box with options for modifying the 
appearance of the element.

11.4 Moving Averages
The moving average technique is probably the easiest extrapolation method for sta-
tionary data to use and understand. With this technique, the predicted value of the 
time series in period t 1 1 (denoted by Ŷt11) is simply the average of the k previous 
observations in the series; 

Figure 11.1 Historical DVR sales data for the Electra-City forecasting problem
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570 Chapter 11 Time Series Forecasting

that is:

Ŷt11 5
Yt 1 Yt21 1 c1 Yt2k11

k
 11.2

The value k in equation 11.2 determines how many previous observations will be 
included in the moving average. No general method exists for determining what value 
of k will be best for a particular time series. Therefore, we must try several values of k to 
see which gives the best results. This is illustrated in Figure 11.2 (and in the file Fig11-2.
xlsm that accompanies this book) where the monthly number of DVRs sold for Electra-
City is fit using moving average models with k values of 2 and 4.

We generated the moving average forecasts in Figure 11.2 using the AVERAGE( ) 
function. For example, the 2-month moving average forecasts are generated by 
implementing the following formula in cell C5 and copying it to cells C6 through C26:

 Formula for cell C5:    5AVERAGE 1B3:B4 2
(Copy to C6 through C26.)

The 4-month moving average forecasts are generated by implementing the following 
formula in cell D7 and copying it to cells D8 through D26:

Formula for cell D7:    5AVERAGE 1B3:B6 2
(Copy to D8 through D26.)

The actual DVR sales data are plotted in Figure 11.2 along with the predicted 
values from the two moving average models. This graph shows that the predicted 

Key Cell Formulas

Cell Formula Copied to

C5 5AVERAGE(B3:B4) C6:C26
D7 5AVERAGE(B3:B6) D8:D26
C28 5SUMXMY2($B$7:$B$26,C7:C26)/COUNT(C7:C26) D28

Figure 11.2 

Moving average 
forecasts for the 
DVR sales data.
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Moving Averages 571

values tend to be less volatile, or smoother, than the actual data. This should not be 
surprising because the moving average technique tends to average out the peaks 
and valleys occurring in the original data. Thus, the moving average technique is 
sometimes referred to as a smoothing method. The larger the value of k (or the more 
past data points are averaged together), the smoother the moving average prediction 
will be.

We can evaluate the relative accuracy of the two moving average forecasting 
functions by comparing the MSE values for these two techniques shown in cells C28 
and D28 in Figure 11.2. The following formula calculates these MSE values:

Formula for cell C28:   5SUMXMY2 1$B$7:$B$26,C7:C26 2/COUNT 1C7:C26 2
(Copy to D28.)

Note that the SUMXMY2( ) function calculates the sum of squared differences 
between corresponding values in two different ranges. The COUNT( ) function returns 
the number of values in a range. Also note that the forecasts using the 2-month moving 
average begin in time period 3 (cell C5) and the 4-month moving average forecasts 
begin in time period 5 (cell D7). We are calculating the MSE values starting in time 
period 5 for both forecasting techniques so that a fair comparison between them can be 
made.

The MSE value describes the overall fit of the forecasting technique to the historical 
data. By comparing the MSE values for the two moving averages, we might conclude 
that the 2-month moving average (with an MSE of 6.90) provides more accurate 
forecasts than the 4-month moving average (with an MSE of 7.80). Note, however, 
that the MSE includes and weighs relatively old data with the same importance as the 
most recent data. Thus, selecting a forecast based on the total MSE of the forecasting 
functions might not be wise because a forecasting function might have achieved a 
lower total MSE by fitting older data points very well while being relatively inaccurate 
on more recent data.

Because we want to forecast future observations, we might be interested in how well 
the forecasting function performed on the most recent data. We can determine this 
by calculating other MSE values using only the most recent data. For example, if we 
calculate MSE values using only the last 12 time periods (periods 13 through 24), the 
4-month moving average produces an MSE of 6.23, and the 2-month moving average 
produces an MSE of 6.52. These results are shown in the table below the graph in Figure 
11.3. So an argument could be made that the 4-month moving average model should 
be used to predict the future because it produced the most accurate predictions of the 
actual values observed during the past 12 time periods. Note, however, that there is 
no guarantee that the forecasting technique that has been most accurate recently will 
continue to be most accurate in the future.

11.4.1 FOreCastInG wIth the MOvInG averaGe MOdeL
Assuming (for simplicity) that the manager of Electra-City is satisfied with the accu-
racy of the 2-month moving average model, the prediction of the number of DVRs to be 
sold in the next month (time period 25) is calculated as:

Ŷ25 5
Y24 1 Y23

2
5

36 1 35
2

5 35.5

In fact, the forecast for all future time periods would equal 35.5. If a time series is 
stationary (or has no trend), it is reasonable to assume that the forecast of the next time 
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572 Chapter 11 Time Series Forecasting

period and all future time periods should equal the same value. Thus, the moving 
average forecasting model for all future time periods in the Electra-City example is 
represented by Ŷt 5 35.5 (for t 5 25, 26, 27, c). Figure 11.3 shows forecasts made at 
time period 24 for periods 25, 26, 27, and 28 for both the 2-month and 4-month moving 
average techniques.

11.5 Weighted Moving Averages
One drawback of the moving average technique is that all the past data used in calcu-
lating the average are weighted equally. We can often obtain a more accurate forecast 
by assigning different weights to the data. The weighted moving average technique 
is a simple variation on the moving average technique that allows for weights to be 
assigned to the data being averaged. In the weighted moving average technique, the 
forecasting function is represented by:

Ŷt11 5 w1Yt 1 w2Yt21 1 c1 wkYt2k11 11.3

Key Cell Formulas

Cell Formula Copied to

C27 5AVERAGE(B25:B26) --
C28 5C27 C29:C30
D27 5AVERAGE(B23:B26) --
D28 5D27 D29:D30
I29 5SUMXMY2($B15:$B26,C15:C26)/COUNT(C15:C26) J29
I30 5SUMXMY2($B$7:$B$26,C7:C26)/COUNT(C7:C26) J30

Figure 11.3 

Forecasts of the 
DVR sales data.
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Weighted Moving Averages 573

where 0 # wi # 1 and S
k

i51
wi 5 1. Note that the simple moving average forecast in equa-

tion 11.2 is a special case of equation 11.3 where w1 5 w2 5 c5 wk 5
1
k.

Although the weighted moving average offers greater flexibility than the moving 
average, it is also a bit more complicated. In addition to determining a value for k, we 
must also determine values for the weights wi in equation 11.3. However, for a given 
value of k, we can use Solver to determine the values for wi that minimize the MSE. 
The spreadsheet implementation of a 2-month weighted moving average model for 
the Electra-City example is shown in Figure 11.4 (and in the file Fig11-4.xlsm that 
accompanies this book).

Figure 11.4 Spreadsheet implementation of the weighted moving average model

Key Cell Formulas

Cell Formula Copied to

C5 5$F$3*B41$F$4*B3 C6:C26
F5 5SUM(F3:F4) --
F7 5SUMXMY2(B5:B26,C5:C26)/COUNT(C5:C26) --

Variable Cells

Constraint Cell

Objective Cell

Cells F3 and F4 represent the weights w1 and w2, respectively. Cell F5 contains the 
sum of cells F3 and F4. The weighted average forecasting function is implemented in 
cell C5 with the following formula, which is copied to cells C6 through C26:

Formula for cell C5:    5$F$3*B4 1 $F$4*B3
(Copy to C6 through C26.)
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574 Chapter 11 Time Series Forecasting

Notice that with w1 5 w2 5 0.5 the weighted average predictions are identical to 
those of the simple moving average method shown in Figure 11.2. The formula for the 
MSE is implemented in cell F7 as follows:

 Formula for cell F7:    5SUMXMY2 1B5:B26,C5:C26 2/COUNT 1C5:C26 2
We can use the Solver settings and options shown in Figure 11.5 to identify the 

values for the weights in cells F3 and F4 that minimize the MSE. Notice that this is 
a nonlinear optimization problem because the MSE represents a nonlinear objective 
function. Figure 11.6 shows the solution to this problem.

Figure 11.5 

Solver settings
and options for the
weighted moving
average model

Solver Settings:

Objective: F7 (Min)
Variable cells: F3:F4
Constraints: 
 F3:F4 ,5 1
 F3:F4 .5 0
 F5 5 1

Solver Options:

 Standard GRG Nonlinear Engine

Figure 11.6 Optimal solution and forecasts with the weighted moving average model

Key Cell Formulas

Cell Formula Copied to

C27 5F3* B26+F4* B25 --
C28 5C27 C29:C30
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Exponential Smoothing 575

Notice that the optimal weights of w1 5 0.29 and w2 5 0.71 reduce the value of the 
MSE from 7.20 to 6.53.

11.5.1 FOreCastInG wIth the weIGhted MOvInG 
averaGe MOdeL
Using the weighted moving average technique, the predicted number of DVRs to be 
sold at Electra-City in the next month (time period 25) is calculated as:

Ŷ25 5 w1Y24 1 w2Y23 5 0.29 3 36 1 0.71 3 35 5 35.29

Again, if a time series is stationary (or has no trend), it is reasonable to assume 
that the forecast of the next time period and all future time periods should equal the 
same value. Thus, the weighted moving average forecasting model for all future time 
periods in the Electra-City example is represented by Ŷt 5 35.5 1 for t 5 25, 26, 27, c2 .
Figure 11.6 shows forecasts made at time period 24 for periods 25, 26, 27, and 28 for the 
2-month weighted moving average technique.

11.6 Exponential Smoothing
Exponential smoothing is another averaging technique for stationary data that allows 
weights to be assigned to past data. Exponential smoothing models assume the follow-
ing form:

Ŷt11 5 Ŷt 1 α 1Yt 2 Ŷt 2  11.4

Equation 11.4 indicates that the predicted value for time period t 1 1 1 Ŷt11 2  is equal 
to the predicted value for the previous period 1 Ŷt 2  plus an adjustment for the error 
made in predicting the previous period’s value 1α 1Yt 2 Ŷt 2 2 . The parameter α  in 
equation 11.4 can assume any value between 0 and 1 10 # α # 1 2 .

It can be shown that the exponential smoothing formula in equation 11.4 is 
equivalent to:

Ŷt11 5 αYt 1 α 11 2 α 2  Yt21 1 α 11 2 α 2 2 Yt22 1 c1 α 11 2 α 2n Yt2n 1 c

As shown in the previous equation, the forecast Ŷt11 in exponential smoothing is a 
weighted combination of all previous values in the time series where the most recent 
observation Yt receives the heaviest weight 1α 2 , the next most recent observation Yt21
receives the next heaviest weight 1α 11 2 α 2 2 , and so on.

In an exponential smoothing model, small values of α  tend to produce sluggish 
forecasts that do not react quickly to changes in the data. A value of α near 1 produces 
a forecast that reacts more quickly to changes in the data. Figure 11.7 (and file Fig11-7.
xlsm that accompanies this book) illustrates these relationships, showing the results of 
two exponential smoothing models for the DVR sales data with α-values of 0.1 and 0.9.

We can use Solver to determine the optimal value for α when building an exponential 
smoothing forecasting model for a particular data set. The spreadsheet implementation 
of the exponential smoothing forecasting model for the Electra-City example is shown 
in Figure 11.8 (and in the file Fig11-8.xlsm that accompanies this book).

In Figure 11.8, cell F3 represents α. In an exponential smoothing forecasting model, it 
is customary to assume that Ŷ1 5 Y1. Thus, in Figure 11.8, cell C3 contains the following 
formula:

Formula for cell C3:    5B3
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576 Chapter 11 Time Series Forecasting

The forecasting function in equation 11.4 begins for time period t 5 2 with the 
following formula, which is implemented in cell C4 and copied to cells C5 through C26:

Formula for cell C4:   5C3 1 $F$3* 1B3 2 C3 2
(Copy to C5 through C26.)

The formula in cell F5 calculates the MSE value as:

Formula for cell F5:   5SUMXMY2 1B4:B26,C4:C26 2/COUNT 1C4:C26 2
We can use the Solver settings and options shown in Figure 11.9 to identify the value 

for α that minimizes the MSE. Again, this is a nonlinear optimization problem because 
the MSE represents a nonlinear objective function. Figure 11.10 shows the solution to 
this problem. Notice that the optimal value for α is given in cell F3 as 0.26.

11.6.1 FOreCastInG wIth the expOnentIaL  
sMOOthInG MOdeL
Using the exponential smoothing model, the predicted number of DVRs to be sold at 
Electra-City in the next month (time period 25) is calculated as:

Ŷ25 5 Ŷ24 1 α 1Y24 2 Ŷ24 2  5 35.91 1 0.26* 136 2 35.91 2 5 35.93

The inherent stationary property of the exponential smoothing technique becomes 
apparent when we try to use it to forecast more than one time period into the future. 

Figure 11.7 Two exponential smoothing models of the DVR sales data
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Figure 11.8 Spreadsheet implementation of the exponential smoothing model

Key Cell Formulas

Cell Formula Copied to

C3 5B3 --
C4 5C31$F$3*(B32C3) C5:C26
F5 5SUMXMY2(B4:B26,C4:C26)/COUNT(C4:C26) --

Variable Cell

Objective Cell

For example, suppose that at time period 24, we want to forecast the number of DVRs 
to be sold in time periods 25 and 26. The forecast for time period 26 is represented by:

Ŷ26 5 Ŷ25 1 α 1Y25 2 Ŷ25 2
Because Y25 is unknown at time period 24, we must substitute Ŷ25 for Y25 in the 

previous equation. However, in that case we obtain Ŷ26 5 Ŷ25. In fact, the forecast for 
all future time periods would equal Ŷ25. Thus, the exponential smoothing forecasting 

Figure 11.9

Solver settings 
and options for 
the exponential 
smoothing model

Solver Settings:

Objective: F5 (Min)
Variable cells: F3
Constraints: 
 F3 ,5 1
 F3 .5 0

Solver Options:

 Standard GRG Nonlinear Engine
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578 Chapter 11 Time Series Forecasting

Figure 11.10 Optimal solution and forecasts for the exponential smoothing model

Key Cell Formulas

Cell Formula Copied to

C27 5C261$F$3*(B262C26) --
C28 5C27 C29:C30

model for all future time periods in the Electra-City example is represented by 
Ŷt 5 35.93 (for t 5 25, 26, 27, c).

a  w o r d  o f  C a u t i o n  a b o u t 

F o r e c a s t i n g …
As we forecast further into the future, our confidence in the accuracy of the fore-
cast diminishes because there is no guarantee that the historical patterns on which 
the model is based will continue indefinitely into the future.

11.7 Seasonality
Many time series variables exhibit seasonality, or a regular, repeating pattern in the 
data. For example, in time series data for monthly fuel oil sales, we would expect to 
see regular jumps in the data during the winter months each year. Similarly, monthly 
or quarterly sales data for suntan lotion would likely show consistent peaks during the 
summer and valleys during the winter. 

Two different types of seasonal effects are common in time series data: additive 
effects and multiplicative effects. Additive seasonal effects tend to be on the same 
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Stationary Data with Additive Seasonal Effects  579

We will use the following example to illustrate two techniques for modeling additive 
and multiplicative seasonality in stationary time series data.

Savannah Climate Control (SCC) sells and services residential heat pumps. Sales 
of heat pumps tend to be higher than average in the winter and summer quarters 
when temperatures are more extreme. Similarly, sales tend to be lower than aver-
age in the spring and fall quarters when temperatures are less extreme and home-
owners can put off replacing inoperable heat pump units. The owner of SCC, Bill 
Cooter, has collected quarterly unit sales data for the past several years as shown 
in Figure 11.12 (and in file Fig11-12.xlsm that accompanies this book). He wants to 
analyze this data to create a model to estimate the number of units he will sell in 
each of the next four quarters.

11.8 Stationary Data with Additive 
Seasonal Effects 
The data shown in Figure 11.12 indicate that unit sales tend to be high in quarters 
one and three (corresponding to the winter and summer months) and low in quar-
ters two and four (corresponding to the spring and fall months). Thus, this data 
exhibits quarterly seasonal effects that likely can be modeled to make more accurate 
forecasts.

Figure 11.11

Examples of additive 
and multiplicative 
seasonal effects in 
stationary data

order of magnitude each time a given season is encountered. Multiplicative seasonal 
effects tend to have an increasing effect each time a given season is encountered. 
Figure 11.11 (and the file Fig11-11.xlsm that accompanies this book) illustrates the 
difference between these two types of seasonal effects for stationary data.

Figure 11.11

Examples of 
vwadditive and 
multiplicative 
seasonal effects in 
stationary data
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580 Chapter 11 Time Series Forecasting

The following model is useful for modeling stationary time series data with additive 
seasonal effects:

Ŷt1n 5 Et 1 St1n2p 11.5

where 

 Et 5 α 1Yt 2 St2p 2 1 11 2 α 2  Et21 11.6

St 5 β 1Yt 2 Et 2 1 11 2 β 2St2p 11.7

 0 # α # 1 and 0 # β # 1

In this model, Et represents the expected level of the time series in period t, and St rep-
resents the seasonal factor for period t. The constant p represents the number of sea-
sonal periods in the data. Thus, for quarterly data p 5 4, and for monthly data p 5 12. 

In equation 11.5, the forecast for time period t 1 n is simply the expected level of 
the time series at period t adjusted upward or downward by the seasonal factor St1n2p.
Equation 11.6 estimates the expected level for period t as a weighted average of the 
deseasonalized data for period t 1Yt 2 St2p 2  and the previous period’s level 1Et21 2 .
Equation 11.7 estimates the seasonal factor for period t as the weighted average of the 
estimated seasonal effect in period t 1Yt 2 Et 2  and the previous seasonal factor for that 
same season 1St2p 2 .

Figure 11.12 Historical heat pump sales data for Savannah Climate Control
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Stationary Data with Additive Seasonal Effects  581

In order to use equations 11.5 through 11.7, we must initialize the estimated levels 
and seasonal factors for the first p time periods. There are numerous ways to do this. 
However, for convenience we will do this as follows:

Et 5 ap

i51

Yi

p
,     t 5 1, 2, c, p

St  5 Yt 2 Et , t 5 1, 2, c, p

That is, we will use the average value of the first p time periods as the initial expected 
levels for each of these time periods. We then will use the difference between the actual 
values and expected levels as the initial seasonal factors for the first p time periods.

The spreadsheet implementation for this technique is shown in Figure 11.13 (and in 
file Fig11-13.xlsm that accompanies this book). 

Figure 11.13 Spreadsheet implementation of model with additive seasonal effects Control

Key Cell Formulas

Cell Formula Copied to

E3 5AVERAGE($D$3:$D$6) E4:E6
E7 5$J$3*(D72F3)1(12$J$3)*E6 E8:E26
F3 5D32E3 F4:F6
F7 5$J$4*(D72E7)1(12$J$4)*F3 F8:F26
G7 5E61F3 G8:G26
J6 5SUMXMY2(G7:G26,D7:D26)/COUNT(G7:G26) --

Objective Cell

Variable Cells
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582 Chapter 11 Time Series Forecasting

Figure 11.14

Solver settings and 
options for the heat 
pump sales problem 
with seasonal 
additive effects 

Solver Settings:

Objective: J6 (Min)
Variable cells: J3:J4
Constraints: 
 J3:J4 ,5 1
 J3:J4 .5 0

Solver Options:

 Standard GRG Nonlinear Engine

The initial expected level values for the first four time periods were entered into cells 
E3 through E6 as follows:

Formula for cell E3:   5AVERAGE 1$D$3:$D$6 2
(Copy to cells E4 through E6.)

Next, the initial seasonal factors for the first four periods were entered into cells F3 
through F6 as follows:

Formula for cell F3:   5D3 2 E3
(Copy to cells F4 through F6.)

Cells J3 and J4 represent the values of α and β, respectively. The remaining expected 
levels and seasonal factors defined by equations 11.6 and 11.7 were then entered in 
columns E and F, respectively, as follows:

Formula for cell E7:   5$J$3* 1D7 2 F3 2 1 11 2 $J$3 2*E6
(Copy to cells E8 through E26.)

Formula for cell F7:   5$J$4* 1D7 2 E7 2 1 11 2 $J$4 2*F3
(Copy to cells F8 through F26.)

Now, according to equation 11.5, at any time period t, the prediction for time period 
t 1 1 is given by:

 Ŷt11 5 Et 1 St112p 

Thus, at time period 4, we are able to calculate the prediction for time period 5 as 
follows:

Formula for cell G7:   5E6 1 F3
(Copy to cells G8 through G26.)

This formula is then copied to cells G8 through G26 to complete the one period ahead 
predictions for the remaining observations.

We can use Solver settings and options shown in Figure 11.14 to determine the values 
of α and β that minimize the MSE for this problem, computed in cell J6 as follows:

Formula for cell J6:   5SUMXMY2 1G7:G26,D7:D26 2/COUNT 1G7:G26 2
Figure 11.15 shows the optimal solution to this problem along with a graph showing 

the actual sales data plotted against the values predicted by our model. Note that the 
predicted values fit the actual data reasonably well.
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Stationary Data with Additive Seasonal Effects  583

11.8.1 FOreCastInG wIth the MOdeL
We can use the results in Figure 11.15 to compute forecasts for any future time period. 
According to equation 11.5, at time period 24, the forecast for time period 24 1 n is 
given by:

 Ŷ241n 5 E24 1 S241n24

Our forecasts for each quarter in the year 2017 would be calculated as follows:

Ŷ25 5 E24 1 S21 5 354.55 1    8.45 5 363.00
Ŷ26 5 E24 1 S22 5 354.55 2 17.82 5 336.73

Ŷ27 5 E24 1 S23 5 354.55 1 46.58 5 401.13
Ŷ28 5 E24 1 S24 5 354.55 2 31.73 5 322.81

Thus, each forecast is simply the expected level of the time series in period 24 adjusted 
by the relevant seasonal factor. The calculations for these forecasts were implemented 
in Figure 11.15 as follows:

Formula for cell G27:   5$E$26 1 F23
(Copy to cells G28 through G30)

Figure 11.15 Optimal solution and forecasts for the heat pump sales problem with additive seasonal effects 

Key Cell Formulas

Cell Formula Copied to

G27 5$E$261F23 G28:G30
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584 Chapter 11 Time Series Forecasting

I n i t i a l i z i n g  F o r e c a s t i n g  M o d e l s
It is important to note that the other methods can be used to initialize the base 
level 1Et 2  and seasonality 1St 2  values used in the previous model and those pre-
sented later in this chapter. For instance, we could have used Solver to deter-
mine optimal (minimum MSE) values for the level and seasonality parameters 
along with the smoothing constants a and b. However, even if Solver is used to 
determine “optimal” initial values, there is no guarantee that the resulting fore-
casts will be any more accurate than if the initial values were determined using 
an alternative technique. When the data set being modeled is large, minor dif-
ferences in the initial values are likely to have little impact on your forecasts. But 
as the size of the data set decreases, the impact of difference in the initial values 
becomes more pronounced.

11.9 Stationary Data with Multiplicative 
Seasonal Effects
A slight modification to the previous model makes it appropriate for modeling station-
ary time series data with multiplicative seasonal effects. In particular, the forecasting 
function becomes:

Ŷt1n 5 Et 3 St1n2p 11.8

where 

 Et 5 α 1Yt/St2p 2 1 11 2 α 2  Et21 11.9
St  5 β 1Yt/Et 2 1 11 2 β 2St2p 11.10

 0 # α # 1 and 0 # β # 1

In this model, Et again represents the expected level of the time series in period t, and 
St represents the seasonal factor for period t. The constant p represents the number of 
seasonal periods in the data.

In equation 11.8, the forecast for time period t 1 n is simply the expected level of the 
time series at period t multiplied by the seasonal factor St1n2p. Equation 11.9 estimates 
the expected level for period t as a weighted average of the deseasonalized data for 
period t (given by Yt/St2p) and the previous period’s level 1Et21 2 . Equation 11.10 
estimates the seasonal factor for period t as the weighted average of the estimated 
seasonal effect in period t 1Yt/Et 2  and the previous seasonal factor for that same 
season 1St2p 2 .

In order to use equations 11.8 through 11.10, we must initialize the estimated 
levels and seasonal factors for the first p time periods. One simple way to do this is as 
follows:

 Et 5 ap

i51

Yi

p
, t 5 1, 2, c, p

 St 5 Yt/Et, t 5 1, 2, c, p
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Stationary Data with Multiplicative Seasonal Effects 585

That is, we will use the average value of the first p time periods as the initial expected 
levels for each of these time periods. We then use the ratio of the actual values to the 
expected levels as the initial seasonal factors for the first p time periods.

The spreadsheet implementation for this technique is shown in Figure 11.16 (and in 
file Fig11-16.xlsm that accompanies this book). 

The initial expected level values for the first four time periods were entered into cells 
E3 through E6 as follows:

Formula for cell E3:    5AVERAGE 1$D$3:$D$6 2
(Copy to cells E4 through E6.)

Next, the initial seasonal factors for the first four periods were entered into cells F3 
through F6 as follows:

Formula for cell F3:     5D3/E3
(Copy to cells F4 through F6.)

Figure 11.16 Spreadsheet implementation of model with multiplicative seasonal effects 

Key Cell Formulas

Cell Formula Copied to

E3 5AVERAGE($D$3:$D$6) E4:E6
E7 5$J$3*(D7/F3)1(12$J$3)*E6 E8:E26
F3 5D3/E3 F4:F6
F7 5$J$4*(D7/E7)1(12$J$4)*F3 F8:F26
G7 5E6*F3 G8:G26
J6 5SUMXMY2(G7:G26,D7:D26)/COUNT(G7:G26) --

Variable Cells

Objective Cell
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586 Chapter 11 Time Series Forecasting

Cells J3 and J4 represent the values of a and b, respectively. The remaining expected 
levels and seasonal factors defined by equations 11.9 and 11.10 were then entered in 
columns E and F, respectively, as follows:

 Formula for cell E7:    5$J$3* 1D7/F3 2 1 11 2 $J$3 2*E6
(Copy to cells E8 through E26.)

Formula for cell F7:    5$J$4* 1D7/E7 2 1 11 2 $J$4 2*F3 
(Copy to cells F8 through F26.)

Now, according to equation 11.8, at any time period t, the prediction for time period 
t 1 1 is given by:

 Ŷt11 5 Et 3 St112p

Thus, at time period 4, we are able to calculate the prediction for time period 5 as 
follows:

Formula for cell G7:     5E6*F3
(Copy to cells G8 through G26.)

This formula is then copied to cells G8 through G26 to complete the one period ahead 
predictions for the remaining observations.

We can use the Solver settings and options shown in Figure 11.17 to determine the 
values of α and β that minimize the MSE for this problem, computed in cell J6 as follows:

 Formula for cell J6:    5SUMXMY2 1G7:G26,D7:D26 2/COUNT 1G7:G26 2  

Figure 11.17

Solver settings and 
options for the heat 
pump sales problem 
with multiplicative 
seasonal effects 

Solver Settings:

Objective: J6 (Min)
Variable cells: J3:J4
Constraints: 
 J3:J4 ,5 1
 J3:J4 .5 0

Solver Options:

 Standard GRG Nonlinear Engine

Figure 11.18 shows the optimal solution to this problem along with a graph showing 
the actual sales data plotted against the values predicted by our model. Note that the 
predicted values fit the actual data reasonably well.

11.9.1 FOreCastInG wIth the MOdeL
We can use the results in Figure 11.18 to compute forecasts for any future time period. 
According to equation 11.8, at time period 24, the forecast for time period 24 1 n is 
given by:

 Ŷ241n 5 E24 3 S241n24

Our forecasts for each quarter in the year 2017 would then be calculated as follows:

 Ŷ25 5 E24 3 S21 5 353.95 3 1.015 5 359.13
 Ŷ26 5 E24 3 S22 5 353.95 3 0.946 5 334.94
 Ŷ27 5 E24 3 S23 5 353.95 3 1.133 5 400.99
 Ŷ28 5 E24 3 S24 5 353.95 3 0.912 5 322.95
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Trend Models 587

11.10 Trend Models
The forecasting techniques presented so far are appropriate for stationary time series 
data in which there is no significant trend in the data over time. However, it is not 
unusual for time series data to exhibit some type of upward or downward trend over 
time. Trend is the long-term sweep or general direction of movement in a time series. 
It reflects the net influence of long-term factors that affect the time series in a fairly 
consistent and gradual way over time. In other words, the trend reflects changes in the 
data that occur with the passage of time.

Because the moving average, weighted moving average, and exponential smoothing 
techniques use some average of the previous values to forecast future values, they 
consistently underestimate the actual values if there is an upward trend in the data. For 
example, consider the time series data given by 2, 4, 6, 8, 10, 12, 14, 16, and 18. These data 
show a clear upward trend leading us to expect that the next value in the time series 
should be 20. However, the forecasting techniques discussed up to this point would 

Figure 11.18 Optimal solution to the heat pump sales problem with multiplicative seasonal effects 

Key Cell Formulas

Cell Formula Copied to

G27 5$E$26*F23 G28:G30

Thus, each forecast is simply the expected level of the time series in period 24 multi-
plied by the relevant seasonal factor. The calculations for these forecasts were imple-
mented in Figure 11.18 as follows:

Formula for cell G27:    5$E$26*F23
(Copy to cells G28 through G30)
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588 Chapter 11 Time Series Forecasting

forecast that the next value in the series is less than or equal to 18 because no weighted 
average of the given data could exceed 18. Similarly, if there is a downward trend in 
the data over time, all of the methods discussed so far would produce predictions 
that overestimate the actual values in the time series. In the following sections, we will 
consider several techniques that are appropriate for nonstationary time series involving 
an upward or downward trend in the data over time.

11.10.1 an exaMpLe
The following example will be used to illustrate a variety of techniques for modeling 
trends in time series data.

WaterCraft, Inc. is a manufacturer of personal water crafts (also known as jet skis). 
Throughout its first 5 years of operation, the company has enjoyed a fairly steady 
growth in sales of its products. The officers of the company are preparing sales and 
manufacturing plans for the coming year. A critical input to these plans involves 
a forecast of the level of sales that the company expects to achieve. Quarterly sales 
data for the company during the past 5 years are given in Figure 11.19 (and in the 
file Fig11-19.xlsm that accompanies this book).

Figure 11.19 Historical sales data for the WaterCraft sales forecasting problem

The plot of the data in Figure 11.19 suggests a fairly strong upward trend in the data 
over time. Thus, to forecast the value of this time series variable, we can use one of the 
forecasting techniques discussed in the following sections. These techniques account 
for a trend in the data.
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Double Moving Average 589

11.11 Double Moving Average
As its name implies, the double moving average technique involves taking the average 
of averages. Let Mt be the moving average for the past k time periods (including t):

 Mt 5 1Yt 1 Yt21 1 c1 Yt2k11 2/k

The double moving average Dt for the last k time periods (including period t) is the 
average of the moving averages:

 Dt 5 1Mt 1 Mt21 1 c1 Mt2k11 2/k

The double moving average forecasting function is then given by:

Ŷt1n 5 Et1nTt 11.11

where:

Et 5 2Mt 2 Dt

Tt 5 2 1Mt 2 Dt 2/ 1k 2 1 2
The values of Et and Tt are basically derived by minimizing the sum of squared errors 

using the last k periods of data. Note that Et represents the estimated level of the time 
series at period t and Tt represents the estimated trend. Thus, at period t, the forecast n 
periods into the future would be Et 1 nTt as indicated in equation 11.11. 

Figure 11.20 (and file Fig11-20.xlsm that accompanies this book) shows how the 
double moving average technique with k 5 4 can be applied to the sales data for 
WaterCraft, Inc.

First, the four period moving averages 1Mt 2  and double moving averages 1Dt 2  are 
calculated in columns E and F, respectively, as follows:

Formula for cell E6:    5AVERAGE 1D3:D6 2
(Copy to cells E7 through E22.)

Formula for cell F9:    5AVERAGE 1E6:E9 2
(Copy to cells F10 through F22.)

The estimated level 1Et 2  and trend 1Tt 2  values for each period are calculated in 
columns G and H, respectively, as follows:

Formula for cell G9:       52*E9 2 F9
(Copy to cells G10 through G22.)

Formula for cell H9:     52* 1E9 2 F9 2/ 14 2 1 2
(Copy to cells H10 through H22.)

The predicted values for time periods 8 through 20 are then calculated in column I 
as follows:

Formula for cell I10:      5G9 1 H9
(Copy to cells I11 through I22.)

Figure 11.21 graphs the actual sales data against the values predicted by our model. 
Note that the predicted values seem to follow the upward trend in the actual data 
reasonably well.
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590 Chapter 11 Time Series Forecasting

11.11.1 FOreCastInG wIth the MOdeL
We can use the results in Figure 11.20 to compute trend forecasts for any future time 
period. According to equation 11.11, at time period 20, the forecast for time period 
20 1 n is given by:

 Ŷ201n 5 E20 1 nT20

The values of E20 and T20 are given in Figure 11.20 in cells G22 and H22, respectively 
(E20 5 2385.33 and T20 5 139.9). So at time period 20, trend forecasts for time periods 
21, 22, 23, and 24 are computed as:

 Ŷ21 5 E20 1 1 3 T20 5 2385.33 1 1 3 139.9 5 2525.23
Ŷ22 5 E20 1 2 3 T20 5 2385.33 1 2 3 139.9 5 2665.13

 Ŷ23 5 E20 1 3 3  T20 5 2385.33 1 3 3 139.9 5 2805.03
 Ŷ24 5 E20 1 4 3  T20 5 2385.33 1 4 3 139.9 5 2944.94

Key Cell Formulas

Cell Formula Copied to

E6 5AVERAGE(D3:D6) E7:E22
F9 5AVERAGE(E6:E9) F10:F22
G9 52*E92F9 G10:G22
H9 52*(E92F9)/(421) H10:H22
I10 5G91H9 I11:I22
I23 5$G$221B23*$H$22 I24:I26

Figure 11.20

Spreadsheet 
implementation of 
the double moving 
average technique 
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Double Exponential Smoothing (Holt’s Method) 591

The calculations for these forecasts were implemented in Figure 11.20 as follows:

Formula for cell I23:    5$G$22 1 B23*$H$22
(Copy to cells I24 through I26.)

11.12 Double Exponential Smoothing 
(Holt’s Method)
Double exponential smoothing (also known as Holt’s method) is often an effective 
forecasting tool for time series data that exhibits a linear trend. After observing the 
value of the time series at period t 1Yt 2 , Holt’s method computes an estimate of the 
base, or expected, level of the time series 1Et 2 , and the expected rate of increase or 
decrease (trend) per period 1Tt 2 . The forecasting function in Holt’s method is repre-
sented by:

 Ŷt1n 5 Et 1 nTt 11.12

where

Et 5 aYt 1 11 2 a 2 1Et21 1 Tt21 2  11.13

 Tt 5 b 1Et 2 Et21 2 1 11 2 b 2Tt21 11.14

Figure 11.21

Plot of double 
moving average 
predictions versus 
actual WaterCraft 
sales data 
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592 Chapter 11 Time Series Forecasting

We can use the forecasting function in equation 11.12 to obtain forecasts n time 
periods into the future where n 5 1, 2, 3, and so on. The forecast for time period t 1 n
(or Ŷt1n) is the base level at time period t (given by Et) plus the expected influence of 
the trend during the next n time periods (given by nTt).

The smoothing parameters a and b in equations 11.13 and 11.14 can assume any 
value between 0 and 1 10 # a # 1, 0 # b # 1 2 . If there is an upward trend in the data, 
Et tends to be larger than Et21, making the quantity Et 2 Et21 in equation 11.14 positive. 
This tends to increase the value of the trend adjustment factor Tt. Alternatively, if there 
is a downward trend in the data, Et tends to be smaller than Et21, making the quantity 
Et 2 Et21 in equation 11.14 negative. This tends to decrease the value of the trend 
adjustment factor Tt.

Although Holt’s method might appear to be more complicated than the techniques 
discussed earlier, it is a simple three-step process:

1.  Compute the base level Et for time period t using equation 11.13.
2.  Compute the expected trend value Tt for time period t using equation 11.14.
3.  Compute the final forecast Ŷt1n for time period t 1 n using equation 11.12.

The spreadsheet implementation of Holt’s method for the WaterCraft problem is 
shown in Figure 11.22 (and in the file Fig11-22.xlsm that accompanies this book).

Cells J3 and J4 represent the values of a and b, respectively. Column E implements 
the base levels for each time period as required in step 1 (that is, this column contains  
the Et values). Equation 11.6 assumes that for any time period t the base level for the 
previous time period 1Et21 2  is known. It is customary to assume that E1 5 Y1, as 
reflected by the formula in cell E3:

Formula for cell E3:    5D3

The remaining Et values are calculated using equation 11.13 in cells E4 through E22 as:

Formula for cell E4:    5$J$3*D4 1 11 2 $J$3 2* 1E3 1 F3 2
(Copy to E5 through E22.)

Column F implements the expected trend values for each time period as required 
in step 2 (i.e., this column contains the Tt values). Equation 11.14 assumes that for any 
time period t, the expected trend value at the previous time period 1Tt21 2  is known. 
So, we assume as an initial trend estimate that Tt 5 0 (although any other initial trend 
estimate could be used), as reflected by the formula in cell F3:

Formula for cell F3:    50

The remaining Tt values are calculated using equation 11.14 in cells F4 through F22 as:

Formula for cell F4:    5$J$4* 1E4 2 E3 2 1 11 2 $J$4 2*F3
(Copy to F5 through F22.)

According to equation 11.12, at any time period t, the forecast for time period t 1 1
is represented by:

Ŷt11 5 Et 1 1 3 Tt

At time period t 5 1 shown in Figure 11.22, the forecast for time period t 5 2 (shown 
in cell G4) is obtained by summing the values in cells E3 and F3, which correspond to E1

and T1, respectively. Thus, the forecast for time period t 5 2 is implemented in cell G4 as:

Formula for cell G4:    5SUM 1E3:F3 2
(Copy to G5 through G22.)
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Double Exponential Smoothing (Holt’s Method) 593

This formula is copied to cells G5 through G22 to compute the predictions made 
using Holt’s method for the remaining time periods.

We can again use Solver to determine the values for a and b that minimize the MSE. 
The MSE for the predicted values is calculated in cell J6 as:

Formula for cell J6:    5SUMXMY2 1D4:D22,G4:G22 2/COUNT 1G4:G22 2
We can use the Solver settings and options shown in Figure 11.23 to identify the 

values for a and b that minimize the nonlinear MSE objective. Figure 11.24 shows 
the solution to this problem. The graph in Figure 11.24 indicates that the predictions 
obtained using Holt’s method follow the trend in the data quite well.

Figure 11.22 Spreadsheet implementation of Holt’s method

Key Cell Formulas

Cell Formula Copied to

E3 5D3 --
E4 5$J$3*D41(12$J$3)*(E31F3) E5:E22
F3 50 --
F4 5$J$4*(E42E3)1(12$J$4)*F3 F5:F22
G4 5SUM(E3:F3) G5:G22
J6 5SUMXMY2(D4:D22,G4:G22)/COUNT(G4:G22) --

Variable Cells

Objective Cell
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594 Chapter 11 Time Series Forecasting

11.12.1 FOreCastInG wIth hOLt’s MethOd
We can use the results in Figure 11.24 to compute forecasts for any future time period. 
According to equation 11.12, at time period 20, the forecast for time period 20 1 n is 
represented by:

 Ŷ201n 5 E20 1 nT20

Figure 11.23

Solver settings and 
options for Holt’s 
method

Solver Settings:

Objective: J6 (Min)
Variable cells: J3:J4
Constraints: 
 J3:J4 ,5 1
 J3:J4 .5 0

Solver Options:

 Standard GRG Nonlinear Engine

Figure 11.24 Optimal solution and forecasts using Holt’s method

Key Cell Formulas

Cell Formula Copied to

G23 5$E$221B23*$F$22 G24:G26
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The values of E20 and T20 are given in Figure 11.24 in cells E22 and F22, respectively 
1E20 5 2336.8 and T20 5 152.1). So at time period 20, forecasts for time periods 21, 22, 
23, and 24 are computed as:

Ŷ21 5 E20 1 1 3 T20 5 2336.8 1 1 3 152.1 5 2,488.9
Ŷ22 5 E20 1 2 3 T20 5 2336.8 1 2 3 152.1 5 2,641.0
Ŷ23 5 E20 1 3 3 T20 5 2336.8 1 3 3 152.1 5 2,793.1
Ŷ24 5 E20 1 4 3 T20 5 2336.8 1 4 3 152.1 5 2,945.2

The calculations for these forecasts were implemented in Figure 11.24 as follows:

Formula for cell G23:    5$E$22 1 B23*$F$22
(Copy to cells G24 through G26.)

11.13 Holt-Winter’s Method for Additive 
Seasonal Effects 
In addition to having an upward or downward trend, nonstationary data may also 
exhibit seasonal effects. Here again, the seasonal effects may be additive or multiplica-
tive in nature. Holt-Winter’s method is another forecasting technique that we can apply 
to time series exhibiting trend and seasonality. We discuss Holt-Winter’s method for 
additive seasonal effects in this section.

To demonstrate Holt-Winter’s method for additive seasonal effects, let p represent 
the number of seasons in the time series (for quarterly data, p 5 4; for monthly data, 
p 5 12). The forecasting function is then given by: 

 Ŷt1n 5 Et 1 nTt 1 St1n2p 11.15

where

 Et 5 a 1Yt 2 St2p 2 1 11 2 a 2 1Et21 1 Tt21 2  11.16

 Tt 5 b 1Et 2 Et21 2 1 11 2 b 2  Tt21  11.17

 St  5 g 1Yt 2 Et 2 1 11 2 g 2  St2p  11.18

We can use the forecasting function in equation 11.15 to obtain forecasts n time 
periods into the future where n 5 1, 2, c, p. The forecast for time period t 1 n 1 Ŷt1n) 
is obtained in equation 11.15 by adjusting the expected base level at time period 
t 1 n (given by Et 1 nTt) by the most recent estimate of the seasonality associated 
with this time period (given by St1n2p). The smoothing parameters a, b, and g
(gamma) in equations 11.16, 11.17, and 11.18 can assume any value between 0 and 1 
10 # a # 1, 0 # b # 1, 0 # g # 1 2 .

The expected base level of the time series in time period t 1Et 2  is updated in equation 
11.16, which takes a weighted average of the following two values:

•	 Et21 1 Tt21, which represents the expected base level of the time series at time 
period t before observing the actual value at time period t (given by Yt).

•	 Yt 2 St2p, which represents the deseasonalized estimate of the base level of the time 
series at time period t after observing Yt.

The estimated per-period trend factor Tt is updated using equation 11.17, which 
is identical to the procedure in equation 11.14 used in Holt’s method. The estimated 

47412_ch11_ptg01_566-634.indd   595 08/11/16   1:22 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



596 Chapter 11 Time Series Forecasting

seasonal adjustment factor for each time period is calculated using equation 11.18, 
which takes a weighted average of the following two quantities:

•	 St2p, which represents the most recent seasonal index for the season in which time 
period t occurs.

•	 Yt 2 Et, which represents an estimate of the seasonality associated with time period 
t after observing Yt.

Holt-Winter’s method is basically a four-step process:

1. Compute the base level Et for time period t using equation 11.16.
2. Compute the estimated trend value Tt for time period t using equation 11.17.
3. Compute the estimated seasonal factor St for time period t using equation 11.18.
4. Compute the final forecast Ŷt1n for time period t 1 n using equation 11.15.

The spreadsheet implementation of Holt-Winter’s method for the WaterCraft data is 
shown in Figure 11.25 (and in the file Fig11-25.xlsm that accompanies this book). Cells 
K3, K4, and K5 represent the values of a, b, and g, respectively.

Equations 11.16 and 11.18 assume that at time period t an estimate of the seasonal 
factor from time period t 2 p exists or that there is a value for St2p. Thus, our first task 
in implementing this method is to estimate values for S1, S2, c, Sp (or, in this case, S1,
S2, S3, and S4). One easy way to make these initial estimates is to let:

 St 5 Yt 2 a  

p

i51
 

Yi

p
, t 5 1,2, c, p 11.19

Equation 11.19 indicates that the initial seasonal estimate St for each of the first p time 
periods is the difference between the observed value in time period Yt and the average 
value observed during the first p periods. In our example, the first four seasonal factors 
shown in column G in Figure 11.25 are calculated using equation 11.19 as:

Formula for cell G3:    5D3-AVERAGE 1$D$3:$D$6 2
(Copy to G4 through G6.)

The first Et value that can be computed using equation 11.16 occurs at time period 
p 1 1 (in our example, time period 5) because this is the first time period for which 
St2p is known. However, to compute E5 using equation 11.16, we also need to know 
E4 (which cannot be computed using equation 11.16 because S0 is undefined) and T4 
(which cannot be computed using equation 11.17 because E4 and E3 are undefined). 
Thus, we assume E4 5 Y4 2 S4 (so that E4 1 S4 5 Y4 2 ) and T4 5 0, as reflected by 
placing the following formulas in cells E6 and F6:

Formula for cell E6:    5D6 2 G6
Formula for cell F6:    50

We generated the remaining Et values using equation 11.16, which is implemented in 
Figure 11.25 as:

Formula for cell E7:    5$K$3* 1D7 2 G3 2 1 11 2 $K$3 2* 1E6 1 F6 2
(Copy to E8 through E22.)

We generated the remaining Tt values using equation 11.17, which is implemented in 
Figure 11.25 as:

Formula for cell F7:    5$K$4* 1E7 2 E6 2 1 11 2 $K$4 2*F6
(Copy to F8 through F22.)
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We used equation 11.18 to generate the remaining St values in Figure 11.25 as:

Formula for cell G7:    5$K$5* 1D7 2 E7 2 1 11 2 $K$5 2*G3
(Copy to G8 through G22.)

Finally, at time period 4, we can use the forecasting function in equation 11.15 to pre-
dict one period ahead for time period 5. This is implemented in Figure 11.25 as:

Formula for cell H7:    5E6 1 F6 1 G3
(Copy to H8 through H22.)

Before making predictions using this method, we want to identify optimal values for 
a, b, and g. We can use Solver to determine the values for a, b, and g that minimize the 
MSE. The MSE for the predicted values is calculated in cell N4 as:

Formula for cell N4:    5SUMXMY2 1H7:H22, D7:D22 2/COUNT 1H7:H22 2

Figure 11.25 Spreadsheet implementation of Holt-Winter’s method for additive seasonal effects

Key Cell Formulas

Cell Formula Copied to

Objective Cell

Variable Cells

G3 5D32AVERAGE($D$3:$D$6) G4:G6
E6 5D62G6 --
E7 5$K$3*(D72G3)1(12$K$3)*(E61F6) E8:E22
F6 50 --
F7 5$K$4*(E72E6)1(12$K$4)*F6 F8:F22
G7 5$K$5*(D72E7)1(12$K$5)*G3 G8:G22
H7 5E61F61G3 H8:H22
N4 5SUMXMY2(H7:H22,D7:D22)/COUNT(H7:H22) --
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598 Chapter 11 Time Series Forecasting

Figure 11.26

Solver settings and 
options for Holt- 
Winter’s method

Solver Settings:

Objective: N4 (Min)
Variable cells: K3:K5
Constraints: 
 K3:K5 ,51
 K3:K5 .5 0

Solver Options:

 Standard GRG Nonlinear Engine

Figure 11.27 Optimal solution for Holt-Winter’s method for additive seasonal effects

Key Cell Formulas

Cell Formula Copied to

H23 5$E$221B23*$F$221G19 H24:H26

We can use the Solver parameters and options shown in Figure 11.26 to identify the 
values for a, b, and g that minimize the nonlinear MSE objective. Figure 11.27 shows 
the solution to this problem.

Figure 11.27 displays a graph of the predictions obtained using Holt-Winter ’s 
method and the actual data. This graph indicates the forecasting function fits the data 
reasonably well. However, it does appear that the seasonal effects in the data may 
be becoming more pronounced over time—suggesting a model with multiplicative 
seasonal effects may be more appropriate in this case.
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Holt-Winter’s Method for Multiplicative Seasonal Effects 599

11.13.1 FOreCastInG wIth hOLt-wInter’s  
addItIve MethOd
We can use the results in Figure 11.27 to compute forecasts for any future time period. 
According to equation 11.15, at time period 20 the forecast for time period 20 1 n is 
represented by:

Ŷ201n 5 E20 1 nT20 1 S201m2p

Figure 11.27 shows the values of E20 and T20 in cells E22 and F22, respectively  
(E20 5 2253.3 and T20 5 154.3). At time period 20, forecasts for time periods 21, 22, 23, 
and 24 are computed as:

Ŷ21 5 E20 1 1 3 T20 1 S17 5 2,253.3 1 1 3 154.3 1 262.662 5 2,670.3
Ŷ22 5 E20 1 2 3 T20 1 S18 5 2,253.3 1 2 3 154.3 2 312.593 5 2,249.3
Ŷ23 5 E20 1 3 3 T20 1 S19 5 2,253.3 1 3 3 154.3 1 205.401 5 2,921.6
Ŷ24 5 E20 1 4 3 T20 1 S20 5 2,253.3 1 4 3 154.3 1 386.116 5 3,256.6

The calculations for these forecasts were implemented in Figure 11.27 as follows:

Formula for cell H23:    5$E$22 1 B23*$F$22 1 G19
(Copy to cells H24 through H26.)

11.14 Holt-Winter’s Method for 
Multiplicative Seasonal Effects
As noted previously, the graph in Figure 11.27 indicates the seasonal effects in the data 
may be becoming more pronounced over time. As a result, it may be more appropriate 
to model this data with Holt-Winter’s method for multiplicative seasonal effects. For-
tunately, this technique is very similar to Holt-Winter’s method for additive seasonal 
effects.

To demonstrate Holt-Winter’s method for multiplicative seasonal effects, we again 
let p represent the number of seasons in the time series (for quarterly data, p 5 4; for 
monthly data, p 5 12). The forecasting function is then given by:

 Ŷt1n 5 1Et 1 nTt 2  St1n2p 11.20

where

 Et 5 a 

Yt

St2p
1 11 2 a 2 1Et21 1 Tt21 2  11.21

 Tt 5 b 1Et 2 Et21 2 1 11 2 b 2  Tt21  11.22

 St  5 g
Yt

Et
1 11 2 g 2  St2p  11.23

Here, the forecast for time period t 1 n 1 Ŷt1n 2  is obtained from equation 11.20 by 
multiplying the expected base level at time period t 1 n (given by Et 1 nTt) by the most 
recent estimate of the seasonality associated with this time period (given by St1n2p). 
The smoothing parameters a, b, and g (gamma) in equations 11.21, 11.22, and 11.23 
again can assume any value between 0 and 1 10 # a # 1, 0 # b # 1, 0 # g # 1 2 .
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600 Chapter 11 Time Series Forecasting

The expected base level of the time series in time period t 1Et 2  is updated in equation 
11.21, which takes a weighted average of the following two values:

•	 Et21 1 Tt21, which represents the expected base level of the time series at time 
period t before observing the actual value at time period t (given by Yt).

•	 Yt

St2p
 , which represents the deseasonalized estimate of the base level of the time series 

at time period t after observing Yt.

The estimated seasonal adjustment factor for each time period is calculated using 
equation 11.23, which takes a weighted average of the following two quantities:

•	 St2p, which represents the most recent seasonal index for the season in which time 
period t occurs.

•	 Yt

Et  
, which represents an estimate of the seasonality associated with time period t after 

observing Yt.

The spreadsheet implementation of Winter’s method for the WaterCraft data is 
shown in Figure 11.28 (and in the file Fig11-28.xlsm that accompanies this book). Cells 
K3, K4, and K5 represent the values of a, b, and g, respectively.

Equations 11.21 and 11.23 assume that at time period t, an estimate of the seasonal 
index from time period t 2 p exists or that there is a value for St2p. Thus, we need to 
estimate values for S1, S2, c, Sp. An easy way to do this is to let:

 St 5
Yt

ap

i51

Yi

p

 , t 5 1,2, c, p 11.24

Equation 11.24 indicates that the initial seasonal estimate St for each of the first p 
time periods is the ratio of the observed value in time period Yt divided by the average 
value observed during the first p periods. In our example, the first four seasonal factors 
shown in column G in Figure 11.28 are calculated using equation 11.19 as:

Formula for cell G3:    5D3/AVERAGE 1$D$3:$D$6 2
(Copy to G4 through G6.)

The first Et value that can be computed using equation 11.21 occurs at time period 
p 1 1 (in our example, time period 5) because this is the first time period for which 
St2p is known. However, to compute E5 using equation 11.21, we also need to know 
E4 (which cannot be computed using equation 11.16 because S0 is undefined) and T4

(which cannot be computed using equation 11.22 because E4 and E3 are undefined). 
Thus, we assume E4 5 Y4/S4 (so that E4 3 S4 5 Y4) and T4 5 0, as reflected by placing 
the following formulas in cells E6 and F6:

Formula for cell E6:    5D6/G6
Formula for cell F6:    50

We generated the remaining Et values using equation 11.21, which is implemented in 
Figure 11.28 as:

Formula for cell E7:    5$K$3*D7/G3 1 11 2 $K$3 2* 1E6 1 F6 2
(Copy to E8 through E22.)

We generated the remaining Tt values using equation 11.22, which is implemented as:

Formula for cell F7:    5$K$4* 1E7 2 E6 2 1 11 2 $K$4 2*F6
(Copy to F8 through F22.)
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Holt-Winter’s Method for Multiplicative Seasonal Effects 601

We used equation 11.23 to generate the remaining St values as:

Formula for cell G7:    5$K$5*D7/E7 1 11 2 $K$5 2*G3
(Copy to G8 through G22.)

Finally, at time period 4, we can use the forecasting function in equation 11.20 to pre-
dict one period ahead for time period 5. This is implemented as:

Formula for cell H7:    5SUM 1E6:F6 2*G3
(Copy to H8 through H22.)

Before making predictions using this method, we want to identify optimal values for 
a, b, and g. We can use Solver to determine the values for a, b, and g that minimize the 
MSE. The MSE for the predicted values is calculated in cell N4 as:

Formula for cell N4:    5SUMXMY2 1H7:H22, D7:D22 2/COUNT 1H7:H22 2

Figure 11.28 Spreadsheet implementation of Holt-Winter’s method for multiplicative seasonal effects

Objective Cell

Variable Cells

Key Cell Formulas

Cell Formula Copied to

G3 5D3/AVERAGE($D$3:$D$6) G4:G6
E6 5D6/G6 --
E7 5$K$3*D7/G31(12$K$3)*(E61F6) E8:E22
F6 50 --
F7 5$K$4*(E72E6)1(12$K$4)*F6 F8:F22
G7 5$K$5*D7/E71(12$K$5)*G3 G8:G22
H7 5SUM(E6:F6)*G3 H8:H22
N4 5SUMXMY2(H7:H22,D7:D22)/COUNT(H7:H22) --
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602 Chapter 11 Time Series Forecasting

Figure 11.29

Solver settings 
and options for 
Holt-Winter’s 
multiplicative 
method

Solver Settings:

Objective: N4 (Min)
Variable cells: K3:K5
Constraints: 
 K3:K5 ,5 1
 K3:K5 .5 0

Solver Options:

 Standard GRG Nonlinear Engine

Figure 11.30 Optimal solution for Holt-Winter’s method for multiplicative seasonal effects

Key Cell Formulas

Cell Formula Copied to

H23 5($E$221B23*$F$22)*G19 H24:H26

We can use the Solver settings and options shown in Figure 11.29 to identify the 
values for a, b, and g that minimize the nonlinear MSE objective. Figure 11.30 shows 
the solution to this problem.

Figure 11.30 displays a graph of the predictions obtained using Holt-Winter ’s 
multiplicative method and the actual data. Comparing this graph to the one in Figure 
11.27, it seems the multiplicative model produces a forecasting function that may fit the 
data better. 
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Linear Trend Model 603

11.14.1 FOreCastInG wIth hOLt-wInter’s 
MuLtIpLICatIve MethOd
We can use the results in Figure 11.30 to compute forecasts for any future time period. 
According to equation 11.15, at time period 20 the forecast for time period 20 1 n is 
represented by:

Ŷ201n 5 1E20 1 nT20 2S201n2p

Figure 11.30 shows the values of E20 and T20 in cells E22 and F22, respectively  
(E20 5 2217.6 and T20 5 137.3). At time period 20, forecasts for time periods 21, 22, 23, 
and 24 are computed as:

Ŷ21 5 1E20 1 1 3 T20 2S17 5 12217.6 1 1 3 137.3 21.152 5 2,713.7
Ŷ22 5 1E20 1 2 3 T20 2S18 5 12217.6 1 2 3 137.3 20.849 5 2,114.9
Ŷ23 5 1E20 1 3 3 T20 2S19 5 12217.6 1 3 3 137.3 21.103 5 2,900.5
Ŷ24 5 1E20 1 4 3 T20 2S20 5 12217.6 1 4 3 137.3 21.190 5 3,293.9

The calculations for these forecasts were implemented in Figure 11.30 as follows:

Formula for cell H23:    5 1$E$22 1 B23*$F$22 2*G19
(Copy to cells H24 through H26.)

11.15 Modeling Time Series Trends  
Using Regression
As mentioned in the introduction, we can build a regression model of a time series if 
data are available for one or more independent variables that account for the system-
atic movements in the time series. However, even if no independent variables have 
a causal relationship with the time series, some independent variables might have a 
predictive relationship with the time series. A predictor variable does not have a cause-
and-effect relationship with the time series. Yet the behavior of a predictor variable 
might be correlated with that of the time series in a way that helps us forecast future 
values of the time series. In the following sections, we will consider how to use predic-
tor variables as independent variables in regression models for time series data.

As mentioned earlier, trend is the long-term sweep or general direction of movement 
in a time series that reflects changes in the data over time. The mere passage of time 
does not cause the trend in the time series. But like the consistent passage of time, the 
trend of a time series reflects the steady upward or downward movement in the general 
direction of the series. Thus, time itself might represent a predictor variable that could 
be useful in accounting for the trend in a time series.

11.16 Linear Trend Model
To see how we might use time as an independent variable, consider the following lin-
ear regression model:

Yt 5 b0 1 b1X1t
1 εt 11.25

where X1t
5 t. That is, the independent variable X1t

 represents the time period  
t (X11

5 1, X12
5 2, X13

5 3, and so on). The regression model in equation 11.25 assumes 
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604 Chapter 11 Time Series Forecasting

that the systematic variation in the time series 1Yt 2  can be described by the regression 
function b0 1 b1X1t

 (which is a linear function of time). The error term εt in equation 
11.25 represents the unsystematic, or random, variation in the time series not accounted 
for by our model. Because the values of Yt are assumed to vary randomly around 
(above and below) the regression function b0 1 b1X1t 

, the average (or expected) value 
of εt is 0. Thus, if we use ordinary least squares to estimate the parameters in equation 
11.25, our best estimate of Yt for any time period t is:

 Ŷt 5 b0 1 b1X1t
 11.26

In equation 11.26, the estimated value of the time series at time period t 1 Ŷt 2  is a 
linear function of the independent variable, which is coded to represent time. Thus, 
equation 11.26 represents the line passing through the time series that minimizes the 
sum of squared differences between the actual values 1Yt 2  and the estimated values 
1 Ŷt 2 . We might interpret this line to represent the linear trend in the data.

An example of this technique is shown in Figure 11.31 (and in the file Fig11-31.xlsm 
that accompanies this book) for the quarterly sales data for WaterCraft. We can use the 
Time Period values in cells C3 through C22 as the values for the independent variable 
X1 in our regression model. Thus, we can use the Regression command settings shown 

Key Cell Formulas

Cell Formula Copied to

E3 5TREND($D$3:$D$22,$C$3:$C$22,C3) E4:E26

Figure 11.31 Spreadsheet implementation of the linear trend model
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Linear Trend Model 605

Figure 11.32

Regression 
command settings 
for the linear trend 
model

Figure 11.33

Regression results 
for the linear trend 
model

in Figure 11.32 to obtain the values for b0 and b1 required for the estimated regression 
function for these data.

Figure 11.33 shows the results of the Regression command, which indicate that the 
estimated regression function is:

 Ŷt 5 375.17 1 92.6255X1t
 11.27

Figure 11.31 shows the predicted sales level for each time period in column E (labeled 
“Linear Trend”), where the following formula is entered in cell E3 and copied to cells 
E4 through E26:

Formula for cell E3:    5TREND 1$D$3:$D$22,$C$3:$C$22,C3 2
(Copy to E4 through E26.)

11.16.1 FOreCastInG wIth the LInear trend MOdeL
We can use equation 11.27 to generate forecasts of sales for any future time period t by 
setting X1t

5 t. For example, forecasts for time periods 21, 22, 23, and 24 are computed as:

47412_ch11_ptg01_566-634.indd   605 08/11/16   1:22 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



606 Chapter 11 Time Series Forecasting

Ŷ21 5 375.17 1 92.6255 3 21 5 2,320.3
Ŷ22 5 375.17 1 92.6255 3 22 5 2,412.9
Ŷ23 5 375.17 1 92.6255 3 23 5 2,505.6
Ŷ24 5 375.17 1 92.6255 3 24 5 2,598.2

Note that these forecasts were calculated using the TREND( ) function in cells E23 
through E26 in Figure 11.31.

Again, as the forecast horizon lengthens, our confidence in the accuracy of the 
forecasts diminishes because there is no guarantee that the historical trends on which 
the model is based will continue indefinitely into the future.

a  n o t e  o n  t h e  t r e n d (  )  F u n c t i o n
The TREND( ) function can be used to calculate the estimated values for linear 
regression models. The format of the TREND( ) function is as follows:

TREND(Y-range, X-range, X-value for prediction)

where Y-range is the range in the spreadsheet containing the dependent Y vari-
able, X-range is the range in the spreadsheet containing the independent X vari-
able(s), and X-value for prediction is a cell (or cells) containing the values for 
the independent X variable(s) for which we want an estimated value of Y. The 
TREND( ) function has an advantage over the regression tool in that it is dynam-
ically updated whenever any inputs to the function change. However, it does not 
provide the statistical information provided by the regression tool. It is best to 
use these two different approaches to doing regression in conjunction with one 
another. 

11.17 Quadratic Trend Model
Although the graph of the estimated linear regression function shown in Figure 11.31 
accounts for the upward trend in the data, the actual values do not appear to be scat-
tered randomly around the trend line, as was assumed by our regression model in 
equation 11.25. An observation is more likely to be substantially below the line or only 
slightly above the line. This suggests that the linear trend model might not be appropri-
ate for this data.

As an alternative, we might try fitting a curved trend line to the data using the 
following quadratic model:

Yt 5 b0 1 b1X1t
1 b2X2t

1 et 11.28

where X1t
5 t and X2t

5 t2
 

. The resulting estimated regression function for this model is:

 Ŷt 5 b0 1 b1X1t
1 b2X2t

 11.29

To estimate the quadratic trend function, we must add a column to the spreadsheet 
to represent the additional independent variable X2t

5 t2. This can be accomplished as 
shown in Figure 11.34 (and in the file Fig11-34.xlsm that accompanies this book) by 
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Quadratic Trend Model 607

inserting a new column D and placing the values t2 in this column. Thus, the following 
formula is entered in cell D3 and copied to cells D4 through D26:

Formula for cell D3:    5C3^2
(Copy to D4 through D26.)

We can obtain the values of b0, b1, and b2 required for the estimated regression 
function for this data using the Regression command settings shown in Figure 11.35.

Figure 11.36 shows the results of the Regression command, which indicate that the 
estimated regression function is:

 Ŷt 5 653.67 1 16.671 X1t
1 3.617 X2t

 11.30

Figure 11.34 shows the estimated sales level for each time period in column F (labeled 
“Quadratic Trend”), where the following formula is entered in cell F3 and copied to 
cells F4 through F26:

Formula for cell F3:    5TREND 1$E$3:$E$22,$C$3:$D$22,C3:D3 2
(Copy to F4 through F26.)

Figure 11.34 Spreadsheet implementation of the quadratic trend model

Key Cell Formulas

Cell Formula Copied to

D3 C3^2 D4:D22
F3 5TREND($E$3:$E$22,$C$3:$D$22,C3:D3) F4:F26
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608 Chapter 11 Time Series Forecasting

Figure 11.34 also shows a graph of the sales levels predicted by the quadratic trend 
model versus the actual data. Notice that the quadratic trend curve fits the data better 
than the straight trend line shown in Figure 11.31. In particular, the deviations of the 
actual values above and below this curve are now more balanced.

11.17.1 FOreCastInG wIth the QuadratIC  
trend MOdeL
We can use equation 11.30 to generate forecasts of sales for any future time period t by 
setting X1t

5 t and X2t
5 t2. For example, forecasts for time periods 21, 22, 23, and 24 are 

computed as:

Ŷ21 5 653.67 1 16.671 3 21 1 3.617 3 121 2 2 5 2,598.8
Ŷ22 5 653.67 1 16.671 3 22 1 3.617 3 122 2 2 5 2,771.0
Ŷ23 5 653.67 1 16.671 3 23 1 3.617 3 123 2 2 5 2,950.4
Ŷ24 5 653.67 1 16.671 3 24 1 3.617 3 124 2 2 5 3,137.1

Figure 11.35

Regression 
command settings 
for the quadratic 
trend model

Figure 11.36

Regression results 
for the quadratic 
trend model
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Adjusting Trend Predictions with Seasonal Indices  609

Note that these forecasts were calculated using the TREND( ) function in cells F23 
through F26 in Figure 11.34.

As with earlier models, as the forecast horizon lengthens, our confidence in the 
accuracy of the forecasts diminishes because there is no guarantee that the historical 
trends on which the model is based will continue indefinitely into the future.

11.18 Modeling Seasonality with 
Regression Models
The goal of any forecasting procedure is to develop a model that accounts for as much 
of the systematic variation in the past behavior of a time series as possible. The assump-
tion is that a model that accurately explains what happened in the past will be useful in 
predicting what will happen in the future. Do the trend models shown in Figures 11.31 
and 11.34 adequately account for all the systematic variation in the time series data?

All these graphs show a fairly regular pattern of fluctuation around the trend line. 
Notice that each point below the trend line is followed by three points at or above the 
trend line. This suggests some additional systematic (or predictable) variation in the 
time series exists that is not accounted for by these models.

Figures 11.31 and 11.34 suggest that the data in the graphs include seasonal effects. In 
the second quarter of each year, sales drop well below the trend lines, whereas sales in 
the remaining quarters are at or above the trend line. Forecasts of future values for this 
time series would be more accurate if they reflected these systematic seasonal effects. 
The following sections discuss several techniques for modeling seasonal effects in time 
series data.

11.19 Adjusting Trend Predictions  
with Seasonal Indices
A simple and effective way of modeling multiplicative seasonal effects in a time series 
is to develop seasonal indices that reflect the average percentage by which observa-
tions in each season differ from their projected trend values. In the WaterCraft exam-
ple, observations occurring in the second quarter fall below the values predicted using 
a trend model. Similarly, observations in the first, third, and fourth quarters are at or 
above the values predicted using a trend model. Thus, if we can determine seasonal 
indices representing the average amount by which the observations in a given quarter 
fall above or below the trend line, we could multiply our trend projections by these 
amounts and increase the accuracy of our forecasts.

We will demonstrate the calculation of multiplicative seasonal indices for the quadratic 
trend model developed earlier. However, we could also use this technique with any 
of the other trend or smoothing models discussed in this chapter. In Figure 11.37 (and 
in the file Fig11-37.xlsm that accompanies this book), columns A through F repeat the 
calculations for the quadratic trend model discussed earlier.

11.19.1 COMputInG seasOnaL IndICes
The goal in developing seasonal indices is to determine the average percentage by 
which observations in each season differ from the values projected for them using the 
trend model. To accomplish this, in column G of Figure 11.37, we calculated the ratio 
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610 Chapter 11 Time Series Forecasting

of each actual value in column E to its corresponding projected trend value shown in 
column F as:

Formula for cell G3:    5E3/F3
(Copy to G4 through G22.)

The value in cell G3 indicates that the actual value in time period 1 was 102% of (or 
approximately 2% larger than) its estimated trend value. The value in cell G4 indicates 
that the actual value in time period 2 was 83% of (or approximately 17% smaller 
than) its estimated trend value. The remaining values in column G have similar 
interpretations.

We obtain the seasonal index for each quarter by computing the average of the 
values in column G on a quarter-by-quarter basis. For example, the seasonal index 
for quarter 1 equals the average of the values in cells G3, G7, G11, G15, and G19. The 
seasonal index for quarter 2 equals the average of the values in cells G4, G8, G12, G16, 
and G20. Similar computations are required to calculate seasonal indices for quarters 
3 and 4. We can use separate AVERAGE( ) functions for each quarter to compute these 

Key Cell Formulas

Cell Formula Copied to

D3 5C3^2 D4:D26
F3 5TREND($E$3:$E$22,$C$3:$D$22,C3:D3) F4:F26
G3 5E3/F3 G4:G22
K3 5AVERAGEIF($B$3:$B$22,J3,$G$3:$G$22) K4:K6
H3 5F3*VLOOKUP(B3,$J$3:$K$6,2) H4:H26

Figure 11.37

Spreadsheet 
implementation to 
calculate seasonal 
indices and seasonal 
forecasts for the 
quadratic trend 
model
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Adjusting Trend Predictions with Seasonal Indices  611

averages. However, for large data sets, such an approach would be tedious and prone 
to error. Thus, the averages shown in cells K3 through K6 are calculated as:

Formula for cell K3:    5AVERAGEIF 1$B$3:$B$22,J3,$G$3:$G$22 2
(Copy to K4 through K6.)

The AVERAGEIF( ) function in cell K3 compares the values in the range B3 through 
B22 to the value in J3 and, when a match occurs, averages the corresponding values 
in the range G3 through G22. Thus, the number displayed by the formula in cell K3 
represents the seasonal index value for observations in quarter 1. The values computed 
in cells K4, K5 and K6 have similar interpretations for the seasonal indices for quarters 
2, 3 and 4, respectively.

The seasonal index for quarter 1 shown in cell K3 indicates that, on average, the 
actual sales value in the first quarter of any given year will be 105.7% of (or 5.7% larger 
than) the estimated trend value for the same time period. Similarly, the seasonal index 
for quarter 2 shown in cell K4 indicates that, on average, the actual sales value in the 
second quarter of any given year will be 80.1% of (or approximately 20% less than) the 
estimated trend value for the same time period. The seasonal indices for the third and 
fourth quarters have similar interpretations.

We can use the calculated seasonal indices to refine or adjust the trend estimates. 
This is accomplished in column H of Figure 11.37 as:

Formula for cell H3:    5F3*VLOOKUP 1B3,$J$3:$K$6,2 2
(Copy to H4 through H26.)

This formula takes the estimated trend value for each time period and multiplies it 
by the appropriate seasonal index for the quarter in which the time period occurs. The 
trend estimates for quarter 1 observations are multiplied by 105.7%, the trend estimates 
for quarter 2 observations are multiplied by 80.1%, and so on for quarters 3 and 4 
observations.

Figure 11.38 shows a graph of the actual sales data versus the seasonal forecast 
calculated in column H of Figure 11.37. As this graph illustrates, the use of seasonal 
indices is very effective on this particular data set.

11.19.2 FOreCastInG wIth seasOnaL IndICes
We can use the seasonal indices to adjust trend projections of future time periods for 
the expected effects of seasonality. Earlier, we used the quadratic trend model to obtain 
the following forecasts of the expected level of sales in time periods 21, 22, 23, and 24:

Ŷ21 5 653.67 1 16.671 3 21 1 3.617 3 121 2 2 5 2,598.8
Ŷ22 5 653.67 1 16.671 3 22 1 3.617 3 122 2 2 5 2,771.0
Ŷ23 5 653.67 1 16.671 3 23 1 3.617 3 123 2 2 5 2,950.4
Ŷ24 5 653.67 1 16.671 3 24 1 3.617 3 124 2 2 5 3,137.1

To adjust these trend forecasts for the expected effects of seasonality, we multiply 
each of them by the appropriate seasonal index. Because time periods 21, 22, 23, and 
24 occur in quarters 1, 2, 3, and 4, respectively, the seasonal forecasts are computed as:

Seasonal forecast for time period 21 5 2,598.9 3 105.7% 5 2,747.8
Seasonal forecast for time period 22 5 2,771.1 3 80.1% 5 2,219.6
Seasonal forecast for time period 23 5 2,950.5 3 103.1% 5 3,041.4
Seasonal forecast for time period 24 5 3,137.2 3 111.1% 5 3,486.1
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612 Chapter 11 Time Series Forecasting

These forecasts are also calculated in Figure 11.37. Note that although we 
demonstrated the calculation of multiplicative seasonal indices, additive seasonal 
indices could easily be obtained in a very similar manner.

s u m m a r y  o f  t h e  C a l c u l a t i o n  a n d  

u s e  o f  s e a s o n a l  I n d i c e s
1. Create a trend model and calculate the estimated value 1 Ŷt 2  for each 

observation in the sample.
2.  For each observation, calculate the ratio of the actual value to the predicted 

trend value: Yt/Ŷt. (For additive seasonal effects, compute the difference: 
Yt 2 Ŷt.)

3. For each season, compute the average of the values calculated in step 2. These 
are the seasonal indices.

4. Multiply any forecast produced by the trend model by the appropriate seasonal 
index calculated in step 3. (For additive seasonal effects, add the appropriate 
seasonal index to the trend model’s forecast.)

Figure 11.38

Plots of the 
predictions obtained 
using seasonal 
indices versus the 
actual WaterCraft 
sales data
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Adjusting Trend Predictions with Seasonal Indices  613

11.19.3 reFInInG the seasOnaL IndICes
Although the approach for calculating seasonal indices illustrated in Figure 11.37 has 
considerable intuitive appeal, it is important to note that these seasonal adjustment fac-
tors are not necessarily optimal. Figure 11.39 (and the file Fig11-39.xlsm that accompa-
nies this book) shows a very similar approach to calculating seasonal indices that uses 
Solver to simultaneously determine the optimal values of the seasonal indices and the 
parameters of the quadratic trend model.

In Figure 11.39, cells J9, J10, and J11 are used to represent, respectively, the estimated 
values of b0, b1, and b2 in the following quadratic trend model (where X1t

5 t and 
X2t

5 t2 2 :
Ŷt 5 b0 1 b1X1t

1 b2X2t
.

Note that the values shown in cells J9, J10, and J11 correspond to the least square esti-
mates shown in Figure 11.36.

The quadratic trend estimates are then calculated in column F as follows:

Formula for cell F3:   5$J$9 1 $J$10*C3 1 $J$11*D3
(Copy to F4 through F22.)

Figure 11.39 Spreadsheet implementation to calculate refined seasonal indices and quadratic trend parameter estimates

Key Cell Formulas

Cell Formula Copied to

D3 5C3^2 D4:D26
F3 5$J$91$J$10*C31$J$11*D3 F4:F26
G3 5F3*VLOOKUP(B3,$I$3:$J$6,2) G4:G26
J13 5SUMXMY2(G3:G22,E3:E22)/COUNT(G3:G22) --
J7 5AVERAGE(J3:J6) --

Objective Cell

Constraint Cell

Variable Cells
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614 Chapter 11 Time Series Forecasting

Cells J3 through J6 represent the seasonal adjustment factors for each quarter. Note 
that the values shown in these cells correspond to the average seasonal adjustment 
values shown in Figure 11.37. Thus, the seasonal forecasts shown in column G of Figure 
11.39 are computed as follows:

Formula for cell G3:   5F3*VLOOKUP 1B3,$I$3:$J$6,2 2
(Copy to G4 through G22.)

The forecasts shown in Figure 11.39 are exactly the same as those in Figure 11.37 and 
result in an MSE of 922.46 as shown in cell J13. However, we can use the Solver settings 
and options shown in Figure 11.40 to determine values for the trend and seasonal 
parameters that minimize the MSE. 

Figure 11.41 shows the optimal solution to this problem. Thus, by using Solver to 
‘fine-tune’ the parameters for the model, we are able to reduce the MSE to approxi-
mately 400.

Figure 11.41 Optimal solution for calculating refined seasonal indices and quadratic trend parameter estimates 

Solver Settings:

Objective: J13 (Min)
Variable cells: J3:J6, J9:J11
Constraints: 
 J7 5 1 

Solver Options:

 Standard GRG Nonlinear Engine

Figure 11.40

Solver settings 
and options for 
calculating refined 
seasonal indices 
and quadratic trend 
parameter estimates 
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Seasonal Regression Models 615

Note that the Solver settings used to solve this problem includes a constraint 
that requires the average of the seasonal indices in cell J7 to equal one (or 100%). To 
understand the reason for this, suppose the seasonal indices average to something 
other than one, for example 105%. This suggests that the trend estimate is, on average, 
about 5% too low. Thus, if the seasonal indices do not average to 100%, there is some 
upward or downward bias in the trend component of the model. (Similarly, if the model 
included additive seasonal effects, they should be constrained to average to zero.)

11.20 Seasonal Regression Models
As discussed in chapter 9, an indicator variable is a binary variable that assumes a 
value of 0 or 1 to indicate whether or not a certain condition is true. To model additive 
seasonal effects in a time series, we might set up several indicator variables to indicate 
which season each observation represents. In general, if there are p seasons, we need 
p 2 1 indicator variables in our model. For example, the WaterCraft sales data were 
collected on a quarterly basis. Because we have four seasons to model 1p 5 4 2 , we need 
three indicator variables, which we define as:

 X3t
5 e1, if Yt  is from quarter 1

0, otherwise 

X4t
5 e1, if Yt  is from quarter 2

0, otherwise 

X5t
5 e1, if Yt  is from quarter 3

0, otherwise 

Notice that the definitions of X3t
, X4t

, and X5t 
assign a unique coding for the variables 

to each quarter in our data. These codings are summarized in the following table:

Value of

Quarter X3t
X4t

X5t

1 1 0 0
2 0 1 0
3 0 0 1
4 0 0 0

Together, the values of X3t
, X4t

, and X5t
 indicate in which quarter observation Yt occurs.

11.20.1 the seasOnaL MOdeL
We might expect that the following regression function would be appropriate for the 
time series data in our example:

Yt 5 b0 1 b1X1t
1 b2X2t

1 b3X3t
1 b4X4t

1 b5X5t
1 εt 11.31

where, X1t
5 t and X2t

5 t2. This regression model combines the variables that  
account for a quadratic trend in the data with additional indicator variables dis-
cussed earlier to account for any additive systematic seasonal differences.

To better understand the effect of the indicator variables, notice that for observations 
occurring in the fourth quarter, the model in equation 11.31 reduces to:

 Yt 5 b0 1 b1X1t
1 b2X2t

1 εt 11.32
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616 Chapter 11 Time Series Forecasting

because in the fourth quarter X3t
5 X4t

5 X5t
5 0. For observations occurring in the first 

quarter, we can express equation 11.31 as:

 Yt 5 1b0 1 b3 2 1 b1X1t
1 b2X2t

1 εt 11.33

because, by definition, in the first quarter X3t
5 1 and X4t

5 X5t
5 0. Similarly, for 

observations in the second and third quarters, the model in equation 11.31 reduces to:

For the second quarter: Yt 5 1b0 1 b4 2 1 b1X1t
1 b2X2t

1 εt 11.34

For the third quarter: Yt 5 1b0 1 b5 2 1 b1X1t
1 b2X2t

1 εt 11.35

Equations 11.32 through 11.35 show that the values b3, b4, and b5 in equation 11.31 
indicate the average amounts by which the values of observations in the first, second, 
and third quarters are expected to differ from observations in the fourth quarter. That 
is, b3, b4, and b5 indicate the expected effects of seasonality in the first, second, and 
third quarters, respectively, relative to the fourth quarter.

An example of the seasonal regression function in equation 11.31 is given in Figure 
11.42 (and in the file Fig11-42.xlsm that accompanies this book).

The major difference between Figures 11.37 and 11.42 is the addition of the data in 
columns E, F, and G in Figure 11.42. These columns represent the indicator values for 

Key Cell Formulas

Cell Formula Copied to

D3 5C3^2 D4:D26
E3 5IF($B35E$2,1,0) E4:G26
I3 5TREND($H$3:$H$22,$C$3:$G$22,C3:G3) I4:I26

Figure 11.42

Spreadsheet 
implementation 
of the seasonal 
regression model 
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Seasonal Regression Models 617

the independent variables X3t
, X4t

, and X5t
, respectively. We created these values by 

entering the following formula in cell E3 and copying it to E4 through G26:

Formula for cell E3:  5IF 1$B3 5 E$2,1,0 2
(Copy to E4 through G26.)

In Figure 11.42, column I (labeled “Seasonal Model”) shows the predicted sales level 
for each time period where the following formula is entered in cell I3 and copied to 
cells I4 through I26:

Formula for cell I3:   5TREND 1$H$3:$H$22,$C$3:$G$22,C3:G3 2
(Copy to I4 through I26.)

We can obtain the values of b0, b1, b2, b3, b4, and b5 required for the estimated 
regression function using the Regression command settings shown in Figure 11.43. 
Figure 11.44 shows the results of this command, which indicate that the estimated 
regression function is:

 Ŷt 5 824.472 1 17.319X1t
1 3.485X2t

2 86.805X3t
2 424.736X4t

2 123.453X5t
  11.36

Figure 11.43

Regression 
command settings 
for the seasonal 
regression model 

Figure 11.44

Regression results 
for the seasonal 
regression model 
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618 Chapter 11 Time Series Forecasting

The coefficients for the indicator variables are given by b3 5 286.805, b4 5 2424.736,
and b5 5 2123.453. Because X3t

 is the indicator variable for quarter 1 observations, the 
value of b3 indicates that, on average, the sales level in quarter 1 of any year is expected 
to be approximately $86,805 lower than the level expected for quarter 4. The value of 
b4 indicates that the typical sales value in quarter 2 of any given year is expected to be 
approximately $424,736 less than the level expected in quarter 4. Finally, the value of 
b5 indicates that the typical sales value in quarter 3 is expected to be approximately 
$123,453 less than the level expected in quarter 4.

In Figure 11.44, notice that R2 5 0.986, suggesting that the estimated regression 
function fits the data very well. This is also evident from the graph in Figure 11.45, 
which shows the actual data versus the predictions of the seasonal forecasting model.

11.20.2 FOreCastInG wIth the seasOnaL  
reGressIOn MOdeL
We can use the estimated regression function in equation 11.36 to forecast an expected 
level of sales for any future time period by assigning appropriate values to the inde-
pendent variables. For example, forecasts of WaterCraft’s sales in the next four quarters 
are represented by:

Ŷ21 5 824.472 1 17.319 121 2 1 3.485 1212 2 2 86.805 11 2 2 424.736 10 2 2 123.453 10 2 5 2,638.5
Ŷ22 5 824.472 1 17.319 122 2 1 3.485 1222 2 2 86.805 10 2 2 424.736 11 2 2 123.453 10 2 5 2,467.7
Ŷ23 5 824.472 1 17.319 123 2 1 3.485 1232 2 2 86.805 10 2 2 424.736 10 2 2 123.453 11 2 5 2,943.2
Ŷ24 5 824.472 1 17.319 124 2 1 3.485 1242 2 2 86.805 10 2 2 424.736 10 2 2 123.453 10 2 5 3,247.8

Note that these forecasts were calculated using the TREND( ) function in Figure 11.42.

Figure 11.45

Plot of seasonal 
regression model 
predictions versus 
actual WaterCraft 
sales data 
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Summary 619

11.21 Combining Forecasts
Given the number and variety of forecasting techniques available, it can be a chal-
lenge to settle on a single method to use in predicting future values of a time series 
variable. Indeed, the state-of-the-art research in time series forecasting suggests that 
we should not use a single forecasting method. Rather, we can obtain more accu-
rate forecasts by combining the forecasts from several methods into a composite 
forecast.

For example, suppose that we used three methods to build forecasting models of the 
same time series variable. We denote the predicted value for time period t using each 
of these methods as F1t

, F2t
, and F3t

, respectively. One simple approach to combining 
these forecasts into a composite forecast Ŷt might involve taking a linear combination 
of the individual forecasts as:

 Ŷt 5 b0 1 b1F1t
1 b2F2t

1 b3F3t
  11.37

We could determine the values for the bi using Solver or least squares regression 
to minimize the MSE between the combined forecast Ŷt and the actual data. The  
combined forecast Ŷt in equation 11.37 will be at least as accurate as any of  
the individual forecasting techniques. To see this, suppose that F1t

 is the most 
accurate of the individual forecasting techniques. If b1 5 1 and b0 5 b2 5 b3 5 0, then  
our combined forecast would be Ŷt 5 F1t

. Thus, b0, b2, and b3 would be assigned 
nonzero values only if this helps to reduce the MSE and produce more accurate 
predictions.

In chapter 9, we noted that adding independent variables to a regression model can 
never decrease the value of the R2 statistic. Therefore, it is important to ensure that each 
independent variable in a multiple regression model accounts for a significant portion 
of the variation in the dependent variable and does not simply inflate the value of R2. 
Similarly, combining forecasts can never increase the value of the MSE. Thus, when 
combining forecasts, we must ensure that each forecasting technique plays a significant 
role in accounting for the behavior of the dependent time series variable. The adjusted-
R2 statistic (described in chapter 9) can also be applied to the problem of selecting 
forecasting techniques to combine in time series analysis.

11.22 Summary
This chapter presented several methods for forecasting future values of a time series 
variable. The chapter discussed time series methods for stationary data (without 
a strong upward or downward trend), nonstationary data (with a strong upward or 
downward linear or nonlinear trend), and data with repeating seasonal patterns. In 
each case, the goal is to fit models to the past behavior of a time series and use the mod-
els to project future values.

Because time series vary in nature (e.g., with and without trend, with and without 
seasonality), it is helpful to be aware of the different forecasting techniques and the 
types of problems for which they are intended. There are many other time series mod-
eling techniques besides those discussed in this chapter. Descriptions of these other 
techniques can be found in texts devoted to time series analysis.

In modeling time series data, it is often useful to try several techniques and then 
compare them based on measures of forecast accuracy, including a graphical inspec-
tion of how well the model fits the historical data. If no one procedure is clearly better 
than the others, it might be wise to combine the forecasts from the different procedures 
using a weighted average or some other method.
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the wOrLd OF BusIness anaLYtICs

Check Processing Revisited: The Chemical Bank Experience

Chemical Bank of New York employs more than 500 people to process checks 
averaging $2 billion per day. Scheduling shifts for these employees requires accu-
rate predictions of check flows. This is done with a regression model that fore-
casts daily check volume using independent variables that represent calendar 
effects. The regression model used by Ohio National Bank (see “Better Predictions 
Create Cost Savings for Ohio National Bank” in chapter 9) is based on this Chem-
ical Bank model.

The binary independent variables in the regression model represent months, 
days of the month, weekdays, and holidays. Of 54 possible variables, 29 were 
used in the model to yield a coefficient of determination 1R2 2  of 0.83 and a stan-
dard deviation of 142.6.

The forecast errors, or residuals, were examined for patterns that would sug-
gest the possibility of improving the model. Analysts noticed a tendency for over-
predictions to follow one another and underpredictions to follow one another, 
implying that check volumes could be predicted not only by calendar effects but 
also by the recent history of prediction errors.

An exponential smoothing model was used to forecast the residuals. The 
regression model combined with the exponential smoothing model then became 
the complete model for predicting check volumes. Fine-tuning was accomplished 
by investigating different values of the smoothing constant 1a 2  from 0.05 to 
0.50. A smoothing constant of 0.2 produced the best results, reducing the stan-
dard deviation from 142.6 to 131.8. Examination of the residuals for the complete 
model showed nothing but random variations, indicating that the exponential 
smoothing procedure was working as well as could be expected.

Although the complete model provides better forecasts on the average, it occa-
sionally overreacts and increases the error for some periods. Nevertheless, the 
complete model is considered to be preferable to regression alone.

Source: Kevin Boyd and Vincent A. Mabert. “A Two Stage Forecasting Approach at Chemical Bank 
of New York for Check Processing.” Journal of Bank Research, vol. 8, no. 2, Summer 1977, pp. 101–107.
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Questions and Problems
1. What is the result of using regression analysis to estimate a linear trend model for a 

stationary time series? 
2. A manufacturing company uses a certain type of steel rod in one of its products. 

The design specifications for this rod indicate that it must be between 0.353 to 0.357 
inches in diameter. The machine that manufactures these rods is set up to produce 
them at 0.355 inches in diameter, but there is some variation in its output. Provided 
that the machine is producing rods within 0.353 to 0.357 inches in diameter, its out-
put is considered acceptable or within control limits. Management uses a control 
chart to track the diameter of the rods being produced by the machine over time so 
that remedial measures can be taken if the machine begins to produce unacceptable 
rods. Figure 11.46 shows an example of this type of chart. 

Figure 11.46

Graph for rod 
manufacturing 
problem 

Unacceptable rods represent waste. Thus, management wants to develop a proce-
dure to predict when the machine will start producing rods that are outside the 
control limits, so that appropriate actions can be taken to prevent the production 
of rods that must be scrapped. Of the time series models discussed in this chapter, 
which is the most appropriate tool for this problem? Explain your answer.

3. Each month, Joe’s Auto Parts uses exponential smoothing (with a 5 0.25) to predict 
the number of cans of brake fluid that will be sold during the next month. In June, 
Joe forecast that he would sell 37 cans of brake fluid during July. Joe actually sold 43 
cans in July. 
a.  What is Joe’s forecast for brake fluid sales in August and September? 
b.  Suppose that Joe sells 32 cans of brake fluid in August. What is the revised fore-

cast for September?
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622 Chapter 11 Time Series Forecasting

Questions 4 through 10 refer to the data in the file that accompanies this book named 
SmallBusiness.xlsx representing annual sales (in $1,000s) for a small business.

4. Prepare a line graph of these data. Do the data appear to be stationary or 
nonstationary?

5. Compute the two-period and four-period moving average predictions for the data set.
a. Prepare a line graph comparing the moving average predictions against the orig-

inal data. 
b.  Do the moving averages tend to overestimate or underestimate the actual data? 

Why?
c.  Compute forecasts for the next 2 years using the two-period and four-period 

moving average techniques.
6. Use Solver to determine the weights for a three-period weighted moving average 

that minimizes the MSE for the data set. 
a. What are the optimal values for the weights?
b.  Prepare a line graph comparing the weighted moving average predictions 

against the original data. 
c.  What are the forecasts for the next 2 years using this technique?

7. Create a double moving average model (with k 5 4) for the data set. 
a.  Prepare a line graph comparing the double moving average predictions against 

the original data. 
b.  What are the forecasts for the next 2 years using this technique?

 8. Create an exponential smoothing model that minimizes the MSE for the data set. 
Use Solver to determine the optimal value of a. 
a.  What is the optimal value of a?
b.  Prepare a line graph comparing the exponential smoothing predictions against 

the original data. 
c.  What are the forecasts for the next 2 years using this technique?

9. Use Holt’s method to create a model that minimizes the MSE for the data set. Use 
Solver to determine the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from Holt’s method versus the 

original data. 
c.  What are the forecasts for the next 2 years using this technique?

10. Use regression analysis to fit a linear trend model to the data set.
a. What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
d.  What are the forecasts for the next 2 years using this technique?
e.  Fit a quadratic trend model to these data. What is the estimated regression 

function?
f.  Compare the adjusted-R2 value for this model to that of the linear trend model. 

What is implied by this comparison?
g.  Prepare a line graph comparing the quadratic trend predictions against the origi-

nal data. 
h.  What are the forecasts for the next 2 years using this technique?
i.  If you had to choose between the linear and quadratic trend models, which 

would you use? Why?

Questions 11 through 14 refer to the data in the file that accompanies this book named 
FamilyHomePrices.xlsx representing actual average sales prices of existing single fam-
ily homes in the United States over a number of years.
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11. Prepare a line graph of these data. Do the data appear to be stationary or 
nonstationary?

12. Create a double moving average model (with k 5 2) for the data set. 
a.  Prepare a line graph comparing the double moving average predictions against 

the original data. 
b.  What are the forecasts for the next 2 years using this technique?

 13. Use Holt’s method to create a model that minimizes the MSE for the data set. Use 
Solver to determine the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from Holt’s method versus the 

original data. 
c.  What are the forecasts for the next 2 years using this technique?

14. Use regression analysis to answer the following questions.
a. Fit a linear trend model to the data set. What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
d.  What are the forecasts for the next 2 years using this technique?
e.  Fit a quadratic trend model to these data. What is the estimated regression 

function?
f.  Compare the adjusted-R2 value for this model to that of the linear trend model. 

What is implied by this comparison?
g.  Prepare a line graph comparing the quadratic trend predictions against the origi-

nal data. 
h.  What are the forecasts for the next 2 years using this technique?
i.  If you had to choose between the linear and quadratic trend models, which 

would you use? Why?

Questions 15 through 21 refer to the data in the file that accompanies this book 
named COGS.xlsx representing monthly cost of goods sold data for a retail store.

 15. Use regression analysis to fit a linear trend model to the data set.
a.  What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
d.  What are the forecasts for each of the next 6 months using this technique? 
e.  Calculate seasonal indices for each month using the results of the linear trend 

model.
f.  Use these seasonal indices to compute seasonal forecasts for each of the next 

6 months.
 16. Use regression analysis to fit a quadratic trend model to the data set.

a.  What is the estimated regression function?
b.  Compare the adjusted-R2 value for this model to that of the linear trend model. 

What is implied by this comparison?
c.  Prepare a line graph comparing the quadratic trend predictions against the origi-

nal data. 
d.  What are the forecasts for each of the next 6 months using this technique? 
e.  Calculate seasonal indices for each month using the results of the quadratic trend 

model.
f.  Use these seasonal indices to compute seasonal forecasts for each of the next 

6 months.
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624 Chapter 11 Time Series Forecasting

17. Use the additive seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each of the next 6 month using this technique?

18. Use the multiplicative seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a.  What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each of the next 6 months using this technique?

 19. Use Holt-Winter’s additive method to create a seasonal model that minimizes the 
MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a.  What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each of the next 6 months using this technique?

 20. Use Holt-Winter’s multiplicative method to create a seasonal model that minimizes 
the MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a.  What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each of the next 6 months using this technique?

 21. Use regression analysis to fit an additive seasonal model with linear trend to the 
data set.
a.  What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Interpret the parameter estimates corresponding to the indicator variables in 

your model. 
d.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
e.  What are the forecasts for each of the next 6 months using this technique?

Questions 22 through 29 refer to the data in the file that accompanies this book named 
SUVSales.xlsx representing quarterly data on the number of four-wheel drive, sport 
utility vehicles sold by a local car dealer during the past 3 years.

 22. Use regression analysis to fit a linear trend model to the data set.
a.  What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
d.  What are the forecasts for each quarter in 2017 using this technique? 
e.  Calculate seasonal indices for each quarter using the results of the linear trend 

model.
f.  Use these seasonal indices to compute seasonal forecasts for each quarter in 2017.

 23. Use regression analysis to fit a quadratic trend model to the data set.
a.  What is the estimated regression function?
b.  Compare the adjusted-R2 value for this model to that of the linear trend model. 

What is implied by this comparison?
c.  Prepare a line graph comparing the quadratic trend predictions against the origi-

nal data. 
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d.  What are the forecasts for each quarter in 2017 using this technique? 
e.  Calculate seasonal indices for each quarter using the results of the quadratic 

trend model.
f.  Use these seasonal indices to compute seasonal forecasts for each quarter in 2017.

24. Use the additive seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each quarter in 2017 using this technique?

25. Use the multiplicative seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a.  What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each quarter in 2017 using this technique?

 26. Use Holt’s method to create a model that minimizes the MSE for the data set. Use 
Solver to determine the optimal values of a and b.
a.  What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from Holt’s method against the 

original data. 
c.  What are the forecasts for each quarter in 2017 using this technique?
d.  Calculate multiplicative seasonal indices for each quarter using the results of 

Holt’s method.
e.  Use these seasonal indices to compute seasonal forecasts for each quarter in 2017.

 27. Use Holt-Winter’s additive method to create a seasonal model that minimizes the 
MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a.  What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each quarter in 2017 using this technique?

 28. Use Holt-Winter’s multiplicative method to create a seasonal model that minimizes 
the MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a.  What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each quarter in 2017 using this technique?

 29. Use regression analysis to fit an additive seasonal model with linear trend to the 
data set.
a.  What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Interpret the parameter estimates corresponding to the indicator variables in 

your model. 
d.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
e.  What are the forecasts for each quarter in 2017 using this technique?

Questions 30 through 34 refer to the data in the file that accompanies this book named 
CalfPrices.xlsx representing the selling price of 3-month-old calves at a livestock auc-
tion during the past 22 weeks.

 30. Prepare a line graph of these data. Do the data appear to be stationary or 
nonstationary?
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626 Chapter 11 Time Series Forecasting

31. Compute the two-period and four-period moving average predictions for the data set. 
a. Prepare a line graph comparing the moving average predictions against the orig-

inal data. 
b.  Compute the MSE for each of the two moving averages. Which appears to pro-

vide the best fit for this data set?
c.  Compute forecasts for the next 2 weeks using the two-period and four-period 

moving average techniques.
32. Use Solver to determine the weights for a four-period weighted moving average on 

the data set that minimizes the MSE. 
a. What are the optimal values for the weights?
b.  Prepare a line graph comparing the weighted moving average predictions 

against the original data. 
c.  What are the forecasts for weeks 23 and 24 using this technique?

33. Create an exponential smoothing model that minimizes the MSE for the data set. 
Use Solver to estimate the optimal value of a.
a. What is the optimal value of a?
b.  Prepare a line graph comparing the exponential smoothing predictions against 

the original data. 
c.  What are the forecasts for weeks 23 and 24 using this technique?

34. Use Holt’s method to create a model that minimizes the MSE for the data set. Use 
Solver to estimate the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Are these values surprising? Why or why not?

Questions 35 through 39 refer to the data in the file that accompanies this book named 
HealthClaims.xlsx representing 2 years of monthly health insurance claims for a 
self-insured company.

35. Use regression analysis to fit a linear trend model to the data set.
a. What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
d.  What are the forecasts for each of the first 6 months in 2017 using this technique?
e.  Calculate multiplicative seasonal indices for each month using the results of the 

linear trend model.
f.  Use these seasonal indices to compute seasonal forecasts for the first 6 months in 

2017.
g.  Calculate additive seasonal indices for each month using the results of the linear 

trend model.
h.  Use these seasonal indices to compute seasonal forecasts for the first 6 months in 

2017.
 36. Use regression analysis to fit a quadratic trend model to the data set.

a.  What is the estimated regression function?
b.  Compare the adjusted-R2 value for this model to that of the linear trend model. 

What is implied by this comparison?
c.  Prepare a line graph comparing the quadratic trend predictions against the origi-

nal data. 
d.  What are the forecasts for each of the first 6 months in 2017 using this technique?
e.  Calculate multiplicative seasonal indices for each month using the results of the 

quadratic trend model.
f.  Use these seasonal indices to compute seasonal forecasts for each of the first 

6 months in 2017.
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g.  Calculate additive seasonal indices for each month using the results of the qua-
dratic trend model.

h.  Use these seasonal indices to compute seasonal forecasts for each of the first 
6 months in 2017.

37. Use Holt’s method to create a model that minimizes the MSE for the data set. Use 
Solver to determine the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from Holt’s method against the 

original data. 
c.  What are the forecasts for each of the first 6 months in 2017 using this technique?
d.  Calculate multiplicative seasonal indices for each month using the results of 

Holt’s method.
e.  Use these seasonal indices to compute seasonal forecasts for each of the first 

6 months in 2017.
f.  Calculate additive seasonal indices for each month using the results of Holt’s 

method.
g.  Use these seasonal indices to compute seasonal forecasts for each of the first 

6 months in 2017.
38. Use Holt-Winter’s additive method to create a seasonal model that minimizes the 

MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a. What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each of the first 6 months in 2017 using this technique?

39. Use Holt-Winter’s multiplicative method to create a seasonal model that minimizes 
the MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a. What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for each of the first 6 months in 2017 using this technique?

Questions 40 through 43 refer to the data in the file that accompanies this book named 
LaborForce.xlsx containing monthly data on the number of workers in the U.S. civilian 
labor force (in 1,000s) over 94 consecutive months.

40. Prepare a line graph of these data. Do the data appear to be stationary or 
nonstationary?

41. Create a Double Moving Average model (with k 5 4) for the data set. 
a.  Prepare a line graph comparing the Double Moving Average predictions against 

the original data. 
b.  What are the forecasts for the next 4 months using this technique?

 42. Use Holt’s method to create a model that minimizes the MSE for the data set. Use 
Solver to estimate the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from Holt’s method against the 

original data. 
c. What are the forecasts for the next 4 months using this technique?

43. Use regression analysis to answer the following questions.
a. Fit a linear trend model to the data set. What is the estimated regression function?
b.  Interpret the R2 value for your model.
c.  Prepare a line graph comparing the linear trend predictions against the original 

data. 
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628 Chapter 11 Time Series Forecasting

d.  What are the forecasts for the next 2 years using this technique?
e.  Fit a quadratic trend model to these data. What is the estimated regression 

function?
f.  Compare the adjusted-R2 value for this model to that of the linear trend model. 

What is implied by this comparison?
g.  Prepare a line graph comparing the quadratic trend predictions against the origi-

nal data. 
h.  What are the forecasts for the next 2 years using this technique?
i.  If you had to choose between the linear and quadratic trend models, which 

would you use? Why?

Questions 44 through 50 refer to the data in the file that accompanies this book named 
MortgageRates.xlsx containing average monthly 30-year mortgage rates over 82 con-
secutive months.

 44. Prepare a line graph of these data. Do the data appear to be stationary or 
nonstationary?

 45. Compute the two-period and four-period moving average predictions for the data set. 
a.  Prepare a line graph comparing the moving average predictions against the orig-

inal data. 
b.  Compute the MSE for each of the two moving averages. Which appears to pro-

vide the best fit for this data set?
c.  Compute forecasts for the next 2 months using the two-period and four-period 

moving average techniques.
 46. Use Solver to determine the weights for a four-period weighted moving average on 

the data set that minimizes the MSE. 
a.  What are the optimal values for the weights?
b.  Prepare a line graph comparing the weighted moving average predictions 

against the original data. 
c.  What are the forecasts for the next 2 months using this technique?

 47. Create an exponential smoothing model that minimizes the MSE for the data set. 
Use Solver to estimate the optimal value of a.
a. What is the optimal value of a?
b.  Prepare a line graph comparing the exponential smoothing predictions against 

the original data. 
c.  What are the forecasts for the next 2 months using this technique?

48. Create a Double Moving Average model (with k 5 4) for the data set. 
a.  Prepare a line graph comparing the Double Moving Average predictions against 

the original data. 
b.  What are the forecasts for the next 2 months using this technique?

 49. Use Holt’s method to create a model that minimizes the MSE for the data set. Use 
Solver to estimate the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from Holt’s method against the 

original data. 
c.  What are the forecasts for the next 2 months using this technique?

50. Use regression to estimate the parameters of a 6th order polynomial model for this 
data. That is, estimate the least squares estimates for the parameters in the follow-
ing estimated regression equation:

Ŷt 5 b0 1 b1t 1 b2t
2 1 b3t

3 1 b4t
4 1 b5t

5 1 b6t
6

a. What are the optimal values of b0, b1, c, b6?
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b.  What are the forecasts for the next 2 months using this technique?
c.  Comment on the appropriateness of this technique.

Questions 51 through 55 refer to the data in the file that accompanies this book named 
ChemicalDemand.xlsx containing monthly data on the demand for a chemical product 
over a 2 year period.

51. Prepare a line graph of these data. Do the data appear to be stationary or 
non-stationary?

52. Use the additive seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next 4 months using this technique?

53. Use the multiplicative seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a.  What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next 4 months using this technique?

 54. Use Holt-Winter’s additive method to create a seasonal model that minimizes the 
MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a.  What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next 4 months using this technique?

55. Use Holt-Winter’s multiplicative method to create a seasonal model that mini-
mizes the MSE for the data set. Use Solver to determine the optimal values of a, b,
and g.
a. What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next 4 months using this technique?

Questions 56 through 60 refer to the data in the file that accompanies this book named 
ProductionHours.xlsx containing monthly data on the average number of hours worked 
each week by production workers in the United States over 94 consecutive months.

56. Prepare a line graph of these data. Do the data appear to be stationary or 
non-stationary?

57. Use the additive seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a.  What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next 4 months using this technique?

58. Use the multiplicative seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a.  What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next 4 months using this technique?
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630 Chapter 11 Time Series Forecasting

59. Use Holt-Winter’s additive method to create a seasonal model that minimizes the 
MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a. What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next 4 months using this technique?

60. Use Holt-Winter’s multiplicative method to create a seasonal model that minimizes 
the MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a. What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next four months using this technique?

Questions 61 through 65 refer to the data in the file that accompanies this book named 
QtrlySales.xlsx containing quarterly sales data for a Norwegian export company over 
13 consecutive years.

61. Prepare a line graph of these data. Do the data appear to be stationary or 
nonstationary?

62. Use the additive seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a. What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next four quarters using this technique?

63. Use the multiplicative seasonal technique for stationary data to model the data. Use 
Solver to determine the optimal values of a and b.
a.  What are the optimal values of a and b?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next four quarters using this technique?

 64. Use Holt-Winter’s additive method to create a seasonal model that minimizes the 
MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a.  What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next four quarters using this technique?

 65. Use Holt-Winter’s multiplicative method to create a seasonal model that minimizes 
the MSE for the data set. Use Solver to determine the optimal values of a, b, and g.
a.  What are the optimal values of a, b, and g?
b.  Prepare a line graph comparing the predictions from this method against the 

original data. 
c.  What are the forecasts for the next four quarters using this technique?

PB Chemical Company
Mac Brown knew something had to change. As the new Vice President of Sales & Mar-
keting for the PB Chemical Company, Mac understood that when you sell a commod-
ity product, where there is minimal difference between the quality and price, customer 
service and proactive selling effort usually are the difference between success and fail-
ure. Unfortunately, PB’s sales staff was using a fairly random method of soliciting sales, 
where they would work through an alphabetical list of customers, making phone calls to 

Case 11.1
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Case 11.2 631

those who had not placed any orders that month. Often, the difference between whether 
PB or a competitor got an order simply boiled down to who called at the time the cus-
tomer needed materials. If the PB salesperson called too soon, they didn’t get an order. 
And if they waited too long for a customer to call, they often lost business to a competitor.

Mac decided it was time for PB to be a bit more proactive and sophisticated in its 
sales efforts. He first convinced his counterparts at PB’s largest customers that they 
could create a more efficient supply chain if they shared their monthly usage data of 
various chemicals with PB. That way, PB could better anticipate its customers’ needs 
for various products. This, in turn, would reduce PB’s need to hold inventory as safety 
stock, and allow PB to operate more efficiently, and pass some of these cost savings on 
to its customers.

PB’s five largest customers (that account for 85% of PB’s sales) agreed to share their 
monthly product use data. Now it was up to Mac to decide what to do with this data. It 
has been quite a while since Mac actually did any demand forecasting on his own, and he 
is far too busy with PB’s strategic planning committee to be bothered by such details any-
way. So Mac called one of the firm’s top business analysts, Dee Hamrick, and dumped 
the problem in her lap. Specifically, Mac asked her to come up with a plan for forecasting 
demand for PB’s products and using these forecasts for maximum advantage.

1. What issues should Dee consider in coming up with forecasts for PB’s various prod-
ucts? How would you suggest she go about creating forecasts for each product?

2. Should Dee try to forecast aggregate monthly product demand for all customers, or 
individual monthly product demand for each customer? Which of these forecasts 
would be more accurate? Which of these forecasts would be more useful (and to 
whom)?

3. Given the available data, how might Dee and Mac judge or gauge the accuracy of 
each product forecast?

4. Suppose Dee’s technical staff could come up with a way of accurately forecasting 
monthly demand for PB’s products. How should PB use this information for strate-
gic advantage? 

5. What other information should Dee suggest Mac try to get from PB’s customers?

Forecasting COLAs
Tarrows, Pearson, Foster and Zuligar (TPF&Z) is one of the largest actuarial consulting 
firms in the United States. In addition to providing its clients with expert advice on 
executive compensation programs and employee benefits programs, TPF&Z also helps 
its clients determine the amounts of money they must contribute annually to defined 
benefit retirement programs. 

Most companies offer two different types of retirement programs to their employees: 
defined contribution plans and defined benefit plans. Under a defined contribution
plan, the company contributes a fixed percentage of an employee’s earning to fund the 
employee’s retirement. Individual employees covered by this type of plan determine 
how their money is to be invested (e.g., stocks, bonds, or fixed-income securities), and 
whatever the employees are able to accumulate over the years constitutes their retire-
ment fund. In a defined benefit plan, the company provides covered employees with 
retirement benefits that are usually calculated as a percentage of the employee’s final 
salary (or sometimes an average of the employee’s highest 5 years of earnings). Thus, 
under a defined benefit plan, the company is obligated to make payments to retired 
employees, but the company must determine how much of its earnings to set aside 
each year to cover these future obligations. Actuarial firms such as TPF&Z assist com-
panies in making this determination.

Case 11.2
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632 Chapter 11 Time Series Forecasting

Several of TPF&Z’s clients offer employees defined benefit retirement plans that 
allow for cost of living adjustments (COLAs). Here, an employee’s retirement benefit is 
still based on some measure of his or her final earnings, but these benefits are increased 
over time as the cost of living rises. These COLAs are often tied to the national con-
sumer price index (CPI), which tracks the cost of a fixed-market basket of items over 
time. Each month, the Federal government calculates and publishes the CPI. (Monthly 
CPI data from January 1991 through March 2016 is given in the file CPIData.xlsx that 
accompanies this book.)

To assist its clients in determining the amount of money to accrue during a year for 
their annual contribution to their defined benefit programs, TPF&Z must forecast the 
value of the CPI 1 year into the future. Pension assets represent the largest single source 
of investment funds in the world. As a result, small changes or differences in TPF&Z’s 
CPI forecast translate into hundreds of millions of dollars in corporate earnings being 
diverted from the bottom line into pension reserves. Needless to say, the partners of 
TPF&Z want their CPI forecasts to be as accurate as possible.

1. Prepare a plot of the CPI data. Based on this plot, which of the time series forecast-
ing techniques covered in this chapter would not be appropriate for forecasting this 
time series?

2. Apply Holt’s method to this data set and use Solver to find the values of a (alpha) 
and b (beta) that minimize the MSE between the actual and predicted CPI values. 
What is the MSE using this technique? What is the forecasted CPI value for April 
2016 and April 2017 using this technique?

 3.  Apply linear regression to model the CPI as a function of time. What is the MSE 
using this technique? What is the forecasted CPI value for April 2016 and April 2017 
using this technique?

 4.  Create a graph showing the actual CPI values plotted along with the predicted val-
ues obtained using Holt’s method and the linear regression model. Which forecast-
ing technique seems to fit the actual CPI data the best? 

   Based on this graph, do you think it is appropriate to use linear regression on this 
data set? Explain your answer.

 5.  A partner of the firm has looked at your graph and asked you to repeat your analy-
sis excluding the data prior to 2009. What MSE do you obtain using Holt’s method? 
What MSE do you obtain using linear regression? What is the forecasted CPI value 
for April 2016 and April 2017 using each technique?

 6.  Graph your results again. Which forecasting technique seems to fit the actual CPI 
data the best? Based on this graph, do you think it is appropriate to use linear 
regression on this data set? Explain your answer.

 7.  The same partner has one final request. She wants to consider if it is possible to 
combine the predictions obtained using Holt’s method and linear regression to 
obtain a composite forecast that is more accurate than either technique used in iso-
lation. The partner wants you to combine the predictions in the following manner:

  Combined Prediction 5 w 3 H 1 11 2 w 2 3 R

where H represents the predictions from Holt’s method, R represents the predic-
tions obtained using the linear regression model, and w is a weighting parameter 
between 0 and 1. Use Solver to determine the value of w that minimizes the MSE 
between the actual CPI values and the combined predictions. What is the optimal 
value of w and what is the associated MSE? What is the forecasted CPI value for 
April 2016 and April 2017 using this technique?

8. What CPI forecast for April 2016 and April 2017 would you recommend TPF&Z 
actually use?
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Strategic Planning at Fysco Foods
Fysco Foods, Inc. is one of the largest suppliers of institutional and commercial food 
products in the United States. Fortunately for Fysco, the demand for “food away from 
home” has been growing steadily over the past 22 years as shown in the following table 
(and the file FyscoFoods.xlsx that accompanies this book). Note that this table breaks 
the total expenditures on food away from home (shown in the final column) into six 
component parts (e.g., eating & drinking places, hotels & motels, etc.).

Total Food away from Home expenditures (in millions)

Year

eating & 
Drinking 
Places1

Hotels & 
Motels1

retail 
stores, 
Direct 

selling2
recreational 

Places3
schools & 
Colleges4 all Other5    Total6

1 75,883 5,906 8,158 3,040 11,115 16,194 120,296

2 83,358 6,639 8,830 2,979 11,357 17,751 130,914

3 90,390 6,888 9,256 2,887 11,692 18,663 139,776

4 98,710 7,660 9,827 3,271 12,338 19,077 150,883

5 105,836 8,409 10,315 3,489 12,950 20,047 161,046

6 111,760 9,168 10,499 3,737 13,534 20,133 168,831

7 121,699 9,665 11,116 4,059 14,401 20,755 181,695

8 146,194 11,117 12,063 4,331 14,300 21,122 209,127

9 160,855 11,905 13,211 5,144 14,929 22,887 228,930

10 171,157 12,179 14,440 6,151 15,728 24,581 244,236

11 183,484 12,508 16,053 7,316 16,767 26,198 262,326

12 188,228 12,460 16,750 8,079 17,959 27,108 270,584

13 183,014 13,204 13,588 8,602 18,983 27,946 265,338

14 195,835 13,362 13,777 9,275 19,844 28,031 280,124

15 205,768 13,880 14,210 9,791 21,086 28,208 292,943

16 214,274 14,195 14,333 10,574 22,093 28,597 304,066

17 221,735 14,504 14,475 11,354 22,993 28,981 314,043

18 235,597 15,469 14,407 8,290 24,071 30,926 328,760

19 248,716 15,800 15,198 9,750 25,141 31,926 346,530

20 260,495 16,623 16,397 10,400 26,256 33,560 363,730

21 275,695 17,440 16,591 11,177 27,016 34,508 382,427

22 290,655 17,899 16,881 11,809 28,012 35,004 400,259

Notes:
1 Includes tips.
2 Includes vending machine operators but not vending machines operated by organization.
3  Motion picture theaters, bowling alleys, pool parlors, sports arenas, camps, amusement parks, golf and 
country clubs.

4 Includes school food subsidies.
5  Military exchanges and clubs; railroad dining cars; airlines; food service in manufacturing plants, institu-
tions, hospitals, boarding houses, fraternities and sororities, and civic and social organizations; and food 
supplied to military forces.

6 Computed from unrounded data.

Case 11.3
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634 Chapter 11 Time Series Forecasting

As part of its strategic planning process, each year Fysco generates forecasts of the 
total market demand in each of the six food away from home expenditure categories. 
This assists the company in allocating its marketing resources among the various cus-
tomers represented in each category. 

1. Prepare line graphs of each of the six expenditure categories. Indicate whether each 
category appears to be stationary or nonstationary.

2. Use Holt’s method to create models for each expenditure category. Use Solver to 
estimate the values of a and b that minimize the MSE. What are the optimal values 
of a and b and the MSE for each model? What is the forecast for next year for each 
expenditure category?

 3. Estimate linear regression models for each expenditure category. What is the esti-
mated regression equation and MSE for each model? What is the forecast for next 
year for each expenditure category?

 4. Fysco’s Vice President of Marketing has a new idea for forecasting market demand. 
For each expenditure category, she wants you to estimate the growth rate repre-
sented by g in the following equation: Ŷt11 5 Yt 11 1 g 2 . That is, the estimated value 
for time period t 1 1 is equal to the actual value in the previous time period (t) mul-
tiplied by one plus the growth rate g. Use Solver to identify the optimal (minimum 
MSE) growth rate for each expenditure category. What is the growth rate for each 
category? What is the forecast for next year for each expenditure category?

 5. Which of the three forecasting techniques considered here would you recommend 
Fysco use for each expenditure category?
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Chapter 12
Introduction to Simulation  
Using Analytic Solver Platform

12.0 Introduction
Chapter 1 discussed how the calculations in a spreadsheet can be viewed as a mathe-
matical model that defines a functional relationship between various input variables 
(or independent variables) and one or more bottom-line performance measures (or 
dependent variables). The following equation expresses this relationship:

Y 5 f 1X1, X2, c, Xk 2
In many spreadsheets, the values of various input cells are determined by the per-

son using the spreadsheet. These input cells correspond to the independent variables 
X1, X2, c, Xk in the previous equation. Various formulas (represented by f ( ) above) 
are entered in other cells of the spreadsheet to transform the values of the input cells 
into some bottom-line output (denoted by Y in the preceding equation). Simulation is 
a technique that is helpful in analyzing models in which the value to be assumed by 
one or more independent variables is uncertain. This chapter discusses how to perform 
simulation using a popular commercial spreadsheet add-in called Analytic Solver Plat-
form, created and distributed by Frontline Systems. 

12.1 Random Variables and Risk
In order to compute a value for the bottom-line performance measure of a spreadsheet 
model, each input cell must be assigned a specific value so that all the related calcula-
tions can be performed. However, some uncertainty often exists regarding the value 
that should be assumed by one or more independent variables (or input cells) in the 
spreadsheet. This is particularly true in spreadsheet models that represent future con-
ditions. A random variable is any variable whose value cannot be predicted or set with 
certainty. Thus, many input variables in a spreadsheet model represent random vari-
ables whose actual values cannot be predicted with certainty.

For example, projections of the cost of raw materials, future interest rates, future 
numbers of employees, and expected product demand are random variables because 
their true values are unknown and will be determined in the future. If we cannot say 
with certainty what value one or more input variables in a model will assume, we also 
cannot say with certainty what value the dependent variable will assume. This uncer-
tainty associated with the value of the dependent variable introduces an element of 
risk to the decision-making problem. Specifically, if the dependent variable represents 
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some bottom-line performance measure that managers use to make decisions, and its 
value is uncertain, any decisions made on the basis of this value are based on uncertain 
(or incomplete) information. When such a decision is made, some chance exists that the 
decision will not produce the intended results. This chance, or uncertainty, represents 
an element of risk in the decision-making problem.

The term “risk” also implies the potential for loss. The fact that a decision’s outcome 
is uncertain does not mean that the decision is particularly risky. For example, when-
ever we put money into a soft drink machine, there is a chance the machine will take 
our money and not deliver the product. However, most of us would not consider this 
risk to be particularly great. From past experience, we know that the chance of not 
receiving the product is small. But even if the machine takes our money and does not 
deliver the product, most of us would not consider this to be a tremendous loss. Thus, 
the amount of risk involved in a given decision-making situation is a function of the 
uncertainty in the outcome of the decision and the magnitude of the potential loss. A 
proper assessment of the risk present in a decision-making situation should address 
both of these issues, as the examples in this chapter will demonstrate.

12.2 Why Analyze Risk?
Many spreadsheets built by business people contain estimated values for the uncertain 
input variables in their models. If a manager cannot say with certainty what value a 
particular cell in a spreadsheet will assume, this cell most likely represents a random 
variable. Ordinarily, the manager will attempt to make an informed guess about the 
values such cells will assume. The manager hopes that inserting the expected, or most 
likely, values for all the uncertain cells in a spreadsheet will provide the most likely 
value for the cell containing the bottom-line performance measure (Y). However, there 
are two problems with this type of analysis. First, if the bottom line performance mea-
sure (Y) varies in a nonlinear fashion with the uncertain cells, inserting the expected 
values for the uncertain cells does not generally give you the expected value of the per-
formance measure. Second, even if an accurate estimate for the expected value of the 
performance measure (Y) is obtained, the decision maker still has no information about 
the potential variability in the performance measure. 

For example, in analyzing a particular investment opportunity, we might deter-
mine that the expected return on a $1,000 investment is $10,000 within two years. But 
how much variability exists in the possible outcomes? If all the potential outcomes 
are scattered closely around $10,000 (say from $9,000 to $11,000), then the investment 
opportunity might still be attractive. If, on the other hand, the potential outcomes are 
scattered widely around $10,000 (say from 2$30,000 up to 1$50,000), then the invest-
ment opportunity might be unattractive. Although these two scenarios might have the 
same expected or average value, the risks involved are quite different. Thus, even if 
we can determine the expected outcome of a decision using a spreadsheet, it is just as 
important, if not more so, to consider the risk involved in the decision.

12.3 Methods of Risk Analysis
Several techniques are available to help managers analyze risk. Three of the most com-
mon are best-case/worst-case analysis, what-if analysis, and simulation. Of these meth-
ods, simulation is the most powerful and, therefore, is the technique that we will focus 
on in this chapter. Although the other techniques might not be completely effective in 
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risk analysis, they are probably used more often than simulation by most managers 
in business today. This is largely because most managers are unaware of the spread-
sheet’s ability to perform simulation and of the benefits provided by this technique. So 
before discussing simulation, let’s first briefly look at the other methods of risk analysis 
to understand their strengths and weaknesses.

12.3.1 Best-Case/Worst-Case analysis
If we don’t know what value a particular cell in a spreadsheet will assume, we could 
enter a number that we think is the most likely value for the uncertain cell. If we enter 
such numbers for all the uncertain cells in the spreadsheet, we can easily calculate 
the most likely value of the bottom-line performance measure. This is also called the 
base-case scenario. However, this scenario gives us no information about how far away 
the actual outcome might be from this expected, or most likely, value.

One simple solution to this problem is to calculate the value of the bottom-line per-
formance measure using the best-case, or most optimistic, and worst-case, or most pes-
simistic, values for the uncertain input cells. These additional scenarios show the range 
of possible values that might be assumed by the bottom-line performance measure. As 
indicated in the earlier example about the $1,000 investment, knowing the range of pos-
sible outcomes is very helpful in assessing the risk involved in different alternatives. 
However, simply knowing the best-case and worst-case outcomes tells us nothing 
about the distribution of possible values within this range, nor does it tell us the proba-
bility of either scenario occurring.

Figure 12.1 displays several probability distributions that might be associated with 
the value of a bottom-line performance measure within a given range. Each of these 
distributions describes variables that have identical ranges and similar average val-
ues. But each distribution is very different in terms of the risk it represents to the 
decision maker. The appeal of best-case/worst-case analysis is that it is easy to do. 

FIGURE 12.1

Possible 
distributions 
of performance 
measure values 
within a given 
range

Worst case Best case

Worst case Best caseWorst case Best case

Worst case Best case
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Its weakness is that it tells us nothing about the shape of the distribution associated 
with the bottom-line performance measure. As we will see later, knowing the shape of 
the distribution of the bottom-line performance measure can be critically important in 
helping us answer a number of managerial questions.

12.3.2 What-if analysis
Prior to the introduction of electronic spreadsheets in the early 1980s, the use of 
best-case/worst-case analysis was often the only feasible way for a manager to analyze 
the risk associated with a decision. This process was extremely time-consuming, error 
prone, and tedious, using only a piece of paper, pencil, and calculator to recalculate 
the performance measure of a model using different values for the uncertain inputs. 
The arrival of personal computers and electronic spreadsheets made it much easier for 
a manager to play out a large number of scenarios in addition to the best and worst 
cases—which is the essence of what-if analysis.

In what-if analysis, a manager changes the values of the uncertain input variables to 
see what happens to the bottom-line performance measure. By making a series of such 
changes, a manager can gain some insight into how sensitive the performance measure 
is to changes to the input variables. Although many managers perform this type of 
manual what-if analysis, it has three major flaws.

First, if the values selected for the independent variables are based only on the man-
ager’s judgment, the resulting sample values of the performance measure are likely to 
be biased. That is, if several uncertain variables can each assume some range of values, 
it would be difficult to ensure that the manager tests a fair, or representative, sample 
of all possible combinations of these values. To select values for the uncertain variables 
that correctly reflect their random variations, the values must be randomly selected 
from a distribution, or pool, of values that reflects the appropriate range of possible 
values, as well as the appropriate relative frequencies of these variables.

Second, hundreds or thousands of what-if scenarios might be required to create 
a valid representation of the underlying variability in the bottom-line performance 
measure. No one would want to perform these scenarios manually nor would any-
one be able to make sense of the resulting stream of numbers that would flash on the 
screen.

The third problem with what-if analysis is that the insight the manager might gain 
from playing out various scenarios is of little value when recommending a decision to 
top management. What-if analysis simply does not supply the manager with the tan-
gible evidence (facts and figures) needed to justify why a given decision was made or 
recommended. Additionally, what-if analysis does not address the problem identified 
in our earlier discussion of best-case/worst-case analysis—it does not allow us to esti-
mate the distribution of the performance measure in a formal enough manner. Thus, 
what-if analysis is a step in the right direction, but it is not quite a large enough step to 
allow managers to analyze risk effectively in the decisions they face.

12.3.3 simulation
Simulation is a technique that measures and describes various characteristics of the 
bottom-line performance measure of a model when one or more values for the inde-
pendent variables are uncertain. If any independent variables in a model are random 
variables, the dependent variable (Y) also represents a random variable. The objective 
in simulation is to describe the distribution and characteristics of the possible values of 
the bottom-line performance measure Y, given the possible values and behavior of the 
independent variables X1, X2, c, Xk.
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The idea behind simulation is similar to the notion of playing out many what-if sce-
narios. The difference is that the process of assigning values to the cells in the spread-
sheet that represent random variables is automated so that: (1) the values are assigned 
in a non-biased way, and (2) the spreadsheet user is relieved of the burden of deter-
mining these values. With simulation, we repeatedly and randomly generate sample 
values for each uncertain input variable 1X1, X2, c, Xk 2  in our model and then com-
pute the resulting value of our bottom-line performance measure (Y). We can then use 
the sample values of Y to estimate the true distribution and other characteristics of the 
performance measure Y. For example, we can use the sample observations to construct 
a frequency distribution of the performance measure, to estimate the range of values 
over which the performance measure might vary, to estimate its mean and variance, 
and to estimate the probability that the actual value of the performance measure will be 
greater than (or less than) a particular value. All these measures provide greater insight 
into the risk associated with a given decision than a single value calculated based on 
the expected values for the uncertain independent variables.

o n  u n c e r t a i n t y  a n d  D e c i s i o n  m a k i n g
“Uncertainty is the most difficult thing about decision making. In the face of 
uncertainty, some people react with paralysis, or they do exhaustive research to 
avoid making a decision. The best decision making happens when the mental 
environment is focused. In a physical environment, you focus on something phys-
ical. In tennis, that might be the spinning seams of the ball. In a mental environ-
ment, you focus on the facts at hand. That fined-tuned focus doesn’t leave room 
for fears and doubts to enter. Doubts knock at the door of our consciousness, but 
you don’t have to have them in for tea and crumpets.” —Timothy Gallwey, author 
of The Inner Game of Tennis and The Inner Game of Work.

12.4 A Corporate Health Insurance Example
The following example demonstrates the mechanics of preparing a spreadsheet model 
for risk analysis using simulation. The example presents a fairly simple model to illus-
trate the process and give a sense of the amount of effort involved. However, the pro-
cess for performing simulation is basically the same regardless of the size of the model.

Lisa Pon has just been hired as an analyst in the corporate planning department of 
Hungry Dawg Restaurants. Her first assignment is to determine how much money 
the company needs to accrue in the coming year to pay for its employees’ health 
insurance claims. Hungry Dawg is a large, growing chain of restaurants that spe-
cializes in traditional southern foods. The company has become large enough that 
it no longer buys insurance from a private insurance company. The company is 
now self-insured, meaning that it pays health insurance claims with its own money 
(although it contracts with an outside company to handle the administrative details 
of processing claims and writing checks).

The money the company uses to pay claims comes from two sources: employee 
contributions (or premiums deducted from employees’ paychecks), and company 
funds (the company must pay whatever costs are not covered by employee contri-
butions). Each employee covered by the health plan contributes $125 per month. 
However, the number of employees covered by the plan changes from month to 
month as employees are hired and fired, quit, or simply add or drop health insur-
ance coverage. A total of 18,533 employees were covered by the plan last month. 
The average monthly health claim per covered employee was $250 last month.
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An example of how most analysts would model this problem is shown in Figure 
12.2 (and in the file Fig12-2.xlsm that accompanies this book). The spreadsheet begins 
with a listing of the initial conditions and assumptions for the problem. For example, 
cell D5 indicates that 18,533 employees are currently covered by the health plan, and 
cell D6 indicates that the average monthly claim per covered employee is $250. The 
average monthly contribution per employee is $125, as shown in cell D7. The values 
in cells D5 and D6 are unlikely to stay the same for the entire year. Thus, we need to 
make some assumptions about the rate at which these values are likely to increase 
during the year. For example, we might assume that the number of covered employ-
ees will increase by about 2% per month, and that the average claim per employee 
will increase at a rate of 1% per month. These assumptions are reflected in cells F5 
and F6. The average contribution per employee is assumed to be constant over the 
coming year. 

Using the assumed rate of increase in the number of covered employees (cell F5), 
we can create formulas for cells B11 through B22 that cause the number of covered 
employees to increase by the assumed amount each month. (The details of these 
formulas are covered later.) The expected monthly employee contributions shown 
in column C are calculated as $125 multiplied by the number of employees in each 
month. We can use the assumed rate of increase in average monthly claims (cell F6) to 
create formulas for cells D11 through D22 that cause the average claim per employee 
to increase at the assumed rate. The total claims for each month (shown in column 
E) are calculated as the average claim figures in column D multiplied by the number 
of employees for each month in column B. Because the company must pay for any 
claims that are not covered by the employee contributions, the monthly company 
cost figures in column G are calculated as the total claims minus the employee con-
tributions (column E minus column C). Finally, cell G23 sums the monthly company 

FIGURE 12.2

Original corporate 
health insurance 
model with 
expected values for 
uncertain variables
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cost figures listed in column G, and shows that the company can expect to contribute 
$36,125,850 of its revenues toward paying the health insurance claims of its employ-
ees in the coming year.

12.4.1 a Critique of the Base Case moDel
Now, let’s consider the model we just described. The example model assumes that 
the number of covered employees will increase by exactly 2% each month and that the 
average claim per covered employee will increase by exactly 1% each month. Although 
these values might be reasonable approximations of what might happen, they are 
unlikely to reflect exactly what will happen. In fact, the number of employees covered 
by the health plan each month is likely to vary randomly around the average increase 
per month—that is, the number might decrease in some months and increase by more 
than 2% in others. Similarly, the average claim per covered employee might be lower 
than expected in certain months and higher than expected in others.

Both of these figures are likely to exhibit some uncertainty or random behavior, even 
if they do move in the general upward direction assumed throughout the year. So, we 
cannot say with certainty that the total cost figure of $36,125,850 is exactly what the 
company will have to contribute toward health claims in the coming year. It is simply 
a prediction of what might happen. The actual outcome could be smaller or larger than 
this estimate. Using the original model, we have no idea how much larger or smaller 
the actual result could be—nor do we have any idea of how the actual values are dis-
tributed around this estimate. We do not know if there is a 10%, 50%, or 90% chance of 
the actual total costs exceeding this estimate. To determine the variability or risk inher-
ent in the bottom-line performance measure of total company costs, we will apply the 
technique of simulation to our model.

12.5 Spreadsheet Simulation Using  
Analytic Solver Platform
To perform simulation in a spreadsheet, we must first place a random number generator
(RNG) formula in each cell that represents a random, or uncertain, independent vari-
able. Each RNG provides a sample observation from an appropriate distribution that 
represents the range and frequency of possible values for the variable. After the RNGs 
are in place, new sample values are provided automatically each time the spreadsheet 
is recalculated. We can recalculate the spreadsheet n times, where n is the desired num-
ber of replications or scenarios, and the value of the bottom-line performance measure 
will be stored after each replication. We can analyze these stored observations to gain 
insights into the behavior and characteristics of the performance measure.

The process of simulation involves a lot of work but, fortunately, the spreadsheet 
can do most of the work for us fairly easily. In particular, the spreadsheet add-in 
package Analytic Solver Platform is designed specifically to make spreadsheet sim-
ulation a simple process. Analytic Solver Platform provides the following simulation 
capabilities (among other things), which are not otherwise available while working in 
Excel: additional functions that are helpful in generating the random numbers needed 
in simulation; additional commands that are helpful in setting up and running the 
simulation; and graphical and statistical summaries of the simulation data. As we 
shall see, these capabilities make simulation a relatively easy technique to apply in 
spreadsheets.
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12.5.1 starting analytiC solver Platform
If you are running Analytic Solver Platform from a local area network (LAN) or in a 
computer lab, your instructor or LAN coordinator should give you directions on how 
to access this software. If you have installed Analytic Solver Platform on your own 
computer, the Analytic Solver Platform tab should automatically appear on the ribbon 
as shown in Figure 12.2. You can also load (or unload) Analytic Solver Platform manu-
ally from within Excel as follows:

1. Click File, Options, Add-Ins.
2. Select Excel Add-Ins, and click Go.
3. Select (or unselect) Analytic Solver Platform and click OK.
4. Click File, Options, Add-Ins.
5. Select COM Add-Ins and click Go.
6. Select (or unselect) Analytic Solver Platform Add-in and click OK.

The Analytic Solver Platform tab is shown in Figure 12.2. We will refer to the various 
icons on this tab throughout this chapter. 

12.6 Random Number Generators
As mentioned earlier, the first step in spreadsheet simulation is to place an RNG for-
mula in each cell that contains an uncertain value. Each of these formulas will generate 
(or return) a number that represents a randomly selected value from a distribution, or 
pool, of values. The distributions that these samples are taken from should be represen-
tative of the underlying pool of values expected to occur in each uncertain cell.

Analytic Solver Platform provides several “Psi” functions that can be used to cre-
ate the RNGs required for simulating a model. (The “Psi” prefix on these functions 
stands for Polymorphic Spreadsheet Interpreter, which is the technology Frontline Sys-
tems developed and uses in Analytic Solver Platform to recalculate Excel workbooks 
extremely quickly.) Figure 12.3 describes some of the most common RNGs. These func-
tions allow us to generate a variety of random numbers easily. For example, if we think 
that the behavior of an uncertain cell could be modeled as a normally distributed ran-
dom variable with a mean of 125 and standard deviation of 10, then according to Figure 
12.3 we could enter the formula 5PsiNormal(125,10) in this cell. (The arguments in this 
function could also be formulas and could refer to other cells in the spreadsheet.) After 
this formula is entered, Analytic Solver Platform will randomly generate or select a 
value from a normal distribution with a mean of 125 and standard deviation of 10 for 
this cell whenever the spreadsheet is recalculated. 

Similarly, a cell in our spreadsheet might have a 30% chance of assuming the value 
10, a 50% chance of assuming the value 20, and a 20% chance of assuming the value 30. 
As noted in Figure 12.3, we could use the formula 5PsiDiscrete({10,20,30},{0.3,0.5,0.2}) 
to model the behavior of this random variable. If we recalculated the spreadsheet 
many times, this formula would return the value 10 approximately 30% of the time, 
the value 20 approximately 50% of the time, and the value 30 approximately 20% of 
the time.

The arguments, or parameters, required by the RNG functions allow us to gener-
ate random numbers from distributions with a wide variety of shapes. Figures 12.4 
and 12.5 illustrate some example distributions. Additional information about these and 
other RNGs provided by Analytic Solver Platform is available in the Analytic Solver 
Platform user manual and in the online Help facility in Analytic Solver Platform.
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a n a l y t i c  s o l v e r  r n g  f u n c t i o n s
A listing of all the available Analytic Solver Platform RNG functions is available 
in Excel. To view this listing, follow these steps:

1. Select an empty cell in a worksheet.
2. Click Formulas, Insert Function.
3. Select the Psi Distribution function category.

FIGURE 12.3 Commonly used RNGs supplied with Analytic Solver Platform

Distribution RNG Description

Binomial PsiBinomial(n, p) Returns the number of “successes” in a sample 
of size n where each trial has a probability p of 
“success.”

Discrete PsiDiscrete 1 5x1, x2, c, xn6,  
5p1, p2, c, pn6 2  

Returns one of the n values represented by the 
xi. The value xi occurs with probability pi.

Discrete PsiDisUniform 1 5x1, x2, c, xn6 2 Returns one of the n values represented by the 
xi. Each value xi is equally likely to occur.

Poisson PsiPoisson 1λ 2 Returns a random number of events occurring 
per some unit of measure (e.g., arrivals per 
hour, defects per yard, etc.). The parameter 
λ represents the average number of events 
occurring per unit of measure.

Chi-square PsiChisquare 1λ 2 Returns a value from a chi-square distribution 
with mean λ.

Continuous PsiUniform(min, max) Returns a value in the range from a minimum 
(min) to a maximum (max). Each value in this 
range is equally likely to occur.

Exponential PsiExponential 1λ 2 Returns a value from an exponential 
distribution with mean λ. Often used to model 
the time between events or the lifetime of a 
device with a constant probability of failure.

Normal PsiNormal 1μ, σ 2 Returns a value from a normal distribution 
with mean μ and standard deviation σ.

Truncated
Normal

PsiNormal 1μ, σ,
PsiTruncate 1min, max 2 2

Same as PsiNormal except the distribution is 
truncated to the range specified by a minimum 
(min) and a maximum (max).

Triangular PsiTriangular(min, most  
likely, max)

Returns a value from a triangular distribution 
covering the range specified by a minimum 
(min) and a maximum (max). The shape of the 
distribution is then determined by the size of 
the most likely value relative to min and max.
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FIGURE 12.4

Examples of 
distributions 
associated with 
selected discrete 
RNGs

FIGURE 12.5

Examples of 
distributions 
associated 
with selected 
continuous RNGs

12.6.1 DisCrete vs. Continuous ranDom variaBles
An important distinction exists between the graphs in Figures 12.4 and 12.5. In particu-
lar, the RNGs depicted in Figure 12.4 generate discrete outcomes, whereas those repre-
sented in Figure 12.5 generate continuous outcomes. That is, some of the RNGs listed in 
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Figure 12.3 can return only a distinct set of individual values, whereas the other RNGs 
can return any value from an infinite set of values. The distinction between discrete 
and continuous random variables is very important.

For example, the number of defective tires on a new car is a discrete random variable 
because it can assume only one of five distinct values: 0, 1, 2, 3, or 4. On the other hand, 
the amount of fuel in a new car is a continuous random variable because it can assume 
any value between 0 and the maximum capacity of the fuel tank. Thus, when selecting 
an RNG for an uncertain variable in a model, it is important to consider whether the 
variable can assume discrete or continuous values.

12.7 Preparing the Model for Simulation
To apply simulation to the model for Hungry Dawg Restaurants described earlier, we 
must first select appropriate RNGs for the uncertain variables in the model. If available, 
historical data on the uncertain variables could be analyzed to determine appropriate 
RNGs for these variables. Alternatively, the historical data itself can be sampled from 
using Analytic Solver Platform’s PsiDisUniform( ), PsiResample( ), PsiSip( ), or PsiSlurp( ) 
functions. (Refer to the Analytic Solver Platform user manual for more information 
about these topics.) Analytic Solver Platform also has the ability to automatically iden-
tify probability distributions that fit your historical data reasonably well. However, if 
past data are not available, or if we have some reason to expect the future behavior of a 
variable to be significantly different from the past, then we must use judgment in select-
ing appropriate RNGs to model the random behavior of the uncertain variables.

For our example problem, assume that by analyzing historical data we determined 
that the change in the number of covered employees from one month to the next is 
expected to vary uniformly between a 3% decrease and a 7% increase. (Note that this 
should cause the average change in the number of employees to be a 2% increase, 
because 0.02 is the midpoint between 20.03 and 10.07.) Further, assume that we can 
model the average monthly claim per covered employee as a normally distributed ran-
dom variable with the mean 1μ 2  increasing by 1% per month and a standard devia-
tion 1s 2  of approximately $3. (Note that this will cause the average increase in claims 
per covered employee from one month to the next to be approximately 1%.) These 
assumptions are reflected in cells F5 through H6 at the top of Figure 12.6 (and in the file 
Fig12-6.xlsm that accompanies this book). 

To implement the formula to generate a random number of employees covered by 
the health plan, we will use the PsiUniform( ) function described earlier in Figure 12.3. 
Because the change in the number of employees from one month to the next can vary 
between a 3% decrease and a 7% increase, in general, the number of employees in the 
current month is equal to the number of employees in the previous month multiplied 
by the sum of 1 plus the percentage change. Applying this logic, we obtain the follow-
ing equation for the number of employees in a given month:

Number of employees 
in current month = Number of employees 

in previous month 3 PsiUniform(0.97,1.07)

If the PsiUniform( ) function returns the value 0.97, this formula causes the num-
ber of employees in the current month to equal 97% of the number in the previous 
month (a 3% decrease). Alternatively, if the PsiUniform( ) function returns the value 
1.07, this formula causes the number of employees in the current month to equal 107% 
of the number in the previous month (a 7% increase). All the values between these 
two extremes (between 0.97 and 1.07) are also possible and equally likely to occur. The 
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following formulas were used to create formulas that randomly generate the number of 
employees in each month in Figure 12.6:

Formula for cell B11:    5D5*PsiUniform(1 2 F5,1 1 H5)
Formula for cell B12:    5B11*PsiUniform(1 2 $F$5,1 1 $H$5)
(Copy to B13 through B22.)

Note that the terms “1 2 $F$5” and “11 $H$5” in the preceding formulas generate 
the values 0.97 and 1.07, respectively.

 To implement the formula to generate the average claims per covered employee in 
each month, we will use the PsiNormal( ) function described earlier in Figure 12.3. This 
formula requires that we supply the value of the mean 1μ 2  and standard deviation 1σ 2
of the distribution from which we want to sample. The assumed $3 standard deviation 
1σ 2  for the average monthly claim, shown in cell H6 in Figure 12.6, is constant from 
month to month. Thus, the only remaining problem is to determine the proper mean 
value 1μ 2  for each month.

FIGURE 12.6

Modified corporate 
health insurance 
model with 
RNGs replacing 
expected values for 
uncertain variables

Key Cell Formulas

Cell Formula Copied to

B11B11 5D5*PsiUniform(12F5,11H5) --
B12 5B11*PsiUniform(12$F$5,11$H$5) B13:B22
C11 5$D$7*B11 C12:C22
D11 5PsiNormal($D$6*(11$F$6)^A11,$H$6) D12:D22
E11 5D11*B11 E12:E22
G11 5E112C11 G12:G22
G23 5SUM(G11:G22)  --
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In this case, the mean for any given month should be 1% larger than the mean in the 
previous month. For example, the mean for month 1 is:

Mean in month 1 5 1original mean 2 3 1.01

and the mean for month 2 is:

Mean in month 2 5 1mean in month 1 2 3 1.01 

If we substitute the previous definition of the mean in month 1 into the previous 
equation, we obtain:

Mean in month 2 5 1original mean 2 3 11.01 2 2

Similarly, the mean in month 3 is:

Mean in month 3 5 1mean in month 2 2  3 1.01 5 1original mean 2 3 11.01 2 3

So in general, the mean 1μ 2  for month n is:

Mean in month n 5 1original mean 2 3 11.01 2n

Thus, to generate the average claim per covered employee in each month, we use the 
following formula:

Formula for cell D11:    5PsiNormal($D$6*(1 1 $F$6)^A11, $H$6)
(Copy to D12 through D22.)

The term “$D$6*(1 1 $F$6)^A11” in this formula implements the general definition 
of the mean (µ) in month n.

After entering the appropriate RNGs, each time we press the recalculate key (the 
function key [F9]), the RNGs automatically select new values for all the cells in the 
spreadsheet that represent uncertain (or random) variables. Similarly, with each recal-
culation, a new value for the bottom-line performance measure (total company cost) 
appears in cell G23. Thus, by pressing the recalculate key several times, we can observe 
representative values of the company’s total cost for health claims. This also helps to 
verify that we implemented the RNGs correctly and that they are generating appropri-
ate values for each uncertain cell.

12.7.1 alternate rng entry
Analytic Solver Platform also offers an alternate way of entering RNGs in spreadsheet 
models. To see how this works, follow these steps:

1. Select cell J12 (or any other empty cell in the worksheet).
2. Click the Distributions icon on the Analytic Solver Platform ribbon.
3. Click the Common icon, then the Normal icon.

The dialog box shown in Figure 12.7 appears showing the shape of the selected dis-
tribution (in this case, a normal probability distribution) and also allowing you to vary 
the value of the various parameters (in this case, the values for the mean and standard 
deviation parameters were changed to 250 and 3, respectively). The Formula property 
in this dialog box shows you the Psi function required to implement the RNG for the 
displayed probability distribution. If you click the Save button, Analytic Solver Plat-
form then automatically implements in your worksheet the appropriate formula for 
this RNG. While this is a very useful feature of Analytic Solver Platform, the RNG for-
mula created by Analytic Solver Platform often requires some manual editing to make 
it work correctly with the rest of the model you are building; particularly if you intend 

47412_ch12_ptg01_635-720.indd   647 08/11/16   1:32 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



648 Chapter 12 Introduction to Simulation Using Analytic Solver Platform 

to copy this RNG formula to other cells in your workbook. Double-clicking any cell 
containing a Psi distribution function also launches a dialog box similar to the one 
shown in Figure 12.7 but corresponding to the appropriate probability distribution. 

FIGURE 12.7

Analytic Solver 
Platform’s 
Uncertain Variable 
dialog box

f i t t i n g  a  D i s t r i b u t i o n  t o  s a m p l e  D a t a
Note that clicking the Fit icon found within the Tools group on the Analytic Solver 
Platform tab launches the Fit Options dialog box shown in Figure 12.8. If you 
have historical data for any of the random variables in your model, you can use 
this dialog box to instruct Analytic Solver Platform to automatically identify and 
suggest appropriate probability distributions for your data.

FIGURE 12.8

Analytic Solver 
Platform’s Fit 
Options dialog
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12.8 Running the Simulation
The next step in performing the simulation involves recalculating the spreadsheet sev-
eral hundred or several thousand times and recording the resulting values generated 
for the output cell(s), or bottom-line performance measure(s). Fortunately, Analytic 
Solver Platform can do this for us very easily if we indicate: (1) which output cell(s) in 
the spreadsheet we want it to track, and (2) how many times we want it to replicate the 
model (or how many trials we want it to perform). 

12.8.1 seleCting the outPut Cells to traCk
We can use Analytic Solver Platform’s Results, Output, In Cell command to indicate 
the output cell (or cells) that we want Analytic Solver Platform to track during the sim-
ulation. In the current example, cell G23 represents the output cell we want Analytic 
Solver Platform to track. To indicate this follow these steps:

1. Click cell G23.
2. Click the Results icon on the Analytic Solver Platform menu.
3. Click the “Output” option.
4. Click the “In Cell” option.

If you now look at the formula in cell G23, as shown in Figure 12.9, you will observe 
that it has been changed to:

Formula for cell G23:    5SUM(G11:G22) 1 PsiOutput( )

Clicking Analytic Solver Platform’s Results, Output, In Cell command with cell G23 
selected caused the PsiOutput( ) function to be added to the original formula in cell G23. 

FIGURE 12.9 Selecting the output cell to track
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This is how Analytic Solver Platform identifies output cells for our model. If you  prefer, 
you can also manually add the PsiOutput( ) function to the contents of any numeric cell 
in your workbook to designate it as an output cell to Analytic SolverPlatform. Alterna-
tively, in any empty cell in the worksheet, we could enter the formula 5PsiOutput(G23) 
and Analytic Solver Platform would then know that cell G23 is an output cell. (This is 
also what happens if you choose the “Referred Cell” option rather than the “In Cell” 
option when using the Results, Output command.) 

12.8.2 seleCting the numBer of rePliCations
If we click the Options icon on the Analytic Solver Platform menu shown in Figure 
12.9, the Analytic Solver Platform Options dialog box shown in Figure 12.10 appears. 
This dialog box allows you to control several aspects of the simulation analysis. The 
Trials per Simulation option allows you to specify the number of trials (or replications) 
of your model Analytic Solver Platform will generate when performing a simulation. 
All the examples in this book will use 5,000 trials per simulation. 

FIGURE 12.10

The Analytic Solver 
Platform Options 
dialog box

You might wonder why we selected 5,000 trials. Why not 1,000, or 10,000? Unfortu-
nately, there is no easy answer to this question. Remember that the goal in simulation 
is to estimate various characteristics about the bottom-line performance measure(s) 
under consideration. For example, we might want to estimate the mean value of the 
performance measure and the shape of its probability distribution. However, a dif-
ferent value of the bottom-line performance measure occurs each time we manually 
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recalculate the model in Figure 12.9. Thus, there is an infinite number of possibilities—
or an infinite population—of total company cost values associated with this model. 

We cannot analyze all of these infinite possibilities. But by taking a large enough 
sample from this infinite population, we can make reasonably accurate estimates 
about the characteristics of the underlying infinite population of values. The larger 
the sample we take (i.e., the more replications we do), the more accurate our final 
results will be. Although Analytic Solver Platform is extremely fast, performing many 
replications takes time (especially for large models), so we must make a trade-off in 
terms of estimation accuracy versus convenience. Thus, there is no simple answer 
to the question of how many replications to perform, but, as a bare minimum you 
should always perform at least 1,000 replications, and more as time permits or accu-
racy demands.

o n  t h e  m a x i m u m  n u m b e r  o f  t r i a l s
The educational version of Analytic Solver Platform allows for 10,000 trials per 
simulation. The commercial version of this product removes this restriction and 
allows for as many trials as you desire.

12.8.3 seleCting What gets DisPlayeD  
on the Worksheet
When Analytic Solver Platform carries out our simulation it generates 5,000 replica-
tions or trials of our model. So for each Psi distribution and Psi output cell, Analytic 
Solver Platform will compute and store 5,000 values; but it can display only one value 
in any particular cell. So which of the 5,000 values do we want it to display? Or might 
we prefer Analytic Solver Platform to display the mean (average) of the 5,000 values? 
Our answers to these questions can be communicated to Analytic Solver Platform via 
the “Value to Display” setting on the Analytic Solver Platform Options dialog box 
shown earlier in Figure 12.10 (or via the trial display counter immediately below the 
“Publish” icon in the Tools section of the Analytic Solver Platform ribbon earlier shown 
in Figure 12.9). Using this option we can instruct Analytic Solver Platform to display 
the value of one particular trial (the default setting) or have it display the mean of the 
sample of our replications. 

It is important to note that if you select the sample mean option, Analytic Solver 
Platform returns the sample mean for each Psi distribution cell and the resulting com-
puted values for any Psi output cells. These computed values may or may not be the 
mean value of the Psi output cells depending on the nature of the functional relation-
ship between the Psi distribution cells and the Psi output cells. 

It is also important to note that if you ask Analytic Solver Platform to display the 
values associated with one particular trial, the numbers displayed on the worksheet 
represent one random replication of your model that is no more special or important 
than any of the other replications in the simulation. Of course, any one random trial 
might be very unrepresentative of the typical values for the cells in the worksheet. As 
mentioned earlier, what we are really interested in is the distribution of outcomes asso-
ciated with our output cells. As we will see, Analytic Solver Platform offers a very ele-
gant yet simple way to look at and answer questions about the distribution of outcomes 
associated with the output cells in a spreadsheet model. 
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12.8.4 running the simulation
Having identified the output cells to track and the number of replications to perform, 
we now need to instruct Analytic Solver Platform to perform or run the simulation. 
This can be done in three different ways. The most direct approach is to simply dou-
ble-click an output cell containing a PsiOutput( ) function, such as cell G23 in the cur-
rent example. This will cause Analytic Solver Platform to run a simulation (if one has 
not already been run) and display a dialog box containing simulation results for the cell. 
Alternatively, the Simulate dropdown on the Analytic Solver Platform tab has options 
for “Interactive” and “Run Once.” The “Run Once” option does just that—it runs one 
simulation consisting of the currently specified number of trials. Finally, you can select 
the “Interactive” option—or simply click the Simulate icon (that looks like a light bulb) 
on the Analytic Solver Platform tab. When the Simulate icon is on (or the light bulb is 
illuminated) Analytic Solver Platform is in interactive simulation mode. In this mode, 
anytime you make a change to your workbook that requires the spreadsheet to be recal-
culated (or manually recalculate the spreadsheet by pressing the [F9] key), Analytic 
Solver Platform performs a complete simulation of your model—generating however 
many trials you specified per simulation in the Analytic Solver Platform Options dia-
log box in Figure 12.10. So while in interactive simulation mode, manually recalculat-
ing your workbook may actually cause your model to be replicated 5,000 times. If this 
sounds like a lot of computational work, it is. However, if you use Analytic Solver Plat-
form’s internal spreadsheet interpreter (by choosing the “PSI Interpreter” option in the 
Analytic Solver Platform Options dialog box shown earlier in Figure 12.10), these trials 
will usually be executed very quickly. The first time Analytic Solver Platform performs 
a simulation for a given workbook it must parse or interpret the formulas in the spread-
sheet, which sometimes takes a few seconds. However, after this is accomplished once, 
Analytic Solver Platform performs future simulations with impressive speed. 

12.9 Data Analysis
Recall that the objective of performing a simulation is to estimate various character-
istics of the outputs or bottom-line performance measures that are influenced by 
uncertainty in some or all of the input variables. As mentioned above, if you simply 
double-click any of the output cells in your model (identified using the PsiOutput( ) 
function)  Analytic Solver Platform opens a dialog box that allows you to summarize 
the output data for that cell in a variety of ways. Figure 12.11 shows the Analytic Solver 
Platform simulation results dialog box, created by double-clicking cell G23 (represent-
ing the total company cost) in Figure 12.9.

12.9.1 the Best Case anD the Worst Case
As shown in Figure 12.11, the average (or mean) value for cell G23 is approximately 
$36.1 million. (If you are working through this example on a computer, the results you 
generate may be somewhat different from the results shown here because you may 
be working with a different sample of 5,000 observations.) However, decision makers 
usually want to know the best-case and worst-case scenarios to get an idea of the range 
of possible outcomes they might face. This information is available from the simulation 
results, as shown by the Minimum and Maximum values listed in Figure 12.11.

Although the average total cost value observed in the 5,000 replications is $36.1 
million, in one case the total cost is approximately $27.7 million (representing the 
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minimum or best case) and in another case the total cost is approximately $43.7 mil-
lion (representing the maximum or worst case). These figures should give the decision 
maker a good idea about the range of possible cost values that might occur. Note that 
these values might be difficult to determine manually (without simulation) in a com-
plex model with many uncertain independent variables.

12.9.2 the frequenCy DistriBution  
of the outPut Cells
The best- and worst-case scenarios are the most extreme outcomes, and might not be 
likely to occur. To determine the likelihood of these outcomes requires that we know 
something about the shape of the distribution of our bottom-line performance measure. 
Figure 12.11 provides a frequency distribution graph summarizing the approximate 
shape of the probability distribution associated with the output cell tracked by Ana-
lytic Solver Platform during the simulation. In this case the shape of the distribution 
associated with the total cost variable is somewhat bell-shaped, with a maximum value 
around $44 million and a minimum value around $28 million. Thus, we now have a 
clear idea of the shape of the distribution associated with our bottom-line performance 
measure—one of the goals in simulation. 

In Figure 12.12, a likelihood value of 95% (input as 95) was entered in the box at 
the top of the frequency chart causing Analytic Solver Platform to identify the lower- 
and upper-cutoff values containing 95% of the outcomes from our simulation. (You can 
also click and drag these corresponding vertical lines in the graph to adjust them as 
desired.) These cutoff values indicate that approximately 95% of the total company cost 
values for cell G23 fell between $32 million and $41 million. 

FIGURE 12.11 Summary Histogram and Statistics for the simulation trials
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In this example, cell G23 (representing total company cost) is the only output cell that 
we identified (via the PsiOutput( ) function as discussed in Section 12.8.1). However, it 
is important to note that if we tracked more than one output cell during the simulation 
(using multiple PsiOutput( ) functions), we could display summary statistics and fre-
quency charts of the values occurring in these other output cells in a similar manner.

12.9.3 the Cumulative DistriBution  
of the outPut Cells
At times, we might want to view a graph of the cumulative probability distribution 
associated with one of the output cells tracked during a simulation. For example, sup-
pose that the chief financial officer (CFO) for Hungry Dawg would rather accrue an 
excess amount of money to pay health claims than not accrue enough money. The CFO 
might want to know what amount the company should accrue so that there is only a 
10% chance of coming up short of funds at the end of the year. So, how much money 
would you recommend be accrued?

Figure 12.13 shows a graph of the cumulative probability distribution of the values 
that occurred in cell G23 during the simulation. This graph could help us ascertain and 
explain the answer to the preceding question. 

This graph displays the probability of the selected output cell taking on a value 
smaller than each value on the X-axis. For example, this graph indicates that approx-
imately a 20% chance exists of the output cell assuming a value smaller than approx-
imately $34 million. Similarly, this graph indicates that roughly an 80% chance exists 
of total costs being less than approximately $38 million (or a 20% chance of total costs 
exceeding approximately $38 million). Thus, from this graph, we would estimate 
that roughly a 10% chance exists of the company’s costs exceeding approximately 
$39 million.

FIGURE 12.12 Frequency distribution of the sampled total company costs
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12.9.4 oBtaining other Cumulative ProBaBilities
We can also answer the CFO’s question from information in the Percentiles tab shown 
in Figure 12.14. This window reveals a number of percentile values for the output cell 
G23. For example, the 75th percentile of the values generated for the output cell is $37.6 
million—or 75% of the 5,000 values generated for cell G23 are less than or equal to this 

FIGURE 12.13 Cumulative frequency distribution of sampled total company costs

FIGURE 12.14 Percentiles of the distribution of possible total company costs
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value. Similarly, the 90th percentile of the distribution of values is $39.2 million. Thus, 
based on these results, if the company accrues $39 million, we would expect that only 
about a 10% chance exists of the actual company costs exceeding this amount. 

The ability to perform this type of analysis highlights the power and value of sim-
ulation and Analytic Solver Platform. For example, how could we have answered the 
CFO’s question about how much money to accrue using best-case/worst-case analysis 
or what-if analysis? The fact is we could not answer the question with any degree of 
accuracy without using simulation.

12.9.5 sensitivity analysis
At times, you may be interested in examining how sensitive the simulation output 
results are to various uncertain input cells in the model. This helps us determine which 
uncertain input cells are most influential in affecting the bottom line output perfor-
mance measure in the model. Such information can help direct our efforts to ensure 
that the most influential input cells are modeled accurately. In some cases, it can also 
help managers control (or reduce the variability of) the output variable by taking steps 
to reduce the variability in the most influential input variables.

Figure 12.15 shows how a Sensitivity chart identifies and summarizes the uncertain 
input cells in our model that are most significantly correlated (linearly) with the total 
company cost values generated for cell G23. As this graph shows, the number of cov-
ered employees each month (in column B in our spreadsheet model) tends to have the 
largest impact on the total company cost. 

FIGURE 12.15

Sensitivity chart 
of the simulation 
results
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12.10 The Uncertainty of Sampling
To this point, we have used simulation to generate 5,000 observations on our bottom-line 
performance measure and then calculated various statistics to describe the characteris-
tics and behavior of the performance measure. For example, Figure 12.11 indicates that 
the mean company cost value in our sample is $36,132,353, and Figure 12.14 shows that 
a 90% chance exists of this performance measure assuming a value less than $39,204,337. 
But what if we repeat this process and generate another 5,000 observations? Would 
the sample mean for the new 5,000 observations also be exactly $36,132,353? Or would 
exactly 90% of the observations in the new sample be less than $39,204,337?

The answer to both these questions is “probably not.” The sample of 5,000 observa-
tions used in our analysis was taken from a population of values that is theoretically 
infinite in size. That is, if we had enough time and our computer had enough memory, 
we could generate an infinite number of values for our bottom-line performance mea-
sure. Theoretically, we could then analyze this infinite population of values to deter-
mine its true mean value, its true standard deviation, and the true probability of the 
performance measure being less than $39,204,337. Unfortunately, we do not have the 
time or computer resources to determine these true characteristics (or parameters) of 
the population. The best we can do is take a sample from this population and, based on 
our sample, make estimates about the true characteristics of the underlying population. 
Our estimates will differ depending on the sample we choose and the size of the sample.

So, the mean of the sample we take is probably not equal to the true mean we would 
observe if we could analyze the entire population of values for our performance mea-
sure. The sample mean we calculate is just an estimate of the true population mean. In 
our example problem, we estimated that a 90% chance exists for our output variable to 
assume a value less than $39,204,337. However, this most likely is not equal to the true 
probability we would calculate if we could analyze the entire population. Thus, there is 
some element of uncertainty surrounding the statistical estimates resulting from simu-
lation because we are using a sample to make inferences about the population. Fortu-
nately, there are ways of measuring and describing the amount of uncertainty present in 
some of the estimates we make about the population under study. This is typically done 
by constructing confidence intervals for the population parameters being estimated.

12.10.1 ConstruCting a ConfiDenCe interval  
for the true PoPulation mean
Constructing a confidence interval for the true population mean is a simple process. 
If y and s represent, respectively, the mean and standard deviation of a sample of size n 
from any population, then assuming n is sufficiently large 1n $ 30 2 , the Central Limit 
Theorem tells us that the lower and upper limits of a 95% confidence interval for the 
true mean of the population are represented by:

 95% Lower Confidence Limit 5 y 2 1.96 3
s

"n

 95% Upper Confidence Limit 5 y 1 1.96 3
s

"n

Although we can be fairly certain that the sample mean we calculate from our sample 
data is not equal to the true population mean, we can be 95% confident that the true mean 
of the population falls between the lower and upper limits given previously. If we want a 
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90% or 99% confidence interval, we must change the value 1.96 in the previous equations 
to 1.645 or 2.575, respectively. The values 1.645, 1.96, and 2.575 represent, respectively, 
the 95, 97.5, and 99.5 percentiles of the standard normal distribution. Any percentile of 
the standard normal distribution can be obtained using Excel’s NORMSINV( ) function. 

For our example, the lower and upper limits of a 95% confidence interval for the true 
mean of the population of total company cost values can be calculated easily, as shown 
in cells B9 and B10 in Figure 12.16. 

Formula for cell B9:      5B4 2 NORMSINV(1 2 B7/2)*B5/SQRT(B6)
Formula for cell B10:    5B4 1 NORMSINV(1 2 B7/2)*B5/SQRT(B6)

Thus, we can be 95% confident that the true mean of the population of total com-
pany cost values falls somewhere in the interval from $36,069,006 to $36,195,700.

Notice that the sample mean and standard deviation shown in cells B4 and B5 of 
Figure 12.16 can be obtained directly from the simulation results using two of Analytic 
Solver Platform’s Psi statistics functions. 

Formula for cell B4:    5PsiMean(‘Health Claims Model’!G23)
Formula for cell B5:    5PsiStdDev(‘Health Claims Model’!G23)

These formulas, respectively, return the mean and standard deviation of the 5,000 
numbers that Analytic Solver Platform has stored for cell G23. The Statistic, Measure, 
and Range icons on Analytic Solver Platform’s Results dropdown provide galleries of 
several other Psi functions that can be used in a similar way to calculate and report sim-
ulation results directly on a spreadsheet. These functions can be extremely helpful in 
summarizing simulation results. However, it is also important to note that these func-
tions can work only while Analytic Solver Platform is in interactive simulation mode. 

FIGURE 12.16

Confidence intervals 
for the population 
mean and population 
proportion

Key Cell Formulas

Cell Formula Copied to

B4 5PsiMean(‘Health Claims Model’!G23) --
B5 5PsiStdDev(‘Health Claims Model’!G23) --
B9 5B42NORMSINV(12B7/2)*B5/SQRT(B6) --
B10 5B41NORMSINV(12B7/2)*B5/SQRT(B6) --
B13 5B122NORMSINV(12B7/2)*SQRT(B12*(12B12)/B6) --
B14 5B121NORMSINV(12B7/2)*SQRT(B12*(12B12)/B6) --
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12.10.2 ConstruCting a ConfiDenCe interval  
for a PoPulation ProPortion
In our example, we estimated that 90% of the population of total company cost values 
fall below $39,204,337 based on our sample of 5,000 observations. However, if we could 
evaluate the entire population of total cost values, we might find that only 80% of these 
values fall below $39,204,337. Or, we might find that 99% of the entire population falls 
below this mark. It would be helpful to determine how accurate the 90% value is. So, 
at times, we might want to construct a confidence interval for the true proportion of a 
population that falls below (or above) some value, for example Yp.

To see how this is done, let p denote the proportion of observations in a sample of 
size n that falls below some value Yp. Assuming that n is sufficiently large 1n $ 30 2 ,
the Central Limit Theorem tells us that the lower and upper limits of a 95% confidence 
interval for the true proportion of the population falling below Yp are represented by:

 95% Lower Confidence Limit 5 p 2 1.96 3 Å
p 11 2 p 2

n

 95% Upper Confidence Limit 5 p 1 1.96 3 Å
p 11 2 p 2

n

Although we can be fairly certain that the proportion of observations falling below Yp

in our sample is not equal to the true proportion of the population falling below Yp,
we can be 95% confident that the true proportion of the population falling below Yp is 
contained within the lower and upper limits given previously. Again, if we want a 90% 
or 99% confidence interval, we must change the value 1.96 in the previous equations to 
1.645 or 2.575, respectively.

Using these formulas, we can calculate the lower and upper limits of a 95% confi-
dence interval for the true proportion of the population falling below $39,204,337. From 
our simulation results we know that 90% of the observations in our sample are less 
than $39,204,337. Thus, our estimated value of p is 0.90. This value was entered into 
cell B12 in Figure 12.16. The lower and upper limits of a 95% confidence interval for the 
true proportion of the population falling below $39,204,337 are calculated in cells B13 
and B14 of Figure 12.16 using the following formulas:

Formula for cell B13:  5B12 2 NORMSINV(1 2 B7/2)*SQRT(B12*(1 2 B12)/B6)
Formula for cell B14:  5B12 1 NORMSINV(1 2 B7/2)*SQRT(B12*(1 2 B12)/B6)

 We can be 95% confident that the true proportion of the population of total cost val-
ues falling below $39,204,337 is between 0.892 and 0.908. Because this interval is fairly 
tight around the value 0.90, we can be reasonably certain that the $39.0 million figure 
quoted to the CFO has approximately a 10% chance of being exceeded.

12.10.3 samPle sizes anD ConfiDenCe  
interval WiDths
The formulas for the confidence intervals in the previous section depend on the num-
ber of replications (n) in the simulation. As the number of replications (n) increases, the 
width of the confidence interval decreases (or becomes more precise). Thus, for a given 
level of confidence (e.g., 95%), the only way to make the upper and lower limits of the 
interval closer together (or tighter) is to make n larger—that is, use a larger sample size. 
A larger sample should provide more information about the population and, therefore, 
allow us to be more accurate in estimating the true parameters of the population.
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12.11 Interactive Simulation
One of Analytic Solver Platform’s amazing capabilities is its ability to perform interac-
tive simulation. As mentioned earlier, when the Simulate icon on the Analytic Solver 
Platform tab is on (or the light bulb is illuminated), Analytic Solver Platform is in inter-
active simulation mode. (You can turn interactive simulation mode on or off simply by 
clicking the Simulate icon.) In interactive simulation mode, anytime you make a change 
to your workbook that requires the spreadsheet to be recalculated (or manually recal-
culate the spreadsheet by pressing the [F9] key), Analytic Solver Platform performs a 
complete simulation of your model. 

To understand why this is useful, recall that Figures 12.13 and 12.14 suggest there 
is approximately a 90% chance of the total company cost being less than $39 million—
or, equivalently, approximately a 10% chance of the total company cost exceeding 
$39 million. Now suppose the executives at Hungry Dawg Restaurants feel that this 
exposes the company to too much risk. In particular, they would like there to be only 
a 2% chance of the total company cost exceeding $39 million. One way to reduce the 
costs the company might incur is by increasing the amount of money employees must 
contribute each month—currently set at $125 per employee each month. Essentially, 
this shifts some of the costs for the health insurance plan from the company to its 
employees. But how much should the amount contributed per employee each month 
increase in order for there to only be a 2% chance of the company’s liability exceeding 
$39 million? 

We can answer this question easily using Analytic Solver Platform in interactive 
simulation mode as shown in Figure 12.17 (and the file Fig12-17.xlsm that accompanies 
this book). In interactive simulation mode (i.e., when the Simulate icon is illuminated) 
if you change the amount contributed per employee each month (in cell D7), Analytic 
Solver Platform instantly performs 5,000 replications of the model and summarizes the 
results in the frequency chart. So an analyst can quickly see how changes to the amount 
the company charges its employees for health insurance coverage affects the distribu-
tion of costs for which the company is liable. In this case, we can quickly determine that 
if employees pay $132 per month for health insurance coverage there is only about a 
2% chance that the company’s liability will exceed $39 million. 

In Figure 12.17, also note the use of the PsiTarget( ) function in cell G27 that 
computes the probability of the total company cost (in cell G23) exceeding $39 million 
(in cell G25).

Formula for cell G27:    51-PsiTarget(G23,G25)

In general, PsiTarget(cell, target value) returns the cumulative probability of a speci-
fied distribution or output cell being less than or equal to a given target value. In the case 
shown in Figure 12.17, there is a 97.94% chance of the total company cost being less 
than $39 million. So there is a 12 0.9794 5 0.0206 probability of the total company cost 
exceeding $39 million.

t h e  P s i t a r g e t (  )  f u n c t i o n
The function PsiTarget(cell, target value) returns the cumulative probability of a 
specified distribution or output cell being less than or equal to a given target value. 
This function is very useful in calculating various probabilities associated with 
simulation results.
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12.12 The Benefits of Simulation
So what have we accomplished through simulation? Are we really better off than if we 
had just used the results of the original model proposed in Figure 12.2? The estimated 
value for the expected total cost to the company in Figure 12.2 is comparable to that 
obtained through simulation (although this might not always be the case). But remem-
ber that the goal of modeling is to give us greater insight into a problem to help us 
make more informed decisions.

The results of our simulation do give us greater insight into the problem. In partic-
ular, we now have some idea of the best- and worst-case total cost outcomes for the 
company. We have a better idea of the distribution and variability of the possible out-
comes, and a more precise idea about where the mean of the distribution is located. We 
also now have a way of determining how likely it is for the actual outcome to fall above 
or below some value. Thus, in addition to our greater insight and understanding of the 
problem, we also have solid empirical evidence (the facts and figures) to support our 
recommendations.

FIGURE 12.17 Using interactive simulation

Key Cell Formulas

Cell Formula Copied to

G27 512PsiTarget(G23,G25) --
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a p p l y i n g  s i m u l a t i o n  i n  P e r s o n a l 

f i n a n c i a l  P l a n n i n g
A prescient article in the Wall Street Journal highlighted the importance of simu-
lation in evaluating risk in personal financial investments. Although any plan-
ning is better than nothing, the article notes that traditional spreadsheet models 
spit out answers that create the illusion that the bottom-line number is a certainty 
when, in fact, it isn’t. This causes many people to unknowingly take on a lot more 
risk than they realize. As a result, most financial planning companies are now 
using simulation to help retirees understand how much income they can afford 
without outliving their assets or depleting funds they want to leave to heirs. In 
the face of widely divergent investment outcomes that can arise, the number 
crunching involved in simulation can bring some peace of mind. Using simula-
tion, a financial advisor might determine there is a 95% probability that a client’s 
money would last until age 110. That sort of information can relieve a lot of stress 
and make the client’s decision about when to retire a much easier one to make 
from a financial perspective.

Adapted from “Monte Carlo Financial Simulator May Be A Good Bet for Planning,” Wall Street Journal, 
Section C1, April 27, 2000 by Karen Hube. 

12.13 Additional Uses of Simulation
Earlier, we indicated that simulation is a technique that describes the behavior or char-
acteristics of a bottom-line performance measure. The next several examples show how 
describing the behavior of a performance measure gives a manager a useful tool in 
determining the optimal value for one or more controllable parameters in a decision 
problem. These examples reinforce the mechanics of using simulation and also demon-
strate some additional capabilities of Analytic Solver Platform.

12.14 A Reservation Management Example
Businesses that allow customers to make reservations for services (such as airlines, 
hotels, and car rental companies) know that some percentage of the reservations made 
will not be used for one reason or another, leaving these companies with a difficult 
decision problem. If they accept reservations for only the number of customers that 
can actually be served, then a portion of the company’s assets will be underutilized 
when some customers with reservations fail to arrive. On the other hand, if they over-
book (or accept more reservations than can be handled), then at times, more custom-
ers will arrive than can actually be served. This typically results in additional financial 
costs to the company and often generates ill-will among those customers who cannot 
be served. The following example illustrates how simulation might be used to help a 
company determine the optimal number of reservations to accept.

Marty Ford is an operations analyst for Piedmont Commuter Airlines (PCA). 
Recently, Marty was asked to make a recommendation on how many reservations 
PCA should book on Flight 343—a flight from a small regional airport in New 
England to a major hub at Boston’s Logan airport. The plane used on Flight 343 is 
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a small twin-engine turbo-prop with 19 passenger seats available. PCA sells nonre-
fundable tickets for Flight 343 for $150 per seat. 

Industry statistics show that for every ticket sold for a commuter flight, a 0.10 
probability exists that the ticket holder will not be on the flight. Thus, if PCA sells 
19 tickets for this flight, there is a fairly good chance that one or more seats on the 
plane will be empty. Of course, empty seats represent lost potential revenue to the 
company. On the other hand, if PCA overbooks this flight and more than 19 passen-
gers show up, some of them will have to be bumped to a later flight.

To compensate for the inconvenience of being bumped, PCA gives these pas-
sengers vouchers for a free meal, a free flight at a later date, and sometimes 
also pays for them to stay overnight in a hotel near the airport. PCA pays an 
average of $325 (including the cost of lost goodwill) for each passenger that gets 
bumped. Marty wants to determine if PCA can increase profits by overbook-
ing this flight and, if so, how many reservations should be accepted to produce 
the maximum average profit. To assist in the analysis, Marty analyzed market 
research data for this flight that reveals the following probability distribution of 
demand for this flight:

Seats  
Demanded 14 15 16 17 18 19 20 21 22 23 24 25

Probability 0.03 0.05 0.07 0.09 0.11 0.15 0.18 0.14 0.08 0.05 0.03 0.02

12.14.1 imPlementing the moDel
A spreadsheet model for this problem is shown in Figure 12.18 (and in the file Fig12-18 
.xlsm that accompanies this book). The spreadsheet begins by listing the relevant data 
from the problem, including the number of seats available on the plane, the price PCA 
charges for each seat, the probability of a no-show (a ticketed passenger not arriving 
in time for the flight), the cost of bumping passengers, and the number of reservations 
that will be accepted. 

The distribution of demand for seats on the flight is summarized in columns E and 
F. Using this data, the number of seats demanded for a particular flight is randomly 
generated in cell C10 as follows:

Formula for cell C10:    5PsiDiscrete(E5:E16, F5:F16)

The number of tickets actually sold for a flight cannot exceed the number of reserva-
tions the company is willing to accept. Thus, the number of tickets sold is calculated in 
cell C11 as follows:

Formula for cell C11:    5MIN(C10,C8)

Because each ticketed passenger has a 0.10 probability of being a no-show, a 0.9 
probability exists that each ticketed passenger will arrive in time to board the flight. 
The PsiBinomial( ) function (described earlier in Figure 12.3) is used in cell C12 to 
model the number of ticketed passengers for the flight:

Formula for cell C12:    5PsiBinomial(C11,1 2 C6)

Cell C14 represents the ticket revenue PCA earns based on the number of tickets it 
sells for each flight. The formula for this cell is:

Formula for cell C14:    5C11*C5
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Cell C15 computes the costs PCA incurs when passengers must be bumped (i.e., 
when the number of passengers wanting to board exceeds the number of available 
seats).

Formula for cell C15: 5MAX(C12 2 C4,0)*C7

Finally, cell C16 computes the marginal profit PCA earns on each flight. This is also 
the output cell to be tracked when simulating this model.

Formula for cell C16:    5C14 2 C15 1 PsiOutput( )

12.14.2 Details for multiPle simulations
Marty wants to determine the number of reservations to accept that, on average, will 
result in the highest marginal profit. To do so, he needs to use the PsiSimParam( ) func-
tion to simulate what would happen if 19, 20, 21, 22, 23, 24, and 25 reservations are 
accepted. Cell C8 contains the following formula:

Formula for cell C8:    5PsiSimParam({19,20,21,22,23,24,25})

This formula, along with the “Simulations to Run” setting shown in the Analytic Solver 
Platform Options dialog box in Figure 12.19, instructs Analytic Solver Platform to use 
seven different values in cell C8 and simulate what will happen with each value.

FIGURE 12.18

Spreadsheet model 
for the overbooking 
problem

Key Cell Formulas

Cell Formula Copied to

C8 5PsiSimParam({19,20,21,22,23,24,25}) --
C10 5PsiDiscrete(E5:E16, F5:F16) --
C11 5MIN(C10,C8) --
C12 5PsiBinomial(C11,1–C6) --
C14 5C11*C5 --
C15 5MAX(C122C4,0)*C7 --
C16 5C142C151PsiOutput( ) --
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When comparing different values for one or more decision variables, it is best if each 
possible value is evaluated in a simulation using exactly the same series of random 
numbers. In this way, any difference in the performance of two possible solutions can 
be attributed to the decision variables’ values and not the result of a more favorable set 
of random numbers for one of the simulations. The “Sim. Random Seed” option shown 
in Figure 12.19 controls this behavior in Analytic Solver Platform. By default, Analytic 
Solver Platform will use a randomly chosen seed value to initialize its RNG when per-
forming multiple simulations using the PsiSimParam( ) function. Alternatively, you 
may override Analytic Solver Platform’s default behavior and instruct it to use a seed 
value you specify when it performs multiple simulations. Choosing your own seed 
allows you to repeat the same simulation again in the future if needed.

It is worth noting that the “Sampling Method” options shown in Figure 12.19 also have 
an impact on the accuracy of the results of a simulation run. Using the “Monte Carlo” 

FIGURE 12.19

Analytic Solver 
Platform options 
for the overbooking 
problem

47412_ch12_ptg01_635-720.indd   665 08/11/16   1:32 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



666 Chapter 12 Introduction to Simulation Using Analytic Solver Platform 

option, Analytic Solver Platform is free to select any value for a particular RNG during 
each replication of the model. For example, Analytic Solver Platform might repeatedly 
generate several very extreme (and rare!) values from the upper tail of a normal dis-
tribution. The “Latin Hypercube” option guards against this by ensuring that a fair 
representation of values is generated from the entire distribution for each RNG. As you 
might imagine, the Latin Hypercube sampling option requires a bit more work during 
each replication of the model, but it tends to generate more accurate simulation results 
in a fewer number of trials. Refer to Analytic Solver Platform’s user manual for addi-
tional information about its supported sampling methods. 

12.14.3 running the simulations
In Figure 12.18 we included the PsiOutput( ) function in our formula for cell C16 
(representing marginal profit) to indicate it is the output cell we want Analytic Solver 
Platform to track. In Figure 12.19, we indicated Analytic Solver Platform should  perform 
7 simulations (one for each value from 19 to 25 indicated by the PsiSimParam( ) func-
tion in cell C8) and run a simulation consisting of 5,000 replications for each  possible 
value for C8 (involving 35,000 replications of our model). 

12.14.4 Data analysis
Analytic Solver Platform provides a number of ways for us to look at the results of 
the seven simulations. If we double-click cell C16 (which includes the PsiOutput( ) 
function) we can look at the marginal profit results for each of the seven simulations. 
Figure 12.20 shows how Analytic Solver Platform allows us to view the statistics and 
cumulative frequency chart associated with any of the seven simulations.

FIGURE 12.20

Viewing statistics 
for any of the seven 
simulations
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By selecting the Multiple option on the dropdown list shown in Figure 12.20, we can 
also simultaneously chart the cumulative frequency distribution of the marginal profit 
values associated with each of the seven simulations as shown in Figure 12.21. 

Of course, we can also use Psi statistic functions to create a custom summary of the 
simulation results directly in a worksheet (see Figure 12.22). In the case of multiple 
simulations, note that the last argument of each Psi statistic function indicates to which 
set of simulation data the function applies. For example, the formula 5PsiMean(Mod-
el!C16,1) would return the mean marginal profit from simulation one (where 19 res-
ervations were accepted) whereas 5PsiMean(Model!C16,5) would return the mean 
marginal profit from simulation five (where 23 reservations were accepted). The data in 
Figure 12.22 make it clear that if PCA wants to maximize its expected (or average) mar-
ginal profit, it should accept 21 reservations per flight. Accepting more than 21 reserva-
tions makes it possible to achieve higher levels of profit on some flights but, on average 
(over a large number of flights), accepting more than 21 reservations would result in 
less profit for the company if the assumptions in our model are correct.

12.15 An Inventory Control Example
According to the Wall Street Journal, U.S. businesses recently had a combined inven-
tory worth $884.77 billion dollars. Because so much money is tied up in inventories, 
businesses face many important decisions regarding the management of these assets. 
Frequently asked questions regarding inventory include the following:

•	 What’s the best level of inventory for a business to maintain?
•	 When should goods be reordered (or manufactured)?
•	 How much safety stock should be held in inventory?

FIGURE 12.21

Viewing the 
cumulative 
frequency 
distribution of each 
simulation
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The study of inventory control principles is split into two distinct areas—one 
assumes that demand is known (or deterministic), and the other assumes that demand 
is random (or stochastic). If demand is known, various formulas can be derived that 
provide answers to the previous questions (an example of one such formula is given in 
the discussion of the EOQ model in chapter 8). However, when demand for a product 
is uncertain or random, answers to the previous questions cannot be expressed in terms 
of a simple formula. In these situations, the technique of simulation proves to be a use-
ful tool, as illustrated in the following example.

Laura Tanner is the owner of Millennium Computer Corporation (MCC), a retail 
computer store in Austin, Texas. Competition in retail computer sales is fierce—in 
terms of both price and service. Laura is concerned about the number of stockouts 
occurring on a popular type of computer monitor. Stockouts are very costly to the 
business because when customers cannot buy this item at MCC, they simply buy 
it from a competing store and MCC loses the sale (there are no backorders). Laura 
measures the effects of stockouts on her business in terms of service level, or the 
percentage of total demand that can be satisfied from inventory.

FIGURE 12.22

Summary of results 
from all seven 
simulations

D4 5PsiMin(Model!$C$16,B4) D5:D10
E4 5PsiPercentile(Model!$C$16,0.2,B4) E5:E10
F4 5PsiMean(Model!$C$16,B4) F5:F10
G4 5PsiPercentile(Model!$C$16,0.8,B4) G5:G10
H4 5PsiMax(Model!$C$16,B4) H5:H10

Key Cell Formulas

Cell Formula Copied to
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Laura has been following the policy of ordering 50 monitors whenever her daily 
ending inventory position (defined as ending inventory on hand plus outstanding 
orders) falls below her reorder point of 28 units. Laura places the order at the begin-
ning of the next day. For example, if the ending inventory position on day 2 is less 
than 28, Laura places the order at the beginning of day 3. If the actual time between 
order and delivery, or lead time, turns out to be 4 days, then the order arrives at the 
start of day 7. Orders are delivered at the beginning of the day and, therefore, can 
be used to satisfy demand on that day. The current level of on-hand inventory is 50 
units and no orders are pending.

MCC sells an average of six monitors per day. However, the actual number 
sold on any given day can vary. By reviewing her sales records for the past several 
months, Laura determined that the actual daily demand for this monitor is a ran-
dom variable that can be described by the following probability distribution:

Units 
Demanded 0 1 2 3 4 5 6 7 8 9 10

Probability 0.01 0.02 0.04 0.06 0.09 0.14 0.18 0.22 0.16 0.06 0.02

The manufacturer of this computer monitor is located in California. Although it 
takes an average of 4 days for MCC to receive an order from this company, Laura 
has determined that the lead time of a shipment of monitors is also a random vari-
able that can be described by the following probability distribution:

Lead Time (days) 3 4 5

Probability 0.2 0.6 0.2

One way to guard against stockouts and improve the service level is to increase the 
reorder point for the item so that more inventory is on hand to meet the demand 
occurring during the lead time. However, holding costs are associated with keeping 
more inventory on hand. Laura wants to evaluate her current ordering policy for 
this item and determine if it might be possible to improve the service level without 
increasing the average amount of inventory on hand.

12.15.1 Creating the rngs
To solve this problem, we need to build a model to represent the inventory of com-
puter monitors during an average month of 30 days. This model must account for 
the random daily demands that can occur and the random lead times encountered 
when orders are placed. First, we will consider how to create RNGs to model the 
daily demands and order lead times. The data for these variables are entered in the 
spreadsheet as shown in Figure 12.23 (and in the file Fig12-23.xlsm that accompanies 
this book). 

The order lead time and daily demand variables are both examples of general, discrete 
random variables because the possible outcomes they assume consist solely of inte-
gers, and the probabilities associated with each outcome are not equal (or not uniform). 
Thus, using the PsiDiscrete( ) function described in Figure 12.3, the RNGs for each vari-
able are:

RNG for order lead time:      =PsiDiscrete(Data!$C$7:$C$9,Data!$D$7:$D$9)
RNG for daily demand:    =PsiDiscrete(Data!$F$7:$F$17,Data!$G$7:$G$17)
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FIGURE 12.23

RNG data for 
MCC’s inventory 
problem

12.15.2 imPlementing the moDel
Now that we have a way of generating the random numbers needed in this problem, 
we can consider how the model should be built. Figure 12.24 shows the model repre-
senting 30 days of inventory activity. Notice that cells M5 and M6 have been reserved 
to represent, respectively, the reorder point and order quantity for the model.

The inventory on hand at the beginning of each day is calculated in column B in 
Figure 12.24. The beginning inventory for each day is simply the ending inventory 
from the previous day. The formulas in column B are:

Formula for cell B6:    550
Formula for cell B7:    5F6
(Copy to B8 through B35.)

Column C represents the number of units scheduled to be received each day. We 
will discuss the formulas in column C after we discuss columns H, I, and J, which relate 
to ordering and order lead times.

In column D, we use the technique described earlier to generate random daily 
demands, as:

Formula for cell D6:    5PsiDiscrete(Data!$F$7:$F$17,Data!$G$7:$G$17)
(Copy to D7 through D35.)

Because it is possible for demand to exceed the available supply, column E indicates 
how much of the daily demand can be met. If the beginning inventory (in column B) 
plus the ordered units received (in column C) is greater than or equal to the actual 
demand, then all the demand can be satisfied; otherwise, MCC can sell only as many 
units as are available. This condition is modeled as:

Formula for cell E6:    5MIN(D6,B6 1 C6)
(Copy to E7 through E35.)
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The values in column F represent the on-hand inventory at the end of each day, and 
are calculated as:

Formula for cell F6:    5B6 1 C6 2 E6
(Copy to F7 through F35.)

FIGURE 12.24

Spreadsheet for 
MCC’s inventory 
problem

Key Cell Formulas

Cell Formula Copied to

B6 550 --
B7 5F6 B8:B35
C7 5COUNTIF($J$6:J6,A7)*$M$6 C8:C35
D6 5PsiDiscrete(Data!$F$7:$F$17,Data!$G$7:$G$17) D7:D35
E6 5MIN(D6,B61C6) E7:E35
F6 5B61C62E6 F7:F35
G6 5F6 --
G7 5G62E71IF(H651,$M$6,0) G8:G35
H6 5IF(G6,$M$5,1,0) H7:H35
I6 5IF(H650,0,PsiDiscrete(Data!$C$7:$C$9,Data!$D$7:$D$9)) I7:I35
J6 5IF(I650,0,A6111I6) J7:J35
M9 5SUM(E6:E35)/SUM(D6:D35) 1 PsiOutput( ) --
M10 5AVERAGE(B6:B35) 1 PsiOutput( ) --
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To determine whether to place an order, we first must calculate the inventory posi-
tion, which was defined earlier as the ending inventory plus any outstanding orders. 
This is implemented in column G as:

Formula for cell G6:    5F6
Formula for cell G7:    5G6 2 E7 1 IF(H651,$M$6,0)
(Copy to G8 through G35.)

Column H indicates if an order should be placed based on the inventory position 
and reorder point, as:

Formula for cell H6:    5IF(G6<$M$5,1,0)
(Copy to H7 through H35.)

If an order is placed, then we must generate the random lead time required to receive 
the order. This is done in column I as:

Formula for cell I6:    5IF(H650,0,PsiDiscrete(Data!$C$7:$C$9,
(Copy to I7 through I35.)       Data!$D$7:$D$9))

This formula returns the value 0 if no order was placed (if H650); otherwise, it 
returns a random lead time value (if H651).

If an order is placed, column J indicates the day on which the order will be received 
based on its random lead time in column I. This is done as:

Formula for cell J6:    5IF(I650,0, A6 1 1 1 I6)
(Copy to J7 through J35.)

The values in column C are coordinated with those in column J. The nonzero values 
in column J indicate the days on which orders will be received. For example, cell J9 
indicates that an order will be received on day 10. The actual receipt of this order is 
reflected by the value of 50 in cell C15, which represents the receipt of an order at the 
beginning of day 10. The formula in cell C15 that achieves this is:

Formula for cell C15:    5COUNTIF($J$6:J14,A15)*$M$6

This formula counts how many times the value in cell A15 (representing day 10) 
appears as a scheduled receipt day between days 1 through 9 in column J. This rep-
resents the number of orders scheduled to be received on day 10. We then multiply this 
by the order quantity (50), given in cell M6 to determine the total units to be received 
on day 10. Thus, the values in column C are generated as:

Formula for cell C6:    50
Formula for cell C7:    5COUNTIF($J$6:J6,A7)*$M$6
(Copy to C8 through C35.)

The service level for the model is calculated in cell M9 using the values in columns 
D and E as:

Formula for cell M9:    5SUM(E6:E35)/SUM(D6:D35) 1 PsiOutput( )

Again, the service level represents the proportion of total demand that can be satis-
fied from inventory and is one of the output cells we want Analytic Solver Platform to 
track as we simulate this inventory system. The value in cell M9 indicates that in the 
scenario shown, 85.0% of the total demand is satisfied.

The average inventory level is also an output we want Analytic Solver Platform to 
track. It is calculated in cell M10 by averaging the values in column B. This is accom-
plished as follows:

Formula for cell M10:    5AVERAGE(B6:B35) 1 PsiOutput( )
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12.15.3 rePliCating the moDel
The model in Figure 12.24 indicates one possible scenario that could occur if Laura uses 
a reorder point of 28 units for the computer monitor. Figures 12.25 and 12.26 (generated 
by double-clicking cells M9 and M10, respectively) show the results of using Analytic 
Solver Platform to replicate this model 5,000 times, tracking the service level value (cell 
M9) and average inventory (cell M10) as output cells. 

Figures 12.25 and 12.26 indicate that MCC’s current reorder point (28 units) and 
order quantity (50 units) results in an average service level of approximately 96% (with 
a minimum value around 83% and a maximum value of 100%) and an average inven-
tory level of almost 26 monitors (with a minimum value around 20 and a maximum 
value near 33). 

FIGURE 12.25

Service-level results 
of 5,000 replications 
of the MCC model

FIGURE 12.26

Inventory results of 
5,000 replications of 
the MCC model

47412_ch12_ptg01_635-720.indd   673 08/11/16   1:32 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



674 Chapter 12 Introduction to Simulation Using Analytic Solver Platform 

12.15.4 oPtimizing the moDel
Now suppose Laura wants to determine a reorder point and order quantity that pro-
vides an average service level of 98% while keeping the average inventory level as low as 
possible. One way to do this is to run additional simulations at various reorder point and 
inventory level combinations trying to find the combination of settings that produce the 
desired behavior. However, as you might imagine, this could be very time-consuming. 
Fortunately, Analytic Solver Platform can solve this type of problem for us. 

Analytic Solver Platform allows us to maximize or minimize a value associated with 
some target or objective cell in a worksheet by changing the values of other cells (rep-
resenting controllable decision variables) while satisfying various constraints. How-
ever, because the worksheet contains RNGs in various cells, Analytic Solver Platform 
must simulate (or run multiple replications of) the model at each solution it considers 
to evaluate the behavior or quality of a particular solution. Although this is very com-
putationally intensive, Analytic Solver Platform’s interactive simulation abilities allow 
these computations to be done quite rapidly. 

When attempting to optimize a simulation model (also known as simulation 
optimization) we typically want to maximize or minimize the average value of (or some 
other statistic describing) the cell representing the objective or bottom-line performance 
measure. Again, this is because no single definite or certain outcome is associated with 
a particular solution in a simulation model; rather, there is a distribution of possible 
outcomes. Similarly, constraints are typically expressed as some statistical measure 
(e.g., average, percentile, standard deviation) of the constraint cell in question. So, in 
simulation optimization the goal is to automatically identify a solution (values for the 
decision variables) that causes a model of a process containing randomness (or uncer-
tainty) to behave in the most desirable way possible.

Figure 12.27 (and the file Fig12-27.xlsm that accompanies this book) shows how the 
spreadsheet was changed to find the optimal solution to MCC’s inventory problem. 
Recall that Laura wants to determine the reorder point and order quantity that will 
keep the average inventory level as low as possible while achieving an average service 
level of 98%. To do this, we added formulas in cells M13 and M14 that compute, respec-
tively, the average service level and average inventory level for the entire simulation as 
follows:

Formula for cell M13:    5PsiMean(M9)
Formula for cell M14:    5PsiMean(M10)

Let’s take a moment to make sure you understand the difference between the val-
ues in cells M9 and M13 and also between M10 and M14. In Figure 12.27, cells M9 and 
M10 are displaying, respectively, the service level and average inventory for the single
replication of the model that is displayed in the worksheet. However, because each 
of these cells serve as output cells for the simulation (via the PsiOutput( ) functions 
shown in their formula definitions in Figure 12.24), after a simulation has been run (or 
when in interactive simulation mode) there are actually 5,000 values saved for cells M9 
and M10. So, the PsiMean( ) functions in cells M13 and M14 compute, respectively, the 
averages of the 5,000 trial values associated with cells M9 and M10. (The PsiMean( ) 
functions in cells M13 and M14 return the value “#N/A” if a simulation has not been 
run.) The values in cells M13 and M14 are the ones of interest from an optimization per-
spective because Laura is interested in the average service level and average inventory 
level over an entire 5,000 trial simulation—not the average service level and average 
inventory level for any one particular trial. (The point being made in this paragraph is 
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key to understanding simulation optimization, so be sure you understand this before 
proceeding.)

Clicking the “Model” icon on the Analytic Solver Platform ribbon causes the 
Analytic Solver task pane to appear, as shown in Figure 12.27. This pane provides 
an integrated approach to optimization and simulation. Note that the “Simulation” 
section of this pane summarizes everything that Analytic Solver Platform understands 
about the model in this spreadsheet: that cells D6 through D35 and I6 through I35 are 
uncertain (or random) variables, cells M9 and M10 are uncertain functions (outputs), 
and M13 and M14 are statistic functions (computing descriptive statistics about the 
simulation). (Note that in Figure 12.27, we have also identified the ending inventory 
cells in F6 through F35 as PsiOutput( ) cells to facilitate the creation of trend charts, 
which will be covered shortly.)

The “Optimization” section of the task pane allows us to specify the objective, vari-
ables, and constraints for our model. In this case, we want to instruct Analytic Solver 
Platform to minimize the average inventory in the simulation (in cell M14) by changing 
the values of the reorder point and order quantity (decision variables) in cells M5 and 
M6, respectively, while simultaneously keeping the simulation’s average service level 
(in cell M13) at or above 98%.

FIGURE 12.27 Revised spreadsheet for MCC’s inventory problem

M13 5PsiMean(M9)            M14

Key Cell Formulas

Cell Formula Copied to
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To specify the objective for this problem, follow these steps: 

1. Select cell M14 (representing the average inventory for the simulation).
2. Select “Objective” in the Analytic Solver task pane.
3. Click the green plus (“1”) symbol (circled in blue in Figure 12.27).

The results of these steps are shown in Figure 12.28. Note that after the objec-
tive is added, the bottom of the Analytic Solver Platform pane displays various 
options associated with our action and we can indicate our desire to minimize the 
objective.

Next, we specify the variable (or adjustable) cells representing the decisions about 
the reorder point and order quantity. To do this, follow these steps:

1. Select cells M5 and M6 (representing the reorder point and order quantity, 
respectively).

2. Select “Variables” in the Analytic Solver task pane.
3. Click the green plus (“1”) symbol.

The results of the above steps are shown in Figure 12.29. Note that additional vari-
ables (when needed) would be added in a similar manner. And after variables are 
added, the bottom of the Analytic Solver task pane displays various options associated 
with the selected variables.

FIGURE 12.28 Defining the objective for the optimization model
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Next, we need to specify any constraints that apply to the problem. One such con-
straint relates to Laura’s desire to achieve at least a 98% average service level. To do 
this, follow these steps:

1. Select cell M13 (representing the average service level for the simulation).
2. Select “Constraints” in the Analytic Solver task pane.
3. Click the green plus (“1”) symbol.

This results in the dialog box shown in Figure 12.30 where we can indicate that cell 
M13 must be greater than or equal to 98% (or 0.98).

After clicking “OK” in the Add Constraint dialog box shown in Figure 12.30, we also 
need to add upper and lower bounds on the decision variables for this problem. We 
will assume that Laura is interested in considering values between 1 and 70 for both the 
reorder point and order quantity variables (cells M5 and M6). To create this constraint, 
follow these steps:

1. Select cells M5 and M6 (representing the reorder point and order quantity, 
respectively).

2. Select “Constraints” in the Analytic Solver task pane.
3. Click the green plus (“1”) symbol.

Figure 12.31 shows the resulting dialog box and settings to specify a lower bound 
of 1 for the decision variables. The same step of steps can be used to define an upper 
bound of 70, as shown in Figure 12.32.

Finally, we need to indicate that the decision variables may only take on integer val-
ues. To do this, follow these steps:

FIGURE 12.29 Defining the decision variables for the optimization model
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FIGURE 12.30 Defining the service-level constraint for the optimization model

FIGURE 12.31 Defining a lower bound for the decision variables

1. Select cells M5 and M6 (representing the reorder point and order quantity, 
respectively).

2. Select “Constraints” in the Analytic Solver task pane.
3. Click the green plus (“1”) symbol.
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FIGURE 12.32 Defining an upper bound for the decision variables

FIGURE 12.33 Defining integer conditions for the decision variables

Figure 12.33 shows the resulting dialog box where we select the “int” option from 
the dropdown list to indicate that cells M5 and M6 must be integers.

Figure 12.34 shows a summary of the Analytic Solver Platform settings required for 
the MCC problem. Clicking the Solve icon (the green triangle) in the Analytic Solver 
task pane causes Analytic Solver Platform to solve the problem.
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FIGURE 12.34 Summary of Analytic Solver Platform settings

Remember that a separate simulation must be run for each combination of the deci-
sion variables that Analytic Solver Platform chooses. Analytic Solver Platform uses a 
number of heuristics to search intelligently for the best combination of decision variables. 
However, this is still inherently a very computationally intensive and time-consuming 
process and very complicated models could take hours (or days) of solution time. 

As shown in Figure 12.35, Analytic Solver Platform ultimately found a reorder point 
of 36 and an order quantity of 7. Because Analytic Solver Platform is using a heuris-
tic search algorithm, it might not find the same solution each time it solves a prob-
lem, and it might stop at a local (rather than global) optimal solution. Thus, on difficult 
problems, it is wise to run Analytic Solver Platform several times to see if it can 
improve upon the solution it finds. Using a reorder point of 36 and an order quantity 
of 7, 5,000 replications were run resulting in an average service level of 98.1% and an 
average inventory of approximately 14.53 units per month. 

12.15.5 analyzing the solution
Comparing the solution shown in Figure 12.35 to the original solution in Figure 12.27 
we see that by using a reorder point of 36 and an order quantity of 7, MCC can simul-
taneously increase its average service level from 96.3% to 98.1% and reduce its average 
inventory level from approximately 26 units to around 15 units. Another advantage of 
the optimal solution becomes apparent if we compare the behavior of the daily ending 
inventory balance under the original and optimal scenarios as shown in Figure 12.36.
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FIGURE 12.35 Optimal solution to the MCC problem

FIGURE 12.36 Trend charts of the daily inventory balances
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In Figure 12.36, note that under the original policy (reorder point 28, order quantity 50) 
there are fairly wide swings in the amount of inventory MCC would be carrying for 
this product. Under the optimal policy (reorder point 36, order quantity 7), there is less 
volatility in the amount of inventory being held, which offers operational advantages 
from a warehousing and logistics perspective.

C r e a t i n g  t r e n d  C h a r t s
To create a trend chart like the ones in Figure 12.36, add PsiOutput( ) functions to 
whatever cells you want to include in the chart (F6 through F35 in the MCC exam-
ple). Then select Charts, Multiple Outputs, Trend on the Analytic Solver Platform 
tab. In the resulting dialog box, select the outputs you want to chart and click OK.

12.15.6 other measures of risk
In the MCC example, Laura wanted to identify an inventory policy that would provide 
a 98% service level on average. While that might be a very reasonable goal, it would 
be wise to more carefully consider the downside risk associated with such a goal. 
Figure 12.37 displays the average service level distribution associated with the 
“optimal” solution to the MCC inventory problem. 

Recall that Laura wanted a solution that provided an average service level of at least 
98%. The mean of the distribution shown in Figure 12.37 is above 98% and therefore 
satisfies Laura’s requirement. However, approximately 40.3% (or 2,015 out of 5,000) of 
the trials in this simulation actually resulted in service levels that were less than 98%, 
with some as low as 89.4%. So if Laura uses a reorder point of 36 and an order quantity 
of 7, then in any month there is approximately a 40% chance that the actual service 
level will be below her desired average service level of 98%. 

This discussion highlights the purpose of two other types of constraints available in 
Analytic Solver Platform: the value at risk constraint and the conditional value at risk 
constraint. A value at risk (VaR) constraint allows you to specify the percentage of trials 

FIGURE 12.37

Service-level 
distribution for the 
“optimal” solution

47412_ch12_ptg01_635-720.indd   682 08/11/16   1:32 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



An Inventory Control Example 683

in a simulation that must satisfy a constraint. For example, Laura might want a solution 
where at least 90% of the trials have a service level of at least 98%. (Clearly, the solution 
in Figure 12.37 violates such a VaR constraint.) 

A VaR constraint only limits the percentage of trials that violate the constraint—
counting a small violation the same as a large violation. In contrast, the conditional 
value at risk (CVaR) constraint places a bound on the average magnitude of the viola-
tions that may occur. Thus, the CVaR constraint is a more conservative version of the 
VaR constraint. 

To illustrate the use of a VaR constraint, suppose that Laura would like only a 10% 
chance of any particular trial’s average service level falling below 98%. This addi-
tional constraint and the resulting solution are summarized in Figure 12.38. Note 
that a “Chance” constraint was added to the model. You create a chance constraint 
in the same way that our other constraints were created and then adjust its proper-
ties as indicated in Figure 12.38. This constraint is of the VaR type and requires a 0.9 
chance of the average service level (in cell M9) being at least 98%. This constraint will 
be satisfied if no more than 10% of the trials in a simulation have a service level less 
than 98%.

Re-running the optimization with this additional constraint resulted in a solution 
with a reorder point of 40 and an order quantity of 7. The frequency chart at the bottom 
of Figure 12.38 indicates that, as desired, fewer than 10% of the simulation trials had 
average service levels of less than 98%. 

FIGURE 12.38 Revised MCC problem solution with VaR constraint

Change Constraint
Settings
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12.16 A Project Selection Example
In chapter 6, we saw how Solver can be used in project selection problems in which 
the payoff for each project is assumed to be known with certainty. In many cases, 
a great deal of uncertainty exists with respect to the ultimate payoff that will be 
received if a particular project is undertaken. In these situations, Analytic Solver Plat-
form is a powerful aid in deciding which project(s) to undertake. Consider the fol-
lowing example.

TRC Technologies has $2 million to invest in new R&D projects. The following 
table summarizes the initial cost, probability of success, and revenue potential for 
each of the projects.

Revenue Potential ($1000s)

Project
Initial Cost  
($1000s)

Probability  
of Success Min.

Most  
Likely Max.

1 $250.0 90% $   600 $   750 $   900

2 $650.0 70% $1,250 $1,500 $1,600

3 $250.0 60% $   500 $   600 $   750

4 $500.0 40% $1,600 $1,800 $1,900

5 $700.0 80% $1,150 $1,200 $1,400

6 $  30.0 60% $   150 $   180 $   250

7 $350.0 70% $   750 $   900 $1,000

8 $  70.0 90% $   220 $   250 $   320

TRC’s management wants to determine what set of projects should be selected.

12.16.1 a sPreaDsheet moDel
A spreadsheet model for this problem is shown in Figure 12.39 (and the file Fig12-39.
xlsm that accompanies this book). Cells C6 through C13 in this spreadsheet indicate 
which projects will be selected. Using Analytic Solver Platform, we can define these 
cells to be decision variables that must take on discrete values between zero and one—
or operate as binary variables. The values shown in cells C6 though C13 were assigned 
arbitrarily. We will use Analytic Solver Platform to determine the optimal values for 
these variables.

In cell D14, we compute the total initial investment required by the selected projects 
as follows:

Formula for cell D14:    5SUMPRODUCT(D6:D13,C6:C13)

In cell D16, we calculate the amount of unused or surplus investment funds. Using 
Analytic Solver Platform, we can place a lower bound constraint of zero on the value of 
this cell to ensure that the projects selected do not require more than $2 million in initial 
investment funds.

Formula for cell D16:    5D15 – D14

A project has the potential to be successful only if it is selected. The success or failure 
of each project may be modeled using a binomial random variable using a single trial 
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and the probability of success given in column E. Thus, we model the potential success 
of selected projects in column F as follows:

Formula for cell F6:    5IF(C651,PsiBinomial(1,E6),0) 
(Copy to cells F7 through F13.)

If a project is selected and successful, there is uncertainty about the revenue that 
it will generate. Because we have estimates of the minimum, most likely, and max-
imum possible revenue for each project, we will model the revenues for selected, 
successful projects using a triangular distribution. This is accomplished in column J 
as follows:

Formula for cell J6:    5IF(F651,PsiTriangular(G6,H6,I6),0) 
(Copy to cells J7 through J13.)

The profit associated with each project is computed in column K as follows:

Formula for cell K6:    5J6 – C6*D6
(Copy to cells K7 through K13.)

Cell K14 computes the total profit for each replication of the model. We will define 
this as an output cell using a PsiOutput( ) function. 

Formula for cell K14:    5SUM(K6:K13) 1 PsiOutput( )

Finally, cell K16 computes the average (or expected) simulated total profit associ-
ated with cell K14. We will attempt to find the set of projects that maximize this value 

FIGURE 12.39

Spreadsheet 
model for TRC 
Technologies’ project 
selection problem

D14 5SUMPRODUCT(D6:D13,C6:C13) --
D16 5D152D14 --
F6 5IF(C651,PsiBinomial(1,E6),0) F7:F13
J6 5IF(F651,PsiTriangular(G6,H6,I6),0) J7:J13
K6 5J62C6*D6 K7:K13
K14 5SUM(K6:K13)1PsiOutput( ) --
K16 5PsiMean(K14) --

Key Cell Formulas

Cell Formula Copied to
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using Analytic Solver Platform. (Note that this formula will return the error value 
“#N/A” until a simulation has been run or interactive simulation mode has been 
turned on.)

Formula for cell K16:    5PsiMean(K14)

12.16.2 solving anD analyzing the ProBlem  
With analytiC solver Platform
The Analytic Solver Platform settings and options used to solve this problem are 
shown in Figure 12.40. The best solution found is shown in Figure 12.41 along with 
some additional statistics describing this solution. Analytic Solver Platform identi-
fied a solution that involves selecting projects 1, 2, 4, 6, 7, and 8, requiring an ini-
tial investment of $1.85 million and resulting in an expected profit of approximately 
$1.533 million.

The frequency chart in Figure 12.41 shows the distribution of possible profit val-
ues that might occur if TRC adopts this solution. Although the expected (mean) 
profit associated with this solution is approximately $1.53 million, the range of 
the possible outcomes is fairly wide at approximately $5.683 million (computed 
in cell K20 via 5PsiRange(K14)). The worst-case outcome observed with this 
solution resulted in approximately a $1.85 million loss (computed in cell K18 via 
5PsiMin(K14)), whereas the best-case outcome resulted in approximately a $3.833 
million profit (computed in cell K19 via 5PsiMax(K14)). Also in Figure 12.41, we see 
in cell K22 (labeled “P(<$0)”) that there is about a 0.091 probability of losing money 
if this solution is implemented. This probability was computed using the PsiTarget( ) 
function as follows:

Formula for cell K22:    5PsiTarget(K14,0)

In general, the PsiTarget(cell, target value) function returns the cumulative proba-
bility of the specified output cell taking on a value less than or equal to the specified 
target value. Thus, the formula in cell K22 computes the probability of the profit distri-
bution in cell K14 taking on a value of less than $0. 

Similarly, as shown in cell K23, there is about a .345 probability of making less than 
$1 million (or roughly a 65.5% chance of making more than $1 million). Thus, there 

FIGURE 12.40

Solver settings and 
options for TRC 
Technologies’ project 
selection problem

Solver Settings:

Objective: K16 (Max)
Variable cells: C6:C13
Constraints: 
 D16 .5 0
 C6:C16 5 binary

Solver Options:

 Standard Evolutionary Engine
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are significant risks associated with this solution that are not apparent if one simply 
looks at its expected profit level of $1.53 million.

12.16.3 ConsiDering another solution
Because each of the projects is a one-time occurrence that can either succeed or fail, 
the decision makers in this problem do not have the luxury of repeatedly selecting 
this set of projects over and over and realizing the average profit level of $1.53 mil-
lion over time. As an alternative objective, TRC’s management might want to find 
a solution that minimizes the probability of having outcomes with profits below $1 

FIGURE 12.41 Solution maximizing average profit

Key Cell Formulas

Cell Formula Copied to

K18 5PsiMin(K14) --
K19 5PsiMax(K14) --
K20 5PsiRange(K14) --
K22 5PsiTarget(K14,0) --
K23 5PsiTarget(K14,1000) --
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million (or equivalently, maximizing the probability of having an outcome of $1 mil-
lion or more).

To pursue this new objective, we can simply optimize the model again with an 
objective of minimizing the value of cell K23. The solution to this problem is shown in 
Figure 12.42.

In Figure 12.42, notice that the expected (mean) profit for this solution is about $1.45 
million, representing a decrease of approximately $80,000 from the earlier solution. The 
range of possible outcomes has also decreased to about $4.9 million, with a worst-case 
outcome of a $1.98 million loss, and a best-case outcome of almost $2.93 million profit. 
This solution reduces the chances of realizing a loss to approximately 8.1% and increases 
the chances of making at least $1 million to almost 71%. Thus, although the best possible 
outcome realized under this solution ($2.9 million) is not as large as that of the earlier 
solution ($3.8 million), it reduces the downside risk in the problem and makes it more 
likely for the company to earn at least $1 million; however, it also requires a larger ini-
tial investment. It is also interesting to note that the probability of all the selected proj-
ects being successful under this solution is 0.2116 (i.e., 0.2116 5 .9 3 .7 3 .8 3 .6 3 .7), 
whereas the probability of all selected projects being successful under the first solution 
is only 0.0953 (i.e., 0.0953 5 .9 3 .7 3 .4 3 .6 3 .7 3 .9).

So, what is the best solution to this problem? It depends on the risk attitudes and pref-
erences of the decision makers at TRC. However, the simulation techniques we have 
described clearly provide valuable insights into the risks associated with various solutions.

FIGURE 12.42 Solution minimizing the probability of outcomes below $1 million
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12.17 A Portfolio Optimization Example
In chapter 8, we saw how Solver can be used to analyze potential trade-offs between 
risk and return for a given set of stocks using the idea of an efficient frontier. Theoret-
ically, the efficient frontier represents the highest level of return a portfolio can achieve 
for any given level of risk. While portfolio optimization and efficient frontier analysis 
are most commonly associated with financial instruments such as stocks and bonds, 
they can be applied to physical assets as well. This will be illustrated using Analytic 
Solver Platform with the following example.

In recent years, a fundamental shift occurred in power plant asset ownership. 
Traditionally, a single regulated utility would own a given power plant. Today, 
more and more power plants are owned by merchant generators that provide 
power to a competitive wholesale marketplace. This makes it possible for an 
investor to buy, for example, 10% of 10 different generating assets rather than 
100% of a single power plant. As a result, non-traditional power plant owners 
have emerged in the form of investment groups, private equity funds, and energy 
hedge funds. 

The McDaniel Group is a private investment company in Richmond, VA that 
currently has a total of $1 billion that it wants to invest in power-generation assets. 
Five different types of investments are possible: natural gas, oil, coal, nuclear, and 
wind-powered plants. The following table summarizes the megawatts (MW) of 
generation capacity that can be purchased per each $1 million investment in the 
various types of power plants.

Generation Capacity per $1 Million Invested

Fuel Type Gas Coal Oil Nuclear Wind

MWs 2.0 1.2 3.5 1.0 0.5

The return on each type of investment varies randomly and is determined pri-
marily by fluctuations in fuel prices and the spot price (or current market value) 
of electricity. Assume the McDaniel Group analyzed historical data to deter-
mine that the return per MW produced by each type of plant can be modeled as 
normally distributed random variables with the following means and standard 
deviations.

Normal Distribution Return Parameters by Fuel Type

Gas Coal Oil Nuclear Wind

Mean 16% 12% 10% 9% 8%

Std Dev 12% 6% 4% 3% 1%

Additionally, while analyzing the historical data on operating costs, it was 
observed that many of the returns are correlated. For example, when the returns 
from plants fueled by natural gas are high (due to low gas prices), returns from 
plants fueled by coal and oil tend to be low. So there is a negative correlation 
between the returns from gas plants and the returns from coal and oil plants. The 
following table summarizes all the pairwise correlations between the returns from 
different types of power plants.
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Correlations Between Returns by Fuel Type

Gas Coal Oil Nuclear Wind

Gas    1 20.49 20.31 0.16 0.12

Coal 20.49    1 20.41 0.11 0.07

Oil 20.31 20.41    1 0.13 0.09

Nuclear 0.16 0.11 0.13 1 0.04

Wind 0.12 0.07 0.09 0.04 1

The McDaniel Group would like to construct an estimate of the efficient frontier 
for its investment options in power-generation assets.

12.17.1 a sPreaDsheet moDel
A spreadsheet model for this problem is shown in Figure 12.43 (and the file  
Fig12-43.xlsm that accompanies this book). Cells D5 through D9 in this spreadsheet 
indicate how much money (in millions) will be invested in each type of generation 
asset. The values shown in cells D5 though D9 were assigned arbitrarily. Notice in 
the Analytic Solver task pane that we have defined these cells to be decision vari-
ables that must take on values between $0 and $1,000. We have also created a con-
straint that requires the sum of these values (computed in cell D10) to equal $1,000 
(or $1 billion). 

Formula for cell D10:    5SUM(D5:D9)

In column E, we compute the MW of generation capacity purchased in each asset 
category as follows:

Formula for cell E5:    5C5*D5
(Copy to cells E6 through E9.)

The cells representing random returns for each asset category are implemented in 
column F. Recall that we are assuming that correlations exist between these returns. 
Analytic Solver Platform offers a number of different ways of dealing with correlations 
among variables. In this case, we model the correlations by including an appropriate 
PsiCorrMatrix( ) function as a third argument in the PsiNormal( ) function as shown 
below for investments in gas fueled plants in cell F5.

Formula for cell F5:    5PsiNormal(G5,H5,PsiCorrMatrix($C$14:$G$18,A5)) 
(Copy to cells F6 through F9.)

Note that the PsiCorrMatrix( ) function requires a (rank order) correlation matrix 
(C14 through G18 in our example) and an integer indicating which column (or row) in 
the matrix corresponds to the random variable being sampled (the value 1 in cell A5 in 
this example). 

In cell F10, we calculate the weighted average return on the chosen investments in 
generating assets. This will also be the output cell that drives much of our analysis in 
this problem.
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Formula for cell F10:   5SUMPRODUCT(F5:F9,E5:E9)/SUM(E5:E9) 1 PsiOutput( )

In cells F21 and F22, we compute, respectively, the mean and standard deviation of 
the weighted average return in F10 for each simulation that is performed.

Formula for cell F21:    5PsiMean(F10)

Formula for cell F22:    5PsiStdDev(F10)

FIGURE 12.43 Settings and solution for maximizing average profit

Key Cell Formulas

Cell Formula Copied to

D10 5SUM(D5:D9) --
E5 5C5*D5 E6:E9
F5 5PsiNormal(G5,H5,PsiCorrMatrix($C$14:$G$18,A5)) F6:F9
F10 5SUMPRODUCT(F5:F9,E5:E9)/SUM(E5:E9)1PsiOutput() --
F21 5PsiMean(F10) --
F22 5PsiStdDev(F10) 
F23 5PsiOptParam(0.02,0.12) --

47412_ch12_ptg01_635-720.indd   691 08/11/16   1:32 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



692 Chapter 12 Introduction to Simulation Using Analytic Solver Platform 

C o r r e l a t i o n
Any correlation matrix used in an Analytic Solver Platform simulation must 
exhibit the mathematical property of being positive definite. The details of 
this property are beyond the scope of this book; however, it has to do with 
ensuring that the correlations are internally consistent with one another. For 
instance, if variables A and B have a high positive correlation and variables 
B and C have a high positive correlation, then variables A and C should have 
a fairly high positive correlation. The “Correlations” icon on the Analytic 
Solver Platform tab offers a tool for checking if a correlation matrix is positive 
definite. 

Also, it is important to note that, statistically speaking, correlation measures 
the strength of linear relationship between two variables. Sometimes variables are 
related in a nonlinear fashion. These nonlinear relationships cannot be summa-
rized conveniently (or accurately) in a correlation matrix. Analytic Solver Plat-
form supports the modeling of nonlinear relationships between variables using 
its PsiSip( ) and PsiSlurp( ) functions that are described in the Analytic Solver 
Platform user guide.

12.17.2 solving the ProBlem With  
analytiC solver Platform
Recall that the McDaniel Group is interested in estimating the efficient frontier of its 
possible investment options for these power generation assets. This requires determin-
ing the portfolios that provide the maximum expected (or average) return at a variety 
of different risk levels. In this case, we will define risk to be the standard deviation of a 
portfolio’s weighted average return. The Analytic Solver task pane in Figure 12.43 indi-
cates that our objective is to maximize the mean value of the weighted average return 
calculated in cell F21 in our spreadsheet. 

We also specify a variable requirement on the allowable upper bound of the 
standard deviation of the weighted average return (in cell F22). To do this, we use a 
PsiOptParam( ) function in cell F23 to identify a range of risk levels we want to use in 
constructing an efficient frontier for this problem.

Formula for cell F23:    5PsiOptParam(0.02,0.12)

In Figure 12.43, note that we also have defined a constraint requiring cell F22 (the stan-
dard deviation of the weighted average return) to be less than or equal to the value 
in cell F23. The PsiOptParam( ) function specifies a parameter that will be varied as 
multiple optimizations are performed. The number of optimizations to be performed 
is indicated on the Analytic Solver Platform Options dialog box shown in Figure 12.44. 
(This dialog box is displayed by clicking the Options icon on the Analytic Solver Plat-
form tab.) When the Solve icon in the task pane is pressed, Analytic Solver Platform 
performs six optimization runs, automatically varying the value in cell F23 to six differ-
ent values equally spaced between 2% and 12%. The Solver settings and options for this 
problem are summarized in Figure 12.45. This is a computationally intensive problem 
to solve and each of the six optimizations might take several minutes.
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FIGURE 12.44 Specifying the number of optimizations to perform

Number of
optimizations
to run

FIGURE 12.45

Solver settings and 
parameters for the 
McDaniel Group

Solver Settings:

Objective: F21 (Max)
Variable cells: D5:D9
Constraints: 
 D5:D9 .5 0
 D5:D9 ,51000
 D10 5 1000
 F22 ,5 F23

Solver Options:

 Evolutionary Engine
 Optimizations to Run 5 6
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Figure 12.46 displays a chart summarizing the maximum weighted average return 
found for each of the six optimizations. To create this chart, follow these steps:

1. On the Analytic Solver Platform tab click Charts, Multiple Optimizations, Moni-
tored Cells.

2. Select the objective cell (F21) and move it to the pane in the right side of the dialog 
box.

3. Click OK.

This chart corresponds to the efficient frontier for the McDaniel Group’s asset 
investment decision, summarizing the six portfolios it found and their relative trade-
offs in terms of risk and return. The expected returns on these portfolios vary from 
12.4% to 15.6% with standard deviations varying from 2% to 12% with higher expected 
returns being associated with higher levels of risk. Any of the six solutions can be 
inspected in detail on the spreadsheet by selecting the appropriate optimization from 
the “Opt #” dropdown in Figure 12.46. After selecting a particular solution from this 
dropdown, you should run a simulation to restore the simulation results associated 
with that solution. Analytic Solver Platform’s PsiOptValue( ) function can also be used 
to retrieve specific values of interest from the various optimization runs. 

The result of optimization #2 is shown in Figure 12.46, representing a portfolio with 
a standard deviation of 4% and an expected return of 13.5%. Note that the return on 

FIGURE 12.46 Efficient frontier for the McDaniel Group’s investment problem
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coal-fired plants also has a standard deviation of 6% but only an expected return of 12%. 
So by allocating investments funds in several different types of plants, the McDaniel 
Group can earn higher levels of returns for the same levels of risk as offered by individ-
ual investment types. However, also note that when the allowed standard deviation is 
12% the “optimal” portfolio found by Analytic Solver Platform has an expected return 
of 15.6% whereas a portfolio that invests 100% in Gas would have a 16% return for the 
same risk. This counterintuitive result is due to having to use the evolutionary optimi-
zation engine on this problem which finds a good but not necessarily best solution to 
very hard optimization problems. 

The right portfolio choice for the McDaniel Group depends on the firm’s preferences 
for risk versus return. But this analysis should help the firm select a portfolio that pro-
vides a good return for the desired level of risk.

12.18 Summary
This chapter introduced the concept of risk analysis and simulation. Many of 
the input cells in a spreadsheet represent random variables whose values cannot 
be determined with certainty. Any uncertainty in the input cells flows through 
the spreadsheet model to create a related uncertainty in the value of the output 
cell(s). Decisions made on the basis of these uncertain values involve some degree 
of risk.

Various methods of risk analysis are available, including best-case/worst-case 
analysis, what-if analysis, and simulation. Of these three methods, simulation 
is the only technique that provides hard evidence (facts and figures) that can 
be used objectively in making decisions. This chapter introduced the use of the 
Analytic Solver Platform add-in to perform spreadsheet simulation and optimi-
zation. To simulate a model, RNGs are used to select representative values for 
each uncertain independent variable in the model. This process is repeated over 
and over to generate a sample of representative values for the dependent varia-
ble(s) in the model. The variability and distribution of the sample values for the 
dependent variable(s) can then be analyzed to gain insight into the possible out-
comes that might occur. We also illustrated the use of Analytic Solver Platform in 
determining the optimal value of controllable parameters or decision variables in 
simulation models. 
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the WorlD of Business analytiCs

The U.S. Postal Service Moves to the Fast Lane

Mail flows into the U.S. Postal Service at the rate of 500 million pieces per day, and 
it comes in many forms. There are standard-sized letters with nine-digit ZIP codes 
(with or without imprinted bar codes), five-digit ZIP codes, typed addresses that 
can be read by optical character readers, handwritten addresses that are barely 
decipherable, Christmas cards in red envelopes addressed in red ink, and so on. 
The enormous task of sorting all these pieces at the sending post office and at 
the destination has caused postal management to consider and adopt many new 
forms of technology. These include operator-assisted mechanized sorters, optical 
character readers (last-line and multiple-line), and bar code sorters. Implemen-
tation of new technology brings with it associated policy decisions, such as rate 
discounts for bar coding by the customer, finer sorting at the origin, and so on.

A simulation model called META (model for evaluating technology alterna-
tives) assists management in evaluating new technologies, configurations, and 
operating plans. Using distributions based on experience or projections of the 
effects of new policies, META simulates a random stream of mail of different 
types; routes the mail through the system configuration being tested; and prints 
reports detailing total pieces handled, capacity utilization, work hours required, 
space requirements, and cost.

META has been used on several projects associated with the Postal Service 
corporate automation plan. These include facilities planning, benefits of alterna-
tive sorting plans, justification of efforts to enhance address readability, planning 
studies for reducing the time carriers spend sorting vs. delivering, and identifica-
tion of mail types that offer the greatest potential for cost savings.

According to the Associate Postmaster General, “META became the vehicle to 
help steer our organization on an entirely new course at a speed we had never 
before experienced.”

Source: Cebry, M., A. deSilva, and F. DiLisio, “Management Science in Automating Postal Operations: 
Facility and Equipment Planning in the United States Postal Service,” Interfaces, vol. 22, no. 1, 1992,  
pp. 110–130. 

Questions and Problems
1. Under what condition(s) is it appropriate to use simulation to analyze a model? 

That is, what characteristics should a model possess in order for simulation to be 
used?

2. The graph of the probability distribution of a normally distributed random variable 
with a mean of 20 and standard deviation of 1.5 is shown in Figure 12.5. The Excel 
function: 

5NORMINV(Rand( ),20,1.5)

also returns randomly generated observations from this distribution.
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a. Use Excel’s NORMINV( ) function to generate 100 sample values from this 
distribution.

b. Produce a histogram of the 100 sample values you generated. Does your histo-
gram look like the graph for this distribution in Figure 12.5?

c. Repeat this experiment, with 1,000 sample values.
d. Produce a histogram for the 1,000 sample values you generated. Does the histo-

gram now more closely resemble the graph in Figure 12.5 for this distribution?
e. Why does your second histogram look more “normal” than the first one?

3. Refer to the Hungry Dawg Restaurant example presented in this chapter. Health 
claim costs actually tend to be seasonal, with higher levels of claims occurring 
during the summer months (when kids are out of school and more likely to injure 
themselves) and during December (when people schedule elective procedures 
before the next year’s deductible must be paid). The following table summarizes 
the seasonal adjustment factors that apply to RNGs for average claims in the Hun-
gry Dawg problem. For instance, the average claim for month 6 should be multi-
plied by 115% and claims for month 1 should be multiplied by 80%. 

Month 1 2 3 4 5 6 7 8 9 10 11 12

Seasonal 
Factor

0.80 0.85 0.87 0.92 0.93 1.15 1.20 1.18 1.03 0.95 0.98 1.14

  Suppose the company maintains an account from which it pays health insurance 
claims. Assume there is $2.5 million in the account at the beginning of month 1. 
Each month, employee contributions are deposited into this account and claims are 
paid from the account. 
a. Modify the spreadsheet shown in Figure 12.9 to include the cash flows in this 

account. If the company deposits $3 million in this account every month, what 
is the probability that the account will have insufficient funds to pay claims at 
some point during the year? (Hint: You can use the COUNTIF( ) function to 
count the number of months in a year in which the ending balance in the account 
is below 0.)

b. If the company wants to deposit an equal amount of money in this account each 
month, what should this amount be if they want there to only be a 5% chance of 
having insufficient funds?

 4.  One of the examples in this chapter dealt with determining the optimal reorder 
point for a computer monitor sold by Millennium Computer Corp. Suppose that 
it costs MCC $0.30 per day in holding costs for each monitor in beginning inven-
tory, and it costs $20 to place an order. Each monitor sold generates a profit of $45, 
and each lost sale results in an opportunity cost of $65 (including the lost profit 
of $45 and $20 in lost goodwill). Modify the spreadsheet shown in Figure 12.23 to 
determine the reorder point and order quantity that maximize the average monthly 
profit associated with this monitor.

 5.  A debate recently erupted about the optimal strategy for playing a game on the TV 
show called “Let’s Make a Deal.” In one of the games on this show, the contestant 
would be given the choice of prizes behind three closed doors. A valuable prize 
was behind one door and worthless prizes were behind the other two doors. After 
the contestant selected a door, the host would open one of the two remaining doors 
to reveal one of the worthless prizes. Then, before opening the selected door, the 
host would give the contestant the opportunity to switch his or her selection to 
the other door that had not been opened. The question is, should the contestant 
switch?
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a. Suppose a contestant is allowed to play this game 500 times, always picks door 
number 1, and never switches when given the option. If the valuable prize is 
equally likely to be behind each door at the beginning of each play, how many 
times would the contestant win the valuable prize? Use simulation to answer 
this question.

b.  Now suppose the contestant is allowed to play this game another 500 times. This 
time the player always selects door number 1 initially and switches when given 
the option. Using simulation, how many times would the contestant win the 
valuable prize?

c.  If you were a contestant on this show, what would you do if given the option of 
switching doors?

6. Meredith Shomers manages scholarship endowments for a major public university. 
Presently, she is trying to determine how much scholarship money may be awarded 
from an endowment with a current balance of $538,000. The endowment’s funds 
are invested in a portfolio whose annual return varies and may be represented as 
a normally distributed random variable with a mean of 6% and standard deviation 
of 2%. The legal terms of the endowment require Meredith to determine a constant 
scholarship payment amount from the endowment that, if made in each of the next 
10 years, would result in only 5% chance of the endowment’s ending value drop-
ping below its current value. Assume scholarship payments are withdrawn from 
the fund at the end of each year.
a. Create a spreadsheet model for this problem.
b. What is the maximum scholarship payment that should be made in the current 

year?
7. Firebird Packaging Operations manufactures small plastic cups used in a popular 

single cup brewing systems for coffee, tea, and hot chocolate. The cups are ther-
moformed with several different plastic resins including High Impact Polystyrene 
(HIPS). Firebird stores this material in a bulk storage silo that holds 100,000 kg of 
material. Firebird would like to determine the optimal reorder point and order quan-
tity for their HIPS inventory. Firebird’s goal is to always have sufficient levels of 
HIPS on hand to satisfy the manufacturing process’s daily requirement. At the same 
time, Firebird would like to avoid any penalties charged by the bulk carrier arising 
from Firebird not having enough space in the silos to unload a scheduled deliv-
ery. Firebird’s supplier of HIPS only delivers in full truckload amounts of 21,500 kg. 
Firebird’s purchasing department currently places an order for a truckload of HIPS 
when its inventory position falls to 35,000 kg. The lead time for receiving an order is 
2, 3, or 4 days with probabilities of 0.45, 0.35, and 0.2, respectively. Daily demand for 
HIPS varies from 5,000 kg to 11,000 kg with a most likely value of 7,500 kg. 
a. Modify the spreadsheet for the Millennium Computer example in this chapter to 

address Firebird’s inventory problem. Assume the beginning balance of HIPS is 
45,400 kg. What is the probability that Firebird will be unable to satisfy its need 
of HIPS?

b. Assume Firebird wants to maintain a 100% service level while minimizing its 
average inventory level of HIPS and avoiding any penalties associated with hav-
ing a bulk delivery that exceeds the available capacity in the storage silo. What 
reorder point should Firebird use?

8. Suppose a product must go through an assembly line is made up of five sequen-
tial operations. The time it takes to complete each operation is normally distributed 
with a mean of 180 seconds and standard deviation of 5 seconds. Let X denote the 
cycle time for the line, so that after X seconds each operation is supposed to be fin-
ished and ready to pass the product to the next operation in the assembly line. 
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a. If the cycle time X5180 seconds, what is the probability that all five operations 
will be completed?

b.  What cycle time will ensure that all operations are finished 98% of the time?
c.  Suppose that the company wants all operations to be completed within 190 sec-

onds 98% of the time. Further suppose that the standard deviation of an opera-
tion can be reduced at a cost of $5,000 per second of reduction (from 5) and any 
or all operations may be reduced as desired by up to 2.5 seconds. By how much 
should the standard deviations be reduced to achieve the desired performance 
level and how much would that cost?

9. Suppose a product must go through an assembly line is made up of five sequen-
tial operations. The time it takes to complete each operation is normally distributed 
with a mean of 180 seconds and standard deviation of 5 seconds. Define the flow 
time to be the total time it takes a product to go through the assembly line from start 
to finish.
a. What is the mean and standard deviation of the flow time? What is probability 

that the total time will be less than 920 seconds?
b.  Now assume that the time required to complete each operation has a 0.40 cor-

relation with the operation time immediately preceding it. What is the mean and 
standard deviation of the flow time? What is probability that the total time will 
be less than 920 seconds?

c.  Now assume that the time required to complete each operation has a -0.40 cor-
relation with the operation time immediately preceding it. What is the mean and 
standard deviation of the flow time? What is probability that the total time will 
be less than 920 seconds?

d.  Explain the effects of positive and negative correlations on the previous results.
10. Branch banks must keep enough money on hand to satisfy customers’ cash 

demands. Suppose that the daily demand for cash at a branch of University Bank 
follows a lognormal distribution with means and standard deviation summarized 
as follows (in $1,000s):

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Mean $175 $120 $90 $60 $120 $140 $65
Std Dev $  26 $  18 $13 $  9 $  18 $  21 $  9

  An armored truck delivers cash to this bank once a week. The manager of the bank 
can order any amount of cash she desires for this delivery. Of course, running out of 
cash in any week is very undesirable as customers of the bank expect to be able to 
withdraw their deposits on demand. Keeping excessive cash reserves would guard 
against this happenstance. However, cash is a noninterest earning asset, so there is 
an opportunity cost for holding excess cash reserves. 
a. Suppose the bank manager follows the practice of ordering enough cash to start 

each week with a balance of $825,000. Create a spreadsheet model to track the 
daily cash balance throughout the week.

b. What is the probability that the bank will run out of money at some point during 
the week?

c. What amount of money is needed at the start each week to ensure there is at 
most a 0.10% chance of running out of money?

 11. Hometown Insurance sells 10-year annuities to retirees who are looking for stable 
sources of investment income. Hometown invests the annuity funds it receives in 
an equity index fund with annual returns that are normally distributed with a mean 
of 9% and standard deviation of 3%. It guarantees investors a minimum annual 

47412_ch12_ptg01_635-720.indd   699 08/11/16   1:32 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



700 Chapter 12 Introduction to Simulation Using Analytic Solver Platform 

return of 6% and a maximum return (or rate cap) of 8.5%. This limits both the retir-
ees’ down-side risk and up-side return potential. Of course, Hometown makes its 
money on these contracts when the actual return exceeds the rate cap. Suppose a 
retiree invests $50,000 in such an annuity contract. Assume investment earnings are 
credited at the end of the year and are reinvested.
a. Build a spreadsheet model for this problem that computes the profit Hometown 

would make on the contract.
b. How much money can Hometown expect to make on average on the contract?
c. What is the probability that Hometown would lose money on the contract?
d. Suppose that Hometown wants to identify the minimum guaranteed annual rate 

of return that provides a 2% chance of the company losing money on the con-
tract. What should the minimum guaranteed annual rate of return be?

12. WVTU is a television station that has 20 thirty-second advertising slots during their 
regularly scheduled programming each evening. The station is now selling adver-
tising for the first few days in November. They could sell all the slots immediately 
for $4,500 each, but because November 7 will be an election day, the station man-
ager knows she may be able to sell slots at the last minute to political candidates 
in tight races for a price of $8,000 each. The demand for these last minute slots is 
estimated as follows:

Demand

8 9 10 11 12 13 14 15 16 17 18 19

Probability 0.03 0.05 0.10 0.15 0.20 0.15 0.10 0.05 0.05 0.05 0.05 0.02

Slots not sold in advance and not sold to political candidates at the last minute can 
be sold to local advertisers at a price of $2,000.
a. If the station manager sells all the advertising slots in advance, how much reve-

nue will the station receive?
b. How many advertising slots should be sold in advance if the station manager 

wants to maximize expected revenue?
c. If the station manager sells in advance the number of slots identified in the pre-

vious question, what is the probability that the total revenue received will exceed 
the amount identified in part a where all slots are sold in advance?

13. The owner of a ski apparel store in Winter Park, CO must make a decision in July 
regarding the number of ski jackets to order for the following ski season. Each ski 
jacket costs $54 each and can be sold during the ski season for $145. Any unsold 
jackets at the end of the season are sold for $45. The demand for jackets is expected 
to follow a Poisson distribution with an average rate of 80. The store owner can 
order jackets in lot sizes of 10 units.
a. How many jackets should the store owner order if she wants to maximize her 

expected profit?
b. What are the best-case and worst-case outcomes the owner may face on this 

product if she implements your suggestion?
c. How likely is it that the store owner will make at least $7,000 if she implements 

your suggestion?
d. How likely is it that the store owner will make between $6,000 to $7,000 if she 

implements your suggestion?
14. The owner of a golf shop in Myrtle Beach, SC must decide how many sets of begin-

ner golf clubs to order for the coming tourist season. Demand for golf clubs is ran-
dom but follows a Poisson distribution with the average demand rates indicated in 
the following table for each month. The expected selling price of the clubs is also 
shown for each month.
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May June July August September October

Average Demand 60 90 70 50 30 40

Selling Price $145 $140 $130 $110 $80 $60

  In May, each set of clubs can be ordered at a cost of $75. This price is expected to 
drop 5% a month during the remainder of season. Each month, the owner of the 
shop also gives away a free set of clubs to anyone who makes a hole-in-one from 
a short practice tee next to the shop. The number of people making a hole-in-one 
on this tee each month follows a Poisson distribution with a mean of 3. Any sets of 
clubs left over at the end of October are sold for $45 per set.
a. How many sets of clubs should the shop owner order if he wants to maximize 

the expected profit on this product?
b. What are the best-case and worst-case outcomes the owner may face on this 

product if he implements your suggestion?
c. How likely is it that the store owner will make at least $17,000 if he implements 

your suggestion?
d. How likely is it that the store owner will make between $12,000 to $14,000 if he 

implements your suggestion?
e. What percentage of the total demand for this product (excluding the free give-

aways) will the owner be able to meet if he implements your suggestion?
 15.  Large Lots is planning a 7-day promotion on a discontinued model of 50" color tele-

vision sets. At a price of $575 per set, the daily demand for this type of TV has been 
estimated as follows:

Units Demanded per Day

0 1 2 3 4 5

Probability 0.15 0.20 0.30 0.20 0.10 0.05

  Large Lots can order up to 50 of these TVs from a surplus dealer at a cost of $325. 
This dealer has offered to buy back any unsold sets at the end of the promotion for 
$250 each. 
a. How many TVs should Large Lots order if it wants to maximize the expected 

profit on this promotion? 
b. What is the expected level of profit?
c. Suppose the surplus dealer will only buy back a maximum of four sets at the end 

of the promotion. Would this change your answer? If so, how?
 16.  The monthly demand for the latest computer at Newland Computers follows a 

normal distribution with a mean of 350 and standard deviation of 75. Newland 
purchases these computers for $1,200 and sells them for $2,300. It costs the com-
pany $100 to place an order and $12 for every computer held in inventory at the 
end of each month. Currently, the company places an order for 1000 computers 
whenever the inventory at the end of a month falls below 100 units. Assume the 
beginning inventory is 400 units, unmet demand in any month is lost to compet-
itors, and orders placed at the end of one month arrive at the beginning of the 
next month. 
a.  Create a spreadsheet model to simulate the profit the company will earn on this 

product over the next two years. What is the average level of profit the company 
will earn?

b. Suppose the company wants to determine the optimum reorder point and order 
quantity. Which combination of reorder point and order quantity will provide 
the highest average profit over the next two years?
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17. The manager of Moore’s Catalog Showroom is trying to predict how much revenue 
will be generated by each major department in the store during 2018. The man-
ager has estimated the minimum and maximum growth rates possible for revenues 
in each department. The manager believes that any of the possible growth rates 
between the minimum and maximum values are equally likely to occur. These esti-
mates are summarized in the following table:

Growth Rates

Department 2017 Revenues Minimum Maximum

Electronics $6,342,213 2% 10%

Garden Supplies $1,203,231 24% 5%

Jewelry $4,367,342 22% 6%

Sporting Goods $3,543,532 21% 8%

Toys $4,342,132 4% 15%

  Create a spreadsheet to simulate the total revenues that could occur in the coming 
year.
a.  Construct a 95% confidence interval for the average level of revenues the man-

ager could expect for 2018.
b.  According to your model, what are the chances that total revenues in 2018 will be 

more than 5% larger than those in 2017?
 18. The Harriet Hotel in downtown Boston has 100 rooms that rent for $150 per night. 

It costs the hotel $30 per room in variable costs (cleaning, bathroom items, etc.) each 
night a room is occupied. For each reservation accepted, there is a 5% chance that 
the guest will not arrive. If the hotel overbooks, it costs $200 to compensate guests 
whose reservations cannot be honored. 
a.  How many reservations should the hotel accept if it wants to maximize the aver-

age daily profit? 
 19.  Lynn Price recently completed her MBA and accepted a job with an electronics 

manufacturing company. Although she likes her job, she is also looking forward 
to retiring one day. To ensure that her retirement is comfortable, Lynn intends to 
invest $3,000 of her salary into a tax-sheltered retirement fund at the end of each 
year. Lynn is not certain what rate of return this investment will earn each year, but 
she expects each year’s rate of return could be modeled appropriately as a normally 
distributed random variable with a mean of 12.5% and standard deviation of 2%.
a.  If Lynn is 30 years old, how much money should she expect to have in her retire-

ment fund at age 60?
b.  Construct a 95% confidence interval for the average amount Lynn will have at age 60.
c.  What is the probability that Lynn will have more than $1 million in her retire-

ment fund when she reaches age 60?
d.  How much should Lynn invest each year if she wants there to be a 90% chance of 

having at least $1 million in her retirement fund at age 60?
e. Suppose that Lynn contributes $3,000 annually to her retirement fund for eight 

years and then terminates these annual contributions. How much of her salary 
would she have contributed to this retirement plan and how much money could 
she expect to have accumulated at age 60?

f.  Now suppose that Lynn contributes nothing to her retirement fund for eight 
years and then begins contributing $3,000 annually until age 60. How much of 
her salary would she have contributed to this retirement plan and how much 
money could she expect to have accumulated at age 60?

g. What should Lynn (and you) learn from the answers to questions e and f?
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20. Employees of Georgia-Atlantic are permitted to contribute a portion of their earn-
ings (in increments of $500) to a flexible spending account from which they can pay 
medical expenses not covered by the company’s health insurance program. Contri-
butions to an employee’s “flex” account are not subject to income taxes. However, 
the employee forfeits any amount contributed to the “flex” account that is not spent 
during the year. Suppose Greg Davis makes $60,000 per year from Georgia-Atlantic 
and pays a marginal tax rate of 33%. Greg and his wife estimate that in the coming 
year their normal medical expenses not covered by the health insurance program 
could be as small as $500, as large as $5,000, and most likely about $1,300. However, 
Greg also believes there is a 5% chance that an abnormal medical event could occur 
which might add $10,000 to the normal expenses paid from their flex account. If 
their uncovered medical claims exceed their contribution to their “flex” account, 
they will have to cover these expenses with the after-tax money Greg brings home. 
a. Use simulation to determine the amount of money Greg should contribute to his 

flexible spending account in the coming year if he wants to maximize his dispos-
able income (after taxes and all medical expenses are paid). 

21. Acme Equipment Company is considering the development of a new machine that 
would be marketed to tire manufacturers. Research and development costs for the 
project are expected to be about $4 million but could vary between $3 and $6 mil-
lion. The market life for the product is estimated to be 3 to 8 years with all interven-
ing possibilities being equally likely. The company thinks it will sell 250 units per 
year, but acknowledges that this figure could be as low as 50 or as high as 350. The 
company will sell the machine for about $23,000. Finally, the cost of manufacturing 
the machine is expected to be $14,000 but could be as low as $12,000 or as high as 
$18,000. The company’s cost of capital is 15%.
a. Use appropriate RNGs to create a spreadsheet to calculate the possible net pres-

ent values (NPVs) that could result from taking on this project.
b. What is the expected NPV for this project?
c. What is the probability of this project generating a positive NPV for the company?

22.  Representatives from the American Heart Association are planning to go door-to-
door throughout a community, soliciting contributions. From past experience, they 
know that when someone answers the door, 80% of the time it is a female and 20% 
of the time it is a male. They also know that 70% of the females who answer the door 
make a donation, whereas only 40% of the males who answer the door make dona-
tions. The amount of money that females contribute follows a normal distribution 
with a mean of $20 and standard deviation of $3. The amount of money males con-
tribute follows a normal distribution with a mean of $10 and standard deviation of $2.
a. Create a spreadsheet model that simulates what might happen whenever a rep-

resentative of the American Heart Association knocks on a door and someone 
answers.

b. What is the average contribution the Heart Association can expect to receive 
when someone answers the door?

c.  Suppose that the Heart Association plans to visit 300 homes on a given Satur-
day. If no one is home at 25% of the residences, what is the total amount that the 
Heart Association can expect to receive in donations?

23. Techsburg, Inc. uses a stamping machine to manufacturer aluminum bodies for 
lightweight, miniature aircraft used for military reconnaissance. Currently, forms in 
the stamping machine are changed after every 65 hours of operation or whenever a 
form breaks, whichever happens first. The lifetime of each form follows a Weibull 
distribution modeled as PsiWeibull(2, 25) 1 50. The machine is operated 480 hours 
per month. It costs $800 to replace the stamping forms. If a form breaks before its 
scheduled replacement time (or in less than 65 hours of use), the shop loses 8 hours 
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of production time. However, if a form lasts until its scheduled replacement after 
65 hours of use, the shop only loses 2 hours of production time. The company esti-
mates that each hour of lost production time costs $1000.
a. On average, how much does Techsburg spend maintaining this stamping 

machine over 6 months?
b.  Suppose Techsburg wanted to minimize its total maintenance cost for the stamp-

ing machine. How often should the company plan of changing the stamping 
forms and how much money would it save?

c.  Suppose the cost to replace the stamping forms is expected to increase. What impact 
should this have on the optimal planned replacement time of the forms? Explain.

d.  Suppose the cost of lost production time is increased. What impact should this 
have on the optimal planned replacement time of the forms? Explain.

24. After spending ten years as an assistant manager for a large restaurant chain, Ray 
Clark has decided to become his own boss. The owner of a local submarine sand-
wich store wants to sell the store to Ray for $65,000 to be paid in installments of 
$13,000 in each of the next five years. According to the current owner, the store 
brings in revenue of about $110,000 per year and incurs operating costs of about 
63% of sales. Thus, once the store is paid for, Ray should make about $35,000–
$40,000 per year before taxes. Until the store is paid for, he will make substantially 
less—but he will be his own boss. Realizing that some uncertainty is involved in 
this decision, Ray wants to simulate what level of net income he can expect to earn 
during the next five years as he operates and pays for the store. In particular, he 
wants to see what could happen if sales are allowed to vary uniformly between 
$90,000 and $120,000, and if operating costs are allowed to vary uniformly between 
60% and 65% of sales. Assume that Ray’s payments for the store are not deductible 
for tax purposes and that he is in the 28% tax bracket.
a. Create a spreadsheet model to simulate the annual net income Ray would receive 

during each of the next five years if he decides to buy the store.
b.  Given the money he has in savings, Ray thinks he can get by for the next five 

years if he can make at least $12,000 from the store each year. 
c.  What is the probability that Ray will make at least $12,000 in each of the next five 

years?
d.  What is the probability that Ray will make at least $60,000 total over the next five 

years?
25.  Road Racer Sports, Inc. is a mail-order business dedicated to the running enthusiast. 

The company sends out full-color catalogs several times a year to several hundred 
thousand people on its mailing list. Production and mailing costs are fairly expensive 
for direct mail advertising, averaging about $3.25 per catalog. As a result, management 
does not want to continue sending catalogs to persons who do not buy enough to cover 
the costs of the catalogs they receive. Currently, the company removes a customer from 
their mailing list if they receive six consecutive catalogs without placing an order. The 
following table summarizes the probability of a customer placing an order.

Last order Prob. of Order

1 catalog ago 0.40

2 catalogs ago 0.34

3 catalogs ago 0.25

4 catalogs ago 0.17

5 catalogs ago 0.09

6 catalogs ago 0.03
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According to the first row in this table, if a customer receives a catalog and places 
an order, there is a 40% chance he will place another order when he receives his next 
catalog. The second row indicates there is a 34% chance a customer will receive a 
catalog, place an order, and then not order again until they receive two more cata-
logs. The remaining rows in this table have similar interpretations.
a. How much profit must the company earn on an average order in order to cover 

the cost of printing and distributing the catalogs?
b.  Approximately what percentage of the names on the mailing list will be purged 

before each catalog mailing?
26.  Sammy Slick works for a company that allows him to contribute up to 10% of his 

earnings into a tax-deferred savings plan. The company matches a portion of the 
contributions its employees make based on the organization’s financial performance. 
Although the minimum match is 25% of the employee’s contributions and the max-
imum match is 100%, in most years the company match is about 50%. Sammy is 
currently 30 years old and makes $35,000. He wants to retire at age 60. He expects his 
salary to increase in any given year to be at least 2% per year, at most 6%, and most 
likely 3%. The funds contributed by Sammy and his employer are invested in mutual 
funds. Sammy expects the annual return on his investments to vary according to a 
normal distribution with a mean of 12.5% and standard deviation of 2%.
a. If Sammy contributes 10% of his income to this plan, how much money could he 

expect to have at age 60?
b.  Suppose Sammy makes 10% contributions to this plan for eight years, from age 

30 to 37, and then stops contributing. How much of his own money would he 
have invested and how much money could he expect to have at age 60?

c.  Now suppose Sammy contributes nothing to the plan his first eight years and 
then contributes 10% for twenty-three years from age 38 to age 60. How much of 
his own money would he have invested and how much money could he expect 
to have at age 60?

d.  What do you learn from Sammy’s example?
27.  Podcessories manufacturers a several accessories for a popular digital music player. 

The company is trying to decide whether to discontinue one of the items in this 
product line. Discontinuing the item would save the company $600,000 in fixed costs 
(comprised of leases on building and machinery) during the coming year. However, 
the company is anticipating that it might receive an order for 60,000 units from a 
large discount retailer that could prove to be very profitable. Unfortunately, the com-
pany is being forced to make a decision about renewing the leases required to con-
tinue this item before it will know if it will receive the large order from the discount 
retailer. The variable cost per unit for this item is $6. The regular selling price of the 
item is $12 per unit. However, the company has offered the discount retailer a price 
of $10.50 per unit due to the size of its potential order. Podcessories believes there 
is a 60% chance it will receive the order from the discount retailer. Additionally, it 
believes general demand for this product (apart from the discount retailer’s order) 
will vary between 45,000 to 115,000 units with a most likely outcome of 75,000 units.
a. Create a spreadsheet model for this problem.
b.  How much money might the company lose next year (worst case) if they con-

tinue this line?
c.  How much money might the company make next year (best case) if they con-

tinue this line?
d.  If the company loses money, on average how much could they expect to lose? 
e.  If the company makes money, on average how much could they expect to make? 
f.  What other actions might you suggest this company take to improve its chance 

of making a decision with a good outcome?
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28. Bob Davidson owns a newsstand outside the Waterstone office building complex 
in Atlanta, near Hartsfield International Airport. He buys his papers wholesale at 
$0.50 per paper and sells them for $0.75. Bob wonders what is the optimal num-
ber of papers to order each day. Based on history, he has found that demand (even 
though it is discrete) can be modeled by a normal distribution with a mean of 50 
and standard deviation of 5. When he has more papers than customers, he can recy-
cle all the extra papers the next day and receive $0.05 per paper. On the other hand, 
if he has more customers than papers, he loses some goodwill in addition to the 
lost profit on the potential sale of $0.25. Bob estimates the incremental lost goodwill 
costs 5 days’ worth of business (i.e., dissatisfied customers will go to a competitor 
the next week, but come back to him the week after that).
a. Create a spreadsheet model to determine the optimal number of papers to order 

each day. Round the demand values generated by the normal RNG to the closest 
integer value.

b.  Construct a 95% confidence interval for the expected payoff from the optimal 
decision.

29. Vinton Auto Insurance is trying to decide how much money to keep in liquid assets 
to cover insurance claims. In the past, the company held some of the premiums 
it received in interest-bearing checking accounts and put the rest into investments 
that are not quite as liquid, but tend to generate a higher investment return. The 
company wants to study cash flows to determine how much money it should keep 
in liquid assets to pay claims. After reviewing historical data, the company deter-
mined that the average repair bill per claim is normally distributed with a mean of 
$1,700 and standard deviation of $400. It also determined that the number of repair 
claims filed each week is a random variable that follows the probability distribution 
shown in the following table:

Number of Claims 1 2 3 4 5 6 7 8 9

Probability 0.05 0.06 0.10 0.17 0.28 0.14 0.08 0.07 0.05

  In addition to repair claims, the company also receives claims for cars that have 
been “totaled” and cannot be repaired. A 20% chance of receiving this type of claim 
exists in any week. These claims for “totaled” cars typically cost anywhere from 
$2,000 to $35,000, with $13,000 being the most common cost.
a.  Create a spreadsheet model of the total claims cost incurred by the company in 

any week. 
b.  Create a histogram of the distribution of total cost values that were generated.
c.  What is the average cost the company should expect to pay each week?
d.  Suppose that the company decides to keep $20,000 cash on hand to pay claims. 

What is the probability that this amount would not be adequate to cover claims 
in any week? 

e.  Create a 95% confidence interval for the true probability of claims exceeding 
$20,000 in a given week.

 30.  Executives at Meds-R-Us have decided to build a new production facility for the 
company’s best-selling high blood pressure drug. The problem they now face is 
determining the size of the facility (in terms of production capacity). Last year, the 
company sold 1,085,000 units of this drug at a price of $13 per unit. They the demand 
for the drug to be normally distributed with a mean increasing by approximately 
59,000 units per year over the next 10 years with a standard deviation of 30,000 units. 
They expect the price of the drug to increasing with inflation at a rate of 3% per year. 

47412_ch12_ptg01_635-720.indd   706 08/11/16   1:32 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Questions and Problems 707

Variable production costs are currently $9 per unit and are also expected to increase 
in future years at the rate of inflation. Other operating costs are expected to be $1.50 
per unit of capacity in the first year of operation and increasing at the rate of inflation 
in subsequent years. The plant construction cost is expected to be $18 million for 1 
million units of annual production capacity. The company can increase the annual 
production capacity above this level at a cost of $12 per unit of additional capacity. 
Assume the company must pay for the plant when it is completed and all other cash 
flows occur at the end of each year. The company uses a 10% discount rate on cash 
flows for financial decisions.
a. Create a spreadsheet model to compute the net present value (NPV) for this 

decision.
b.  What is the expected NPV for a plant with a production capacity of 1.2 million 

units per year?
c.  What is the expected NPV for a plant with a production capacity of 1.4 million 

units per year?
d.  How large a plant should the company build if they want to be 90% certain of 

obtaining a positive NPV for this project? 
31. The owner of a local car dealership has just received a call from a regional distrib-

utor stating that a $5,000 bonus will be awarded if the owner’s dealership sells at 
least 10 new cars next Saturday. On an average Saturday, this dealership has 75 
potential customers look at new cars, but there is no way to determine exactly how 
many customers will come this particular Saturday. The owner is fairly certain that 
the number would not be less than 40, but also thinks it would be unrealistic to 
expect more than 120 (which is the largest number of customers to ever show up in 
1 day). The owner determined that, on average, about one out of ten customers who 
look at cars at the dealership actually purchase a car—or, a 0.10 probability (or 10% 
chance) exists that any given customer will buy a new car. 
a. Create a spreadsheet model for the number of cars the dealership might sell next 

Saturday. 
b.  What is the probability that the dealership will earn the $5,000 bonus?
c.  If you were this dealer, what is the maximum amount of money you would be 

willing to spend on sales incentives to try to earn this bonus?
32. Dr. Sarah Benson is an ophthalmologist who, in addition to prescribing glasses 

and contact lenses, performs optical laser surgery to correct nearsightedness. This 
surgery is fairly easy and inexpensive to perform. Thus, it represents a potential 
gold mine for her practice. To inform the public about this procedure, Dr. Benson 
advertises in the local paper and holds information sessions in her office one night 
a week at which she shows a DVD about the procedure and answers any questions 
potential patients might have. The room where these meetings are held can seat ten 
people, and reservations are required. The number of people attending each session 
varies from week to week. Dr. Benson cancels the meeting if two or fewer people 
have made reservations. Using data from the previous year, Dr. Benson determined 
that the distribution of reservations is as follows:

Number of 
Reservations 0 1 2 3 4 5 6 7 8 9 10

Probability 0.02 0.05 0.08 0.16 0.26 0.18 0.11 0.07 0.05 0.01 0.01

  Using data from the past year, Dr. Benson determined that each person who attends 
an information session has a 0.25 probability of electing to have the surgery. Of those 
who do not, most cite the cost of the procedure—$2,000—as their major concern.
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a. On average, how much revenue does Dr. Benson’s practice in laser surgery gen-
erate each week? 

b.  On average, how much revenue would the laser surgery generate each week if 
Dr. Benson did not cancel sessions with two or fewer reservations?

c.  Dr. Benson believes that 40% of the people attending the information sessions 
would have the surgery if she reduced the price to $1,500. Under this scenario, how 
much revenue could Dr. Benson expect to realize per week from laser surgery?

33. Calls to the 24-hour customer support line for Richman Financial Services occur 
randomly following a Poisson distribution with the following average rates during 
different hours of the day:

Time Period
Avg Calls  
Per Hour Time Period Avg Calls Per Hour

Midnight – 1 a.m. 2 Noon – 1 p.m. 35

1 a.m. – 2 a.m. 2 1 p.m. – 2 p.m. 20

2 a.m. – 3 a.m. 2 2 p.m. – 3 p.m. 20

3 a.m. – 4 a.m. 4 3 p.m. – 4 p.m. 20

4 a.m. – 5 a.m. 4 4 p.m. – 5 p.m. 18

5 a.m. – 6 a.m. 8 5 p.m. – 6 p.m. 18

6 a.m. – 7 a.m. 12 6 p.m. – 7 p.m. 15

7 a.m. – 8 a.m. 18 7 p.m. – 8 p.m. 10

8 a.m. – 9 a.m. 25 8 p.m. – 9 p.m. 6

9 a.m. – 10 a.m. 30 9 p.m. – 10 p.m. 5

10 a.m. – 11 a.m. 25 10 p.m. – 11 p.m. 4

11 a.m. – Noon 20 11 p.m. – Midnight 2

The Richman’s customer service representatives spend approximately 7 minutes on 
each call and are assigned to work 8-hour shifts that begin at the top of each hour. 
Richman wants to ensure that, on average, they can provide a 98% service level.
a. Determine the customer service schedule that allows Richman to achieve their 

service level objective using the fewest number of employees.
b. According to your solution, how many customer service representatives should 

Richman employ and how should they be scheduled?
34.  A European call option gives a person the right to buy a particular stock at a given 

price (the strike price) on a specific date in the future (the expiration date). This type 
of call option is typically sold at the net present value of the expected value of the 
option on its expiration date. Suppose you own a call option with a strike price of $54. 
If the stock is worth $59 on the expiration date, you would exercise your option and 
buy the stock, making a $5 profit. On the other hand, if the stock is worth $47 on the 
expiration date, you would not exercise your option and make $0 profit. Researchers 
have suggested the following model for simulating the movement of stock prices:

Pk11 5 Pk 11 1 μt 1 zσ"t 2
where:

Pk 5  price of the stock at time period k
μ 5 v 1 0.5σ2

v 5  the stock’s expected annual growth rate
σ 5  the standard deviation on the stock’s annual growth rate
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t 5  time period interval (expressed in years) 
z 5   a random observation from a normal distribution with mean 0 and standard 

deviation of 1.
  Suppose a stock has an initial price 1P0 2  of $80, an expected annual growth rate 1v 2

of 15%, and a standard deviation 1σ 2  of 25%. 
a. Create a spreadsheet model to simulate this stock’s price behavior for the next 13 

weeks (note t 5 1/52 because the time period is weekly).
b. Suppose you are interested in purchasing a call option with a strike price of $75 

and an expiration date at week 13. On average, how much profit would you earn 
with this option? 

c. Assume a risk-free discount rate is 6%. How much should you be willing to pay 
for this option today? (Hint: Use Excel’s NPV function.)

d. If you purchase the option, what is the probability that you will make a profit?
 35.  Refer to the previous question. Another type of option is the Asian option. Its pay-

off is not based on the price of the stock on the expiration date but, instead, on the 
average price of the stock over the lifetime of the option. 

  Suppose a stock has an initial price 1P0 2  of $80, an expected annual growth rate 1v 2
of 15%, and a standard deviation 1σ 2  of 25%. 
a. Create a spreadsheet model to simulate this stock’s price behavior for the next 13 

weeks (note t 5 1/52 because the time period is weekly).
b.  Suppose you are interested in purchasing a call option with a strike price of $75 

and an expiration date at week 13. On average, how much profit would you earn 
with this option? 

c.  Assume a risk-free discount rate is 6%. How much should you be willing to pay 
for this option today? (Hint: Use Excel’s NPV function.)

d.  If you purchase the option, what is the probability that you will make a profit?
 36. Amanda Green is interested in investing in the following set of mutual funds 

whose returns are all normally distributed with the indicated means and standard 
deviations:

Windsor Columbus Vanguard Integrity Nottingham

Mean 17.0% 14.0% 11.0% 8.0% 5.0%

Std Dev   9.0%   6.5%   5.0% 3.5% 2.0%

  The correlations between the mutual funds are as follows:

Windsor Columbus Vanguard Integrity Nottingham

Windsor 1 0.1   0.05 0.3 0.6

Columbus 1 0.2   0.15 0.1

Vanguard 1 0.1 0.2

Integrity 1 0.4

Nottingham 1

a.  What is the expected return and standard deviation on a portfolio where Amanda 
invests her money equally in all five mutual funds?

b.  Suppose Amanda is willing to assume the risk associated with a 5% standard 
deviation in returns on her portfolio. What portfolio will give her the greatest 
expected return for this level of risk?

c.  Construct the efficient frontier for this portfolio. How would you explain this 
graph to Amanda?
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37. Michael Abrams runs a specialty clothing store that sells collegiate sports apparel. 
One of his primary business opportunities involves selling custom screenprinted 
sweatshirts for college football bowl games. He is trying to determine how many 
sweatshirts to produce for the upcoming Tangerine Bowl game. During the month 
before the game, Michael plans to sell his sweatshirts for $25 apiece. At this price, 
he believes the demand for sweatshirts will be triangularly distributed with a min-
imum demand of 10,000, maximum demand of 30,000 and a most likely demand 
of 18,000. During the month after the game, Michael plans to sell any remaining 
sweatshirts for $12 apiece. At this price, he believes the demand for sweatshirts will 
be triangularly distributed with a minimum demand of 2,000, maximum demand 
of 7,000, and a most likely demand of 5,000. Two months after the game, Michael 
plans to sell any remaining sweatshirts to a surplus store that has agreed to buy 
up to 2,000 sweatshirts for a price of $3 per shirt. Michael can order custom screen-
printed sweatshirts for $8 apiece in lot sizes of 3,000. 
a. On average, how much profit would Michael earn if he orders 18,000 sweatshirts? 
b. How many sweatshirts should he order if he wants to maximize his expected profit? 

38. The Major Motors Corporation is trying to decide whether to introduce a new mid-
size car. The directors of the company only want to produce the car if it has at least 
an 80% chance of generating a positive net present value over the next ten years. 
If the company decides to produce the car, it will have to pay an uncertain initial 
start-up cost that is estimated to follow a triangular distribution with a minimum 
value of $2 billion, maximum value of $2.4 billion, and a most likely value of $2.1 
billion. In the first year, the company would produce 100,000 units. Demand during 
the first year is uncertain but expected to be normally distributed with a mean of 
95,000 and standard deviation of 7,000. For any year in which the demand exceeds 
production, production will be increased by 5% in the following year. For any year 
in which the production exceeds demand, production will be decreased by 5% in 
the next year, and the excess cars will be sold to a rental car company at a 20% dis-
count. After the first year, the demand in any year will be modeled as a normally 
distributed random variable with a mean equal to the actual demand in the previ-
ous year and standard deviation of 7,000. In the first year, the sales price of the car 
will be $13,000 and the total variable cost per car is expected to be $9,500. Both the 
selling price and variable cost is expected to increase each year at the rate of infla-
tion, which is assumed to be uniformly distributed between 2% and 7%. The com-
pany uses a discount rate of 9% to discount future cash flows. 
a. Create a spreadsheet model for this problem. What is the minimum, average, 

and maximum NPV Major Motors can expect if they decide to produce this car? 
(Hint: Consider using the NPV( ) function to discount the profits Major Motors 
would earn each year.)

b. What is the probability of Major Motors earning a positive NPV over the next ten 
years? 

c. Should they produce this car?
39.  Each year, the Schriber Corporation must determine how much to contribute to the 

company’s pension plan. The company uses a ten-year planning horizon to deter-
mine the contribution which, if made annually in each of the next ten years, would 
allow for only a 10% chance of the fund running short of money. The company 
then makes that contribution in the current year and repeats this process in each 
subsequent year to determine the specific amount to contribute each year. (Last 
year, the company contributed $23 million to the plan.) The pension plan covers 
two types of employees: hourly and salaried. In the current year, there will be 6,000 
former hourly employees and 3,000 former salaried employees receiving benefits 
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from the plan. The change in the number of retired hourly employees from one 
year to the next is expected to vary according to a normal distribution with a mean 
of 4% and standard deviation of 1%. The change in the number of retired sala-
ried employees from one year to the next is expected to vary between 1% and 4% 
according to a truncated normal distribution with a mean of 2% and standard devi-
ation of 1%. Currently, hourly retirees receive an average benefit of $15,000 per 
year, whereas salaried retirees receive an average annual benefit of $40,000. Both of 
these averages are expected to increase annually with the rate of inflation, which 
is assumed to vary between 2% and 7% according to a triangular distribution with 
a most likely value of 3.5%. The current balance in the company’s pension fund is 
$1.5 billion. Investments in this fund earn an annual return that is assumed to be 
normally distributed with a mean of 12% and standard deviation of 2%. Create 
a spreadsheet model for this problem and use simulation to determine the pen-
sion fund contribution the company should make in the current year. What is your 
recommendation?

Live Well, Die Broke
(Inspired by a presentation given by Dr. John Charnes.)

For investment advisors, a major consideration in planning for a client in retirement is 
the determination of a withdrawal amount that will provide the client to with the funds 
necessary to maintain his or her desired standard of living throughout the client’s 
remaining lifetime. If a client withdraws too much or if investment returns fall below 
expectations, there is a danger of either running out of funds or reducing the desired 
standard of living. A sustainable retirement withdrawal is the inflation-adjusted mone-
tary amount a client can withdraw periodically from his or her retirement funds for an 
assumed planning horizon. This amount cannot be determined with complete certainty 
because of the random nature of investment returns. Usually, the sustainable retire-
ment withdrawal is determined by limiting the probability of running out of funds to 
some specified level, such as 5%. The sustainable retirement withdrawal amount is typ-
ically expressed as a percentage of the initial value of the assets in the retirement port-
folio, but is actually the inflation-adjusted monetary amount that the client would like 
each year for living expenses.

Assume an investment advisor, Roy Dodson, is assisting a widowed client in deter-
mining a sustainable retirement withdrawal. The client is a 59-year-old woman who 
turns 60 in two months. She has $1,000,000 in a tax-deferred retirement account that 
will be the primary source of her retirement income. Roy has designed a portfolio for 
his client with returns he expects to be normally distributed with a mean of 8% and 
standard deviation of 2%. Withdrawals will be made at the beginning of each year on 
the client’s birthday.

Roy assumes that the inflation rate will be 3%, based on long term historic data. So if 
her withdrawal at the beginning of the first year is $40,000, her inflation-adjusted with-
drawal at the beginning of the second year will be $41,200, the third year’s withdrawal 
will be $42,436, etc. 

For his initial analysis, Roy wants to assume his client will live until age 90. In con-
sultation with his client, he also wants to limit the chance that she will run out of money 
before her death to a maximum of 5%. 

CASE 12.1
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1. What is the maximum amount Roy should advise his client to withdraw on her 
60th birthday? If she lives until age 90, how much should the client expect to leave 
to her heirs?

2. Roy is now concerned about basing his analysis on the assumption that his client 
will live to age 90. After all, she is healthy and might live to be 110, or she could 
be in a car accident and die at age 62. To account for this uncertainty in the cli-
ent’s age at death, Roy would like to model the client’s remaining life expectancy 
as a random variable between 0 and 50 years that follows a lognormal distribution 
with a mean of 20 and standard deviation of 10 (rounded to the nearest integer). 
Under this assumption, what is the maximum amount Roy should advise his client 
to withdraw on her 60th birthday and how much should the client expect to leave 
to her heirs? (Hint: Modify your spreadsheet to accommodate ages up to 110 and 
use a VLOOKUP( ) function to return the client’s ending balance in her randomly 
determined year of death.) 

3. Roy is pleased to now be modeling the uncertainty in his client’s life expectancy. 
But he is now curious about limiting to 5% the chance that his client will run out 
of money before her death. In particular, he is wondering how sensitive the sus-
tainable withdrawal amount is to changes in this 5% assumption. To answer this 
question, create an efficient frontier showing the maximum sustainable withdrawal 
amount as the chance of running out of money is varied from 1% to 10%. How 
should Roy explain the meaning of this chart to his client?

4. Suppose Roy’s client has three children and wants there to be a 95% chance that 
they will each inherit at least $250,000 when she dies. Under this assumption, what 
is the maximum amount Roy should advise his client to withdraw on her 60th 
birthday and how much should the client expect to leave to her heirs?

Death and Taxes
Benjamin Franklin once said, “In this world nothing is certain but death and taxes.” 
Although that may be true, there is often great uncertainty involved in when one 
will encounter death and how much one must pay in taxes before arriving there. 
Another Benjamin made a very significant contribution toward assessing the uncer-
tainty associated with both death and taxes. Benjamin Gompertz (1779-1865) was 
a British mathematician who, by studying Mediterranean fruit flies, theorized that 
mortality rates increase at an exponential rate as age increases (i.e., as an organism 
gets older, its chance of dying per unit of time increases exponentially). Gompertz’s 
Law of Mortality has since become a cornerstone of actuarial and financial planning 
activities. 

In a group of people of a given age (e.g., 65), some proportion of those people will 
not live another year. Let qx represent the proportion of people of age x who will die 
before reaching age x 1 1. The value qx is sometimes referred to as the mortality rate at 
age x. The following formula, based on Gompertz’s Law, is sometimes used to model 
mortality rates:

 qx 5 1 2 EXP a
1LN 11 2 qx21 2 2 2

LN 11 2 qx22 2 b

Mortality rates play an important role in numerous financial planning and retire-
ment decisions. For instance, most individuals do not want to retire unless they are 
reasonably certain they have enough assets to sustain themselves financially for the 
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rest of their life. The uncertainties associated with this sort of decision create a perfect 
application for spreadsheet simulation. 

The following questions give you the opportunity to explore several issues that actu-
aries and financial planners face on a daily basis. Assume the mortality rates for males 
at ages 63 and 64 are q63 5 0.0235 and q64 5 0.0262, respectively, and those of females 
at ages 63 and 64 are q63 5 0.0208 and q64 5 0.0225, respectively. (Remember the Risk 
Solver Platform for Education limits you to 100 uncertain (RNG) cells per workbook. So 
you might need to build models for questions 8, 9, & 10 in separate workbooks.)

 1.  On average, to what age should a 65-year-old male expect to live? 
 2.  What is the probability of a 65-year-old male living to at least age 80?
 3.  What is the probability of a 65-year-old male living to exactly age 80?
 4.  On average, to what age should a 70-year-old male expect to live? 
 5.  What is the probability of a 70-year-old male living to at least age 80?
 6.  What is the probability of a 70-year-old male living to exactly age 80?
 7.  Suppose a 65-year-old male has $1,200,000 in retirement investments earn-

ing an 8% interest rate. Assume he intends to withdraw $100,000 in his first 
year of retirement and 3% more in subsequent years to adjust for inflation. 
Annual interest earnings are credited on the beginning balance less one half the 
amount withdrawn. For example, in the first year interest earnings would be 
0.08 3 1$1,200,000 2 $100,000/2 2 5 $92,000. What is the probability that this indi-
vidual would outlive his retirement assets (assuming he spends all he withdraws 
each year)?

 8.  Refer to the previous question. Suppose the interest rate each year can be modeled 
as a normally distributed random variable with a mean of 8% and standard devi-
ation of 1.5%. Further suppose the rate of inflation each year can be described as 
a random variable following a triangular distribution with minimum, most likely, 
and maximum values of 2%, 3%, and 5%, respectively. Under these conditions, what 
is the probability that this individual would outlive his retirement assets (assuming 
he spends all he withdraws each year)?

 9.  Suppose the person described in the previous question has a 65-year-old wife who 
is joint owner of the retirement assets described earlier. What is the probability that 
the retirement assets would be depleted before both spouses die (assuming they 
spend all they withdraw each year)?

 10.  Refer to the previous question. How much money should this couple plan on with-
drawing in the first year if they want there to be a maximum of a 5% chance of 
depleting their retirement assets before they both die?

The Sound’s Alive Company
(Contributed by Dr. Jack Yurkiewicz, Lubin School of Business, Pace University.)

Marissa Jones is the president and CEO of Sound’s Alive, a company that manufactures 
and sells a line of speakers, CD players, receivers, high-definition televisions, and other 
items geared for the home entertainment market. Respected throughout the industry 
for bringing many high-quality, innovative products to market, Marissa is considering 
adding a speaker system to her product line.

The speaker market has changed dramatically during the last several years. Orig-
inally, high-fidelity aficionados knew that to reproduce sound covering the fullest 
range of frequencies—from the lowest kettle drum to the highest violin—a speaker 
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system had to be large and heavy. The speaker had various drivers: a woofer to repro-
duce the low notes, a tweeter for the high notes, and a mid-range driver for the broad 
spectrum of frequencies in between. Many speaker systems had a minimum of three 
drivers, but some had even more. The trouble was that such a system was too large 
for anything but the biggest rooms, and consumers were reluctant to spend thousands 
of dollars and give up valuable wall space to get the excellent sound these speakers 
could reproduce.

The trend has changed during the past several years. Consumers still want good 
sound, but they want it from smaller boxes. Therefore, the satellite system became pop-
ular. Consisting of two small boxes that house either one driver (to cover the mid-range 
and high frequencies) or two (a mid-range and tweeter), a satellite system can easily be 
mounted on walls or shelves. To reproduce the low notes, a separate subwoofer that is 
approximately the size of a cube 18 inches on a side is also needed. This subwoofer can 
be placed anywhere in the room. Taking up less space than a typical large speaker sys-
tem and sounding almost as good, yet costing hundreds of dollars less, these satellite 
systems are hot items in the high-fidelity market.

Recently, the separate wings of home entertainment—high fidelity (receivers, speak-
ers, CD players, DVD players, and so on), television (large screen monitors, digital 
video recorders, laser players), and computers (games with sounds, virtual reality soft-
ware, and so on)—have merged into the home theater concept. To simulate the movie 
environment, a home theater system requires the traditional stereo speaker system 
plus additional speakers placed in the rear of the room so that viewers are literally sur-
rounded with sound. Although the rear speakers do not have to match the high quality 
of the front speakers and, therefore, can be less expensive, most consumers choose a 
system in which the front and rear speakers are of equal quality, reproducing the full 
range of frequencies with equal fidelity.

It is this speaker market that Marissa wants to enter. She is considering having 
Sound’s Alive manufacture and sell a home theater system that consists of seven 
speakers. Three small speakers—each with one dome tweeter that could reproduce 
the frequency range of 200 Hertz to 20,000 Hertz (upper-low frequencies to the highest 
frequencies)—would be placed in front, and three similar speakers would be placed 
strategically around the sides and back of the room. To reproduce the lowest frequen-
cies (from 35 Hertz to 200 Hertz), a single subwoofer would also be part of the system. 
This subwoofer is revolutionary because it is smaller than the ordinary subwoofer, 
only 10 inches per side, and it has a built-in amplifier to power it. Consumers and 
critics are thrilled with the music from early prototype systems, claiming that these 
speakers have the best balance of sound and size. Marissa is extremely encouraged by 
these early reviews, and although her company has never produced a product with its 
house label on it (having always sold systems from established high-fidelity compa-
nies), she believes that Sound’s Alive should enter the home theater market with this 
product.

Phase One: Projecting Profits
Marissa decides to create a spreadsheet that will project profits over the next several 
years. After consulting with economists, market analysts, employees in her own com-
pany, and employees from other companies that sell house brand components, Marissa 
is confident that the gross revenues for these speakers in 2018 would be around $6 
million. She must also figure that a small percentage of speakers will be damaged 
in transit, or some will be returned by dissatisfied customers shortly after the sales. 
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These returns and allowances (R&As) are usually calculated as 2% of the gross reve-
nues. Hence, the net revenues are simply the gross revenues minus the R&As. Marissa 
believes that the 2018 labor costs for these speakers will be $995,100. The cost of materi-
als (including boxes to ship the speakers) should be $915,350 for 2018. Finally, her over-
head costs (rent, lighting, heating in winter, air conditioning in summer, security, etc.) 
for 2018 should be $1,536,120. Thus, the cost of goods sold is the sum of labor, material, 
and overhead costs. Marissa figures the gross profit as the difference between the net 
revenues and the cost of goods sold. In addition, she must consider the selling, general, 
and administrative (SG&A) expenses. These expenses are more difficult to estimate, 
but the standard industry practice is to use 18% of the net revenues as the nominal 
percentage value for these expenses. Therefore, Marissa’s profit before taxes is the gross 
profit minus the SG&A value. To calculate taxes, Marissa multiplies her profits before 
taxes times the tax rate, currently 30%. If her company is operating at a loss, however, 
no taxes would have to be paid. Finally, Marissa’s net (or after tax) profit is simply the 
difference between the profit before taxes and the actual taxes paid.

To determine the numbers for 2016 through 2021, Marissa assumes that gross rev-
enues, labor costs, material costs, and overhead costs will increase over the years. 
Although the rates of increase for these items are difficult to estimate, Marissa figures 
that gross revenues will increase by 9% per year, labor costs will increase by 4% per 
year, material costs will increase by 6% per year, and overhead costs will increase by 
3% per year. She figures that the tax rate will not change from the 30% mark, and she 
assumes that the SG&A value will remain at 18%.

The basic layout of the spreadsheet that Marissa creates is shown in Figure 12-47 
(and in the file Fig12-47.xlsm on your data disk). (Ignore the Competitive Assump-
tions section for now; we will consider it later.) Construct the spreadsheet, deter-
mine the values for the years 2018 through 2021, and then determine the totals for 
the four years.

FIGURE 12.47

Spreadsheet template 
for the Sound’s Alive 
case

Case 12.3 715
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Marissa not only wants to determine her net profits for 2018 through 2021, she also 
must justify her decisions to the company’s Board of Trustees. Should she even con-
sider entering this market, from a financial point of view? One way to answer this 
question is to find the net present value (NPV) of the net profits for 2018 through 2021. 
Use Excel’s NPV capability to find the NPV, at the current interest rate of 5%, of the 
profit values for 2018 through 2021.

To avoid large values in the spreadsheet, enter all dollar calculations in thousands. 
For example, enter labor costs as 995.10 and overhead costs as 1536.12.

Phase Two: Bringing Competition  
into the Model
With her spreadsheet complete, Marissa is confident that entering the home theater 
speaker market would be lucrative for Sound’s Alive. However, she has not consid-
ered one factor in her calculations—competition. The current market leader and com-
pany she is most concerned about is the Bose Corporation. Bose pioneered the concept 
of a satellite speaker system, and its AMT series is very successful. Marissa is con-
cerned that Bose will enter the home market, cutting into her gross revenues. If Bose 
does enter the market, Marissa believes that Sound’s Alive would still make money; 
however, she would have to revise her gross revenues estimate from $6 million to $4 
million for 2018.

To account for the competition factor, Marissa revises her spreadsheet by adding 
a Competitive Assumptions section. Cell F4 will contain either a 0 (no competition) 
or a 1 (if Bose enters the market). Cells F5 and F6 provide the gross revenue esti-
mates (in thousands of dollars) for the two possibilities. Modify your spreadsheet to 
take these options into account. Use the IF( ) function for the gross revenues for 2018 
(cell B12). If Bose does enter the market, not only would Marissa’s gross revenues 
be lower, but the labor, materials, and overhead costs would also be lower because 
Sound’s Alive would be making and selling fewer speakers. Marissa thinks that if 
Bose enters the market, her 2018 labor costs would be $859,170; 2018 material costs 
would be $702,950; and 2018 overhead costs would be $1,288,750. She believes that 
her growth rate assumptions would stay the same whether or not Bose enters the 
market. Add these possible values to your spreadsheet using the IF( ) function in the 
appropriate cells.

Look at the net profits for 2018 through 2021. In particular, examine the NPV for the 
two scenarios: Bose does or does not enter the home theater speaker market.

Phase Three: Bringing Uncertainty  
into the Model
Jim Allison, the chief of operations at Sound’s Alive and a quantitative methods 
specialist, plays a key role in providing Marissa with estimates for the various rev-
enues and costs. He is uneasy about the basic estimates for the growth rates. For 
example, although market research indicates that a 9% gross revenue increase per 
year is reasonable, Jim knows that if this value is 7%, for example, the profit values 
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and the NPV would be quite different. Even more troublesome is a potential tax 
increase, which would hit Sound’s Alive hard. Jim believes that the tax rate could 
vary around the expected 30% figure. Finally, Jim is uncomfortable with the indus-
try’s standard estimate of 18% for the SG&A rate. Jim thinks that this value could be 
higher or even lower.

The Sound’s Alive problem is too complicated for solving with what-if analysis 
because seven assumed values could change: the growth rates for gross revenues, labor, 
materials, overhead costs, tax rate, SG&A percent, and whether or not Bose enters the 
market. Jim believes that a Monte Carlo simulation would be a better approach. Jim 
thinks that the behavior of these variables can be modeled as follows:

Gross Revenues 1% 2 : normally distributed, mean 5 9.9, std dev 5 1.4

   Labor Growth 1% 2 : normally distributed, mean 5 3.45, std dev 5 1.0

Case 12.4 717

Materials (%) Probability

4 0.10

5 0.15

6 0.15

7 0.25

8 0.25

9 0.10

Overhead (%) Probability

2 0.20

3 0.35

4 0.25

5 0.20

Tax Rate (%) Probability

30 0.15

32 0.30

34 0.30

36 0.25

SG&A (%) Probability

15 0.05

16 0.10

17 0.20

18 0.25

19 0.20

20 0.20

Finally, Jim and Marissa agree that there is a 50/50 chance that Bose will enter the 
market.

 1. Use simulation to analyze the Sound’s Alive problem. Based on your results, what 
is the expected net profit for the years 2018 through 2021, and what is the expected 
NPV for this business venture?

 2. The Board of Trustees told Marissa that the stockholders would feel comfortable 
with this business venture if its NPV is at least $5 million. What are the chances 
that Sound’s Alive home theater venture will result in an NPV of $5 million or 
more?

The Foxridge Investment Group
(Inspired by a case written by MBA students Fred Hirsch and Ray Rogers for Professor 
Larry Weatherford at the University of Wyoming.)

CASE 12.4
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The Foxridge Investment Group buys and sells rental income properties in Southwest 
Virginia. Bill Hunter, president of Foxridge, has asked for your assistance in analyzing 
a small apartment building the group is interested in purchasing. 

The property in question is a small two-story structure with three rental units on 
each floor. The purchase price of the property is $170,000 representing $30,000 in land 
value and $140,000 in buildings and improvements. Foxridge will depreciate the build-
ings and improvements value on a straight-line basis over 27.5 years. The Foxridge 
Group will make a down payment of $40,000 to acquire the property and finance the 
remainder of the purchase price over 20 years with an 11% fixed-rate loan with pay-
ments due annually. Figure 12.48 (and the file Fig12-48.xlsm on your data disk) sum-
marizes this and other pertinent information.

FIGURE 12.48

Assumptions for the 
Foxridge Investment 
Group case

If all units are fully occupied, Mr. Hunter expects the property to generate rental in-
come of $35,000 in the ½rst year and expects to increase the rent at the rate of in¾ation 
(currently 4%). Because vacancies occur and some residents may not always be able to 
pay their rent, Mr. Hunter factors in a 3% vacancy & collection (V&C) allowance against 
rental income. Operating expenses are expected to be approximately 45% of rental 
income. The group’s marginal tax rate is 28%.

If the group decides to purchase this property, their plan is to hold it for ½ve years 
and then sell it to another investor. Presently, property values in this area are increasing 
at a rate of approximately 2.5% per year. The group will have to pay a sales commission 
of 5% of the gross selling price when they sell the property. 

Figure 12.49 shows a spreadsheet model Mr. Hunter developed to analyze this 
problem. This model ½rst uses the data and assumptions given in Figure 12.48 to 
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generate the expected net cash ¾ows in each of the next ½ve years. It then provides a 
½nal summary of the proceeds expected from selling the property at the end of ½ve 
years. The total net present value (NPV) of the project is then calculated in cell I18 
using the discount rate of 12% in cell C24 of Figure 12.47. Thus, after discounting all 
the future cash ¾ows associated with this investment by 12% per year, the investment 
still generates an NPV of $2,007.

Although the group has been using this type of analysis for many years to make 
investment decisions, one of Mr. Hunter’s investment partners recently read an article 
in the Wall Street Journal about risk analysis and simulation using spreadsheets. As a 
result, the partner realizes there is quite a bit of uncertainty associated with many of the 
economic assumptions shown in Figure 12.48. After explaining the potential problem 
to Mr. Hunter, the two have decided to apply simulation to this model before making a 
decision. Because neither of them know how to do simulation, they have asked for your 
assistance. 

To model the uncertainty in this decision problem, Mr. Hunter and his partner have 
decided that the growth in rental income from one year to the next could vary uni-
formly from 2% to 6% in years 2 through 5. Similarly, they believe the V&C allowance 
in any year could be as low as 1% and as high as 5%, with 3% being the most likely out-
come. They think the operating expenses in each year should be normally distributed 
with a mean of 45% and standard deviation of 2% but should never be less than 40% 
and never greater than 50% of gross income. Finally, they believe the property value 
growth rate could be as small as 1% or as large as 5%, with 2.5% being the most likely 
outcome.

1. Revise the spreadsheets shown in Figures 12.48 and 12.49 to reflect the uncertainties 
outlined.

2. Construct a 95% confidence interval for the average total NPV the Foxridge Invest-
ment Group can expect if they undertake this project. Interpret this confidence 
interval.

FIGURE 12.49

Cash flow and 
financial summary 
for the Foxridge 
Investment Group 
case

Case 12.4 719
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3. Based on your analysis, what is the probability of this project generating a positive 
total NPV if the group uses a 12% discount rate?

4. Suppose the investors are willing to buy the property if the expected total NPV is 
greater than zero. Based on your analysis, should they buy this property?

5. Assume the investors decide to increase the discount rate to 14% and repeat ques-
tions 2, 3, and 4. 

6. What discount rate results in a 90% chance of the project generating a positive total 
NPV?
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Chapter 13
Queuing Theory

13.0 Introduction
Sometimes it seems as if we spend most of our lives waiting in lines. We wait in lines at 
grocery stores, banks, airports, hotels, restaurants, theaters, theme parks, post offices, 
and traffic lights. At home, we are likely to spend time waiting in an “electronic line” 
if we use the telephone to order merchandise from mail-order firms, or to call the cus-
tomer service number of most computer hardware or software companies.

Some reports indicate that Americans spend 37 billion hours a year waiting in lines. 
Much of this time represents a loss of a limited resource (time) that can never be recov-
ered. Add the frustration and irritation many people experience while waiting in lines 
and it is easy to see why businesses should be interested in reducing or eliminating the 
amount of time their customers spend waiting in lines.

Waiting lines do not always contain people. In a manufacturing company, subas-
semblies often wait in a line at machining centers to have the next operation performed 
on them. At a movie rental store, returned DVDs often wait to be placed on shelves so 
they can be rented again. Electronic messages on the Internet sometimes wait at inter-
mediate computing centers before they are sent to their final destinations. Costs could 
be reduced, or customer service improved, by reducing the amount of time that the 
subassemblies, DVDs, or electronic messages spend waiting in line.

The term queuing theory refers to the body of knowledge dealing with waiting lines. 
Queuing theory was conceived in the early 1900s when a Danish telephone engineer 
named A. K. Erlang began studying the congestion and waiting times occurring in the 
completion of telephone calls. Since then, a number of quantitative models have been 
developed to help business people understand waiting lines and make better decisions 
about how to manage them. This chapter introduces some of these models and dis-
cusses other issues involved in queuing theory.

13.1 The Purpose of Queuing Models
Most queuing problems focus on determining the level of service that a company should 
provide. For example, grocery stores must determine how many cash registers to oper-
ate at a given time of day so that customers do not have to wait too long to check out. 
Banks must determine how many tellers to schedule at various times of day to maintain 
an acceptable level of service. Companies that lease copying machines must determine 
the number of technicians to employ so that repairs can be made in a timely manner.

In many queuing problems, management has some control over the level of service 
provided. In the examples just mentioned, customer waiting times could be kept to 
a minimum by employing a large number of servers (in the form of cashiers, tellers, 
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$

Service

Total cost

Cost of providing service

Cost of customer dissatisfaction

FIGURE 13.1

Trade-off between  
costs of providing 
service and cus-
tomer satisfaction

and technicians). However, this can be expensive, or actually wasteful, if an excessive 
number of idle servers is maintained. On the other hand, employing a small number of 
servers keeps the cost of providing service low, but is likely to result in longer customer 
waiting times and greater customer dissatisfaction. Thus, a trade-off exists between the 
cost of providing service and the cost of having dissatisfied customers if service is lack-
ing. The nature of this trade-off is illustrated in Figure 13.1.

Figure 13.1 indicates that as service levels increase, the cost of providing service also 
increases, but the cost of customer dissatisfaction decreases (as does the length of time 
customers must wait for service). As service levels decrease, the cost of providing ser-
vice also decreases, but the cost of customer dissatisfaction increases. The objective in 
many queuing problems is to find the optimal service level that achieves an acceptable 
balance between the cost of providing service and customer satisfaction.

13.2 Queuing System Configurations
The queuing systems we encounter in everyday life are configured in a variety of ways. 
Three typical configurations are illustrated in Figure 13.2.

The first configuration in Figure 13.2 represents a single-queue, single-server sys-
tem. In this configuration, customers enter the system and wait in line on a first-in, 
first-out (FIFO) basis until they receive service; then they exit the system. This type of 
queuing system is employed at most Wendy’s and Taco Bell restaurants. You might 
also encounter this type of queuing system at some automatic teller machines (ATMs).

The second configuration in Figure 13.2 represents a single-queue, multi-server sys-
tem. Here again, customers enter the system and join a FIFO queue. Upon reaching 
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the front of the line, a customer is serviced by the next available server. The example 
shows three servers, but there could be more or fewer servers depending on the prob-
lem at hand. This type of queuing system is found at most airport check-in counters, 
post offices, and banks.

The third configuration in Figure 13.2 represents a collection of single-queue, sin-
gle-server systems. In this type of arrangement, when customers arrive, they must 
choose one of the queues and then wait in that line to receive service. This type of sys-
tem is found at most grocery stores and most Burger King and McDonald’s restaurants.

This chapter discusses queuing models that can be used to analyze the first two 
types of configurations shown in Figure 13.2. In some cases, the individual queues in 
the third configuration in Figure 13.2 can be analyzed as independent, single-queue, 
single-server systems. Thus, the results presented for the first type of configuration can 
sometimes be generalized to analyze the third configuration also.

13.3 Characteristics of Queuing Systems
To create and analyze mathematical models of the queuing configurations shown in 
Figure 13.2, we must make some assumptions about the way in which customers arrive 
to the system and the amount of time it takes for them to receive service.

…

Waiting Line Server

…

Waiting Line Server 2

…

Waiting Line Server 3

…

Waiting Line Server 1

…

Waiting Line Server 2

Server 3

Server 1

Customer
Arrives

Customer
Arrives

Customer
Leaves

Customer
Leaves

Customer
Leaves

Customer
Leaves

Customer
Leaves

Customer
Leaves

Customer
Leaves

Customer
Arrives

FIGURE 13.2

Examples 
of different 
queuing system 
configurations
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13.3.1 ArrivAl rAte
In most queuing systems, customers (or jobs in a manufacturing environment) arrive in 
a somewhat random fashion. That is, the number of arrivals that occurs in a given time 
period represents a random variable. It is often appropriate to model the arrival pro-
cess in a queuing system as a Poisson random variable. To use the Poisson probability 
distribution, we must specify a value for the arrival rate, denoted as λ, representing the 
average number of arrivals per time period. (For a Poisson random variable, the vari-
ance of the number of arrivals per time period is also λ.) The probability of x arrivals in 
a specific time period is represented by:

 P 1x2 5 λx e2λ

x!
     for x 5 0, 1, 2,c 13.1

where e represents the base of the natural logarithm 1e 5 2.71828 2  and x! 5 1x 2 1x 2 1 2
1x 2 2 2  .  .  . (2)(1). (x! is referred to as x factorial and can be calculated using the  
FACT( ) function in Excel.)

For example, suppose that calls to the customer service hotline of a computer retailer 
occur at a rate of five per hour and follow a Poisson probability distribution 1λ 5 5 2 .
The probability distribution associated with the number of calls arriving in a given hour 
is illustrated in Figure 13.3 (and in the file Fig13-3.xlsm that accompanies this book).

Key Cell Formulas

Cell Formula Copied to

B5 5($B$2^A5*EXP(2$B$2))/FACT(A5) B6:B21

FIGURE 13.3

Example of a 
Poisson probability 
distribution with 
mean 1l 5 5 2

In Figure 13.3, the values in column B represent the probabilities associated with 
each value in column A. For example, the value in cell B5 indicates that a 0.0067 prob-
ability exists of 0 calls arriving in a given hour; cell B6 indicates that a 0.0337 proba-
bility exists of 1 call arriving; and so on. The histogram of the probability distribution 
indicates that, on average, we can expect approximately 5 calls to arrive in 1 hour. 
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However, because the Poisson distribution is skewed to the right, a significantly larger 
number of calls (in this case, 13 or more) could arrive in some 1-hour time periods.

Figure 13.3 indicates that the probability of six calls occurring in a given hour is 
0.1462. However, the six calls probably will not occur all at the same time. Some ran-
dom amount of time is likely to transpire between arriving calls. This time between 
arrivals is known as the interarrival time. If the number of arrivals in a given period of 
time follows a Poisson distribution with mean λ, it can be shown that the interarrival 
times follow an exponential probability distribution with mean 1/  λ.

For example, if calls to the computer retailer’s hotline follow a Poisson distribution 
and occur at an average rate of λ 5 5 per hour, the interarrival times follow an expo-
nential distribution with an average interarrival time of 1/5 5 0.2 hours. That is, calls 
occur once every 12 minutes on average (because there are 60 minutes in an hour and 
0.2 3 60 minutes 5 12 minutes).

The exponential distribution plays a key role in queuing models. It is one of the 
few probability distributions that exhibits the memoryless (or lack of memory) prop-
erty. An arrival process is memoryless if the time until the next arrival occurs does 
not depend on how much time has elapsed since the last arrival. The Russian math-
ematician Markov was the first to recognize the memoryless property of certain  
random variables. Therefore, the memoryless property is also sometimes referred to as 
the Markov or Markovian property.

All the queuing models presented in this chapter assume that arrivals follow a Pois-
son distribution (or, equivalently, that interarrival times follow an exponential distribu-
tion). To use these models, it is important to verify that this assumption is valid for the 
queuing system being modeled. One way to verify that arrivals can be approximated 
by the Poisson distribution is to collect data on the number of arrivals occurring per 
time period for several hours, days, or weeks. The average number of arrivals per time 
period can be calculated from these data and used as an estimate of λ. A histogram of 
the actual data can be constructed and compared to a histogram of the actual probabil-
ities expected of a Poisson random variable with mean λ. If the histograms are similar, 
it is reasonable to assume that the arrival process is approximately Poisson. (Additional 
goodness-of-fit tests can be found in most texts on queuing and simulation.)

13.3.2 Service rAte
A customer who arrives at a service facility spends some amount of time (possibly 0) 
waiting in line for service to begin. We refer to this time as queue time. Service time is 
the amount of time a customer spends at a service facility once the actual performance 
of service begins. (So service time does not include queue time.)

It is often appropriate to model the service times in a queuing system as an exponen-
tial random variable. To use the exponential probability distribution for this purpose, we 
must specify a value for the service rate, denoted by μ, representing the average number 
of customers (or jobs) that can be served per time period. The average service time per 
customer is 1/μ time periods (and the variance of the service time per customer is 11/μ 2 2

time periods). Because the exponential distribution is continuous, the probability of an 
exponential random variable equaling any specific value is zero. Thus, probabilities asso-
ciated with an exponential random variable must be defined in terms of intervals. If the 
distribution of service times follows an exponential distribution, the probability that the 
service time T of a given customer will be between t1 and t2 time periods is defined by:

 P 1 t1 # T # t2 2 5 3
t2

t1

μe2μxdx 5 e2μt1 2 e2μt2,   for t1 # t2 13.2
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Key Cell Formulas

Cell Formula Copied to

D5 5EXP(2$C$2*A5)2EXP(2$C$2*C5) D6:D23

FIGURE 13.4

Example of an 
exponential 
distribution with 
μ 5 7

For example, suppose that the operator on the customer service hotline can service 
calls at a rate of seven per hour, on average, and that the service times follow an expo-
nential distribution 1μ 5 7 2 . Figure 13.4 (and the file Fig13-4.xlsm that accompanies 
this book) shows the probability of the service time falling within several time intervals.

In Figure 13.4, the value in cell D5 indicates that a 0.295 probability exists that it will 
take from 0 to 0.05 hours (or 3 minutes) to service any call. Similarly, the value in cell 
D9 indicates that a 0.073 probability exists that it will take between 0.2 and 0.25 hours 
(or from 12 to 15 minutes) to service any call.

The data and graph in Figure 13.4 indicate that for exponential distributions, shorter ser-
vice times have the largest relative probability of occurring. In reality, some minimal amount 
of time is usually required to provide most services. This might lead us to believe that the 
exponential distribution would tend to underestimate the actual service time required by 
most customers. However, the exponential distribution also assumes that some very long 
service times will occur (though very infrequently). The possibility of these very long (but 
infrequent) service times provides a balance to the very short (but frequent) service times so 
that, on average, the exponential distribution provides a reasonably accurate description of 
the behavior of service times in many real-world problems. But keep in mind that the expo-
nential distribution is not an adequate model of service times in all applications. 

One way to verify that the service rate can be modeled using the exponential distri-
bution is to collect data on the service times occurring per time period for several hours, 
days, or weeks. The average number of customers serviced per time period can be cal-
culated from these data and used as an estimate of the service rate μ. Using actual data, 
a relative frequency distribution of the service times falling within various intervals can 
be constructed and compared to the distribution of the actual probabilities expected for 
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each interval for an exponential random variable with a service rate of μ (like the one  
shown in Figure 13.4). If the distributions are similar, it is reasonable to assume that 
the distribution of service times is approximately exponential. (Again, additional good-
ness-of-fit tests can be found in most texts on queuing and simulation.)

13.4 Kendall Notation
Given the variety of queuing models that exist, a system known as Kendall notation
was developed to allow the key characteristics of a specific queuing model to be 
described in an efficient manner. With Kendall notation, simple queuing models can be 
described by three characteristics in the following general format:

1/2/3

The first characteristic identifies the nature of the arrival process using the following 
standard abbreviations:

M 5 Markovian interarrival times (following an exponential distribution)
D 5 deterministic interarrival times (not random)

The second characteristic identifies the nature of the service times using the follow-
ing standard abbreviations:

M 5 Markovian service times (following an exponential distribution)
G 5 general service times (following a nonexponential distribution)
D 5 deterministic service times (not random)

Finally, the third characteristic indicates the number of servers available. So, using 
Kendall notation, an M/M/1 queue refers to a queuing model in which the time 
between arrivals follows an exponential distribution, the service times follow an expo-
nential distribution, and there is one server. An M/G/3 queue refers to a model in 
which the interarrival times are assumed to be exponential, the service times follow 
some general distribution, and three servers are present.

An expanded version of Kendall notation involves specifying six (rather than three) 
queue characteristics. A more complete description of this notation can be found in 
advanced queuing texts.

13.5 Queuing Models
Numerous queuing models are available to evaluate different combinations of arrival 
distributions, service time distributions, and other queuing characteristics. This chap-
ter discusses only a few of these models. Typical operating characteristics of interest 
include the following:

Characteristic Description

U Utilization, or the average percentage of time that each server is busy
P0 Probability that there are no units in the system
Lq Average number of units in line waiting for service
L Average number of units in the system (in line and being served)
Wq Average time a unit spends in line waiting for service
W Average time a unit spends in the system (in line and being served)
Pw Probability that an arriving unit has to wait for service
Pn Probability of n units in the system
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728 Chapter 13 Queuing Theory

Information about these operating characteristics can be helpful to managers who 
need to make decisions about the trade-offs between the costs of providing different 
levels of service and the associated impact on customers’ experiences in the queuing 
system. Where possible, researchers have derived closed-form equations to calculate 
various operating characteristics of a particular queuing model. For instance, for the 
M/M/1 queuing model it can be shown that:

W 5
1

μ 2 λ

L 5 λW

Wq 5 W 2
1
μ

Lq 5 λWq

This chapter does not show the derivation of the equations used to calculate 
operating characteristics. Rather, it simply states the equations for several common 
queuing models and shows how they can be used. The equations for the queuing 
models we will consider are implemented in spreadsheet templates in the file Q.xlsx 
that accompanies this book. Figure 13.5 shows the introduction screen for these 
templates.

FIGURE 13.5

Introductory 
screen for Q.xlsx 
queuing template 
file

As Figure 13.5 indicates, the templates in this file can be used to analyze four types 
of queuing models: the M/M/s model, the M/M/s model with finite queue length, 
the M/M/s model with finite arrival population, and the M/G/1 model.
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The M/M/s Model 729

13.6 The M/M/s Model
The M/M/s model is appropriate for analyzing queuing problems where the follow-
ing assumptions are met:

•	 There are s servers, where s is a positive integer.
•	 Arrivals follow a Poisson distribution (so interarrival times follow an exponential 

distribution) and occur at an average rate of λ per time period.
•	 Each server provides service at an average rate of μ per time period, and actual 

 service times follow an exponential distribution.
•	 Arrivals wait in a single FIFO queue and are serviced by the first available server.
•	 λ , sμ

The final assumption indicates that the total service capacity of the system, sμ, must 
be strictly greater than the rate at which arrivals occur λ. If the arrival rate exceeds the 
system’s total service capacity, the system would fill up over time and the queue would 
become infinitely long. In fact, the queue becomes infinitely long even if the average 
arrival rate λ is equal to the average service rate sμ. To see why, note that individual 
arrival times and service times vary in an unpredictable manner (even though their 
averages may be constant). So there will be times when the servers are idle. This idle 
time is lost forever and the servers will not be able to make up for this at other times 
when the demand for service is heavy. (Note that demand is never lost forever but 
is assumed to wait patiently in the queue.) This causes the servers to fall hopelessly 
behind if λ $ sμ.

The formulas describing the operating characteristics of the M/M/s model are given 
in Figure 13.6. Although these formulas might seem somewhat daunting, they are easy 
to use when implemented in a spreadsheet template. 

U 5 λ/ 1sμ 2

P0 5 aas21

n50

1λ/μ 2n

n!
1

1λ/μ 2 s

s!
 a sμ

sμ 2 λ
bb

21

Lq 5
P0 1λ/μ 2 s11

1s 2 1 2 ! 1s 2 λ/μ 2 2

L 5 Lq 1
λ
μ

Wq 5 Lq/λ

W 5 Wq 1
1
μ

Pw 5
1
s!
aλ
μ
b

s

a sμ
sμ 2 λ

bP0

Pn 5 µ
1λ/μ 2n

n!
 P0 

, for n # s

1λ/μ 2n

s!s1n2s2   P0 
, for n . s

FIGURE 13.6

Formulas 
describing 
the operating 
characteristics of 
an M/M/s queue

47412_ch13_ptg01_721-753.indd   729 17/08/16   1:43 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



730 Chapter 13 Queuing Theory

13.6.1 An exAmple
The following example illustrates how the M/M/s model might be used.

The customer support hotline for Bitway Computers is currently staffed by a single 
technician. Calls arrive randomly at a rate of five per hour and follow a Poisson dis-
tribution. The technician can service calls at an average rate of seven per hour, but 
the actual time required to handle a given call is an exponential random variable. 
The president of Bitway, Rod Taylor, has received numerous complaints from cus-
tomers about the length of time they must wait “on hold” for service when calling 
the hotline. Rod wants to determine the average length of time customers currently 
wait before the technician answers their calls. If the average waiting time is more 
than 5 minutes, he wants to determine how many technicians would be required to 
reduce the average waiting time to 2 minutes or less.

13.6.2 the current SituAtion
Because only one technician (or server) currently staffs Bitway’s customer service 
hotline, we can calculate the operating characteristics for the hotline using an M/M/1
queuing model. Figure 13.7 shows the results of this model for Bitway’s current 
configuration.

FIGURE 13.7

Results of the 
M/M/1 model for 
Bitway’s customer 
service model

Cells E2, E3, and E4 contain the values for the arrival rate, service rate, and number 
of servers in our example problem, respectively. The various operating characteristics 
of this model are calculated automatically in column F.

The value in cell F12 indicates that a 0.7143 probability exists that callers to Bitway’s 
customer service hotline must wait on hold before receiving service from the techni-
cian. The value in cell F10 indicates that the average length of this wait is 0.3571 hours 
(or approximately 21.42 minutes). The value in cell F11 indicates that, on average, a 
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The M/M/s Model 731

caller spends a total of 0.5 hours (or 30 minutes) waiting for service and being served 
under Bitway’s current hotline configuration. Thus, it appears that the customer com-
plaints to Bitway’s president are justifiable.

13.6.3 Adding A Server
To improve the level of service on the hotline, Bitway could investigate how the oper-
ating characteristics of the system would change if two technicians were assigned to 
answer calls. That is, incoming calls could be handled by either one of two equally 
capable technicians. We can calculate the operating characteristics for this configura-
tion using an M/M/2 queuing model, as shown in Figure 13.8.

FIGURE 13.8

Results of the 
M/M/2 model for 
Bitway’s customer 
service hotline

The value in cell F12 indicates that, with two servers, the probability that a caller 
must wait before receiving service drops significantly from 0.7143 to 0.1880. Similarly, 
cell F10 indicates that the average amount of time a caller must wait before service 
begins drops to 0.0209 hours (or approximately 1.25 minutes). Thus, it seems that add-
ing a second technician to the customer service hotline would achieve the 2-minute 
average waiting time objective Rod wants.

Although the addition of a second server greatly reduces the average time hotline 
callers spend waiting for service to begin, it does not reduce the expected service time. 
For the M/M/1 model in Figure 13.7, which includes only one server, the expected 
total time in the system is 0.5 hours and the expected queue time is 0.3571 hours. This 
implies that the expected service time is 0.5 2 0.3571 5 0.1429 hours. For the M/M/2
model in Figure 13.8, which includes two servers, the expected total time in the system 
is 0.1637 hours and the expected queue time is 0.0209 hours. This implies an expected 
service time of 0.1637 2 0.0209 5 0.1429 hours (allowing for a slight rounding error). 
The M/M/2 model assumes that both servers can provide service at the same rate—in 
this case, an average of seven calls per hour. Therefore, the average service time per call 
should be 1/7 5 0.1429 hours, which is consistent with the observed results.
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732 Chapter 13 Queuing Theory

13.6.4 economic AnAlySiS
Bitway will undoubtedly incur some additional costs in going from one to two cus-
tomer support technicians. This might include the cost of salary and benefits for 
the additional technician and perhaps an additional telephone line. However, the 
improved service level provided by the two-server system should reduce the num-
ber of customer complaints and perhaps lead to favorable word-of-mouth advertising 
and increased business for the company. Rod could attempt to quantify these benefits 
and compare them to the cost of adding a customer support technician. Alternatively, 
Rod may simply view the addition of the customer support technician as a competi-
tive necessity.

13.7 The M/M/s Model with Finite  
Queue Length
The results for the M/M/s models in Figures 13.7 and 13.8 assume that the size or 
capacity of the waiting area is infinite, so that all arrivals to the system join the queue 
and wait for service. In some situations, however, the size or capacity of the waiting 
area might be restricted—in other words, there might be a finite queue length. The for-
mulas describing the operating characteristics of an M/M/s queue with a finite queue 
length of K are summarized in Figure 13.9.

U 5 1L 2 Lq 2/s
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n51

1λ/μ 2n
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FIGURE 13.9

Formulas describing 
the operating 
characteristics of 
an M/M/s queue 
with a finite queue 
length of K
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The M/M/s Model with Finite Queue Length  733

To see how this queuing model might be used, suppose that Bitway’s telephone sys-
tem can keep a maximum of five calls on hold at any point in time. If a new call is made 
to the hotline when five calls are already in the queue, the new call receives a busy sig-
nal. One way to reduce the number of calls encountering busy signals is to increase the 
number of calls that can be put on hold. However, if a call is answered only to be put 
on hold for a long time, the caller might find this more annoying than receiving a busy 
signal. Thus, Rod might want to investigate what effect adding a second technician to 
answer hotline calls would have on the number of calls receiving busy signals and on 
the average time callers must wait before receiving service.

13.7.1 the current SituAtion
Because only one technician (or server) currently staffs Bitway’s customer service 
hotline, we can calculate the current operating characteristics for the hotline using an 
M/M/1 queuing model with a finite queue length of 5. Figure 13.10 shows the results 
of this model for Bitway’s current configuration.

FIGURE 13.10

Results of the 
M/M/1 model with 
a finite queue length 
of five for Bitway’s 
customer service 
hotline

Cells E2, E3, and E4 contain the values for the arrival rate, service rate, and number 
of servers in our example problem, respectively. Cell E5 contains the maximum queue 
length of five.

The value in cell F13 indicates that a 0.0419 probability exists that callers to Bitway’s 
customer service hotline will balk (or, in this case, receive a busy signal). A balk refers 
to an arrival that does not join the queue because the queue is full or too long. The value 
in cell F10 indicates that the average length of this wait is 0.2259 hours (or approxi-
mately 13.55 minutes). The value in cell F11 indicates that, on average, a caller spends a 
total of 0.3687 hours (or 22.12 minutes) either waiting for service or being served under 
Bitway’s current hotline configuration.
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734 Chapter 13 Queuing Theory

13.7.2 Adding A Server
To improve the level of service on the hotline, Bitway could investigate how the oper-
ating characteristics of the system would change if two technicians were assigned to 
answer calls. We can calculate the operating characteristics for this configuration using 
an M/M/2 queuing model with a finite queue length of five, as shown in Figure 13.11.

FIGURE 13.11

Results of the 
M/M/2 model with 
a finite queue length 
of five for Bitway’s 
customer service 
hotline

The value in cell F13 indicates that, with two servers, the probability that a caller 
receives a busy signal drops to 0.0007. Similarly, cell F10 indicates that the average 
amount of time a caller must wait before service begins drops to 0.0204 hours (or 
approximately 1.22 minutes). Thus, it seems that adding a second technician to the 
customer service hotline would achieve the 2-minute average waiting time objective 
Rod wants and would virtually eliminate any chance of a customer receiving a busy 
signal. Here again, Rod should consider weighing the costs of adding the additional 
support technician against the benefits of eliminating the chances of customers receiv-
ing busy signals when they call the customer support hotline. 

13.8 The M/M/s Model with Finite 
Population
The previous queuing models assume that the customers (or calls) arriving at the queu-
ing system come from a population of potential customers that is infinite, or extremely 
large. Under this assumption, the mean arrival rate, λ, remains constant regardless of 
the number of calls in the system.

In some queuing problems, however, the possible number of arriving customers is 
finite. In other words, these queuing models have a finite arrival (or calling) popula-
tion. In such a model, the average arrival rate for the system changes depending on the 
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The M/M/s Model with Finite Population 735

number of customers in the queue. The M/M/s model for finite arrival populations is 
appropriate for analyzing queuing problems where the following assumptions are met:

•	 There are s servers, where s is a positive integer.
•	 There are N potential customers in the arrival population.
•	 The arrival pattern of each customer follows a Poisson distribution with a mean 

arrival rate of λ per time period.
•	 Each server provides service at an average rate of μ per time period, and actual ser-

vice times follow an exponential distribution.
•	 Arrivals wait in a single FIFO queue and are serviced by the first available server.

Note that the average arrival rate for this model 1λ 2  is defined in terms of the rate 
at which each customer arrives. The formulas describing the operating characteristics 
for an M/M/s queue with a finite arrival population of size N are summarized in  
Figure 13.12.

13.8.1 An exAmple
One of the most common applications for the M/M/s model with a finite arrival popu-
lation is the machine repair problem, as illustrated in the following example.

The Miller Manufacturing Company owns 10 identical machines that it uses in the 
production of colored nylon thread for the textile industry. Machine breakdowns 
occur following a Poisson distribution with an average of 0.01 breakdowns occur-
ring per operating hour per machine. The company loses $100 each hour a machine 
is inoperable. The company employs one technician to fix these machines when 

FIGURE 13.12

Formulas describing 
the operating 
characteristics of 
an M/M/s queue 
with a finite arrival 
population of size N
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736 Chapter 13 Queuing Theory

they break down. Service times to repair the machines are exponentially distributed 
with an average of 8 hours per repair. Thus, service is performed at a rate of 1/8 
machines per hour. Management wants to analyze what impact adding another ser-
vice technician would have on the average length of time required to fix a machine 
when it breaks down. Service technicians are paid $20 per hour.

13.8.2 the current SituAtion
The 10 machines in this problem represent a finite set of objects that can break down. 
Therefore, the M/M/s model for a finite calling operation is appropriate to use for 
analyzing this problem. The current operating characteristics for Miller Manufactur-
ing’s machine repair problem are summarized in Figure 13.13.

FIGURE 13.13

Results of an M/M/1 
model with a finite 
population of 10 
machines for Miller 
Manufacturing’s 
machine repair 
problem

Key Cell Formulas

Cell Formula Copied to

J8 5I8*E4 --
J9 5F9*I9 --
J10 5SUM(J8:J9) --

Because the individual machines break down at a rate of 0.01 per hour, this is the 
rate at which individual machines “arrive” for repair. Thus, cell E2 contains the value 
0.01 to represent the arrival rate per customer (machine). The technician can service 
broken machines at an average rate of 1/8 5 0.125 machines per hour, as indicated in 
cell E3. The number of servers (or technicians) is shown in cell E4. Because there are  
10 machines that can break down, cell E5 contains a population size of 10. The spread-
sheet calculates the overall arrival rate shown in cell H2. Because there are 10 machines, 
each with a 0.01 probability of breaking down each hour, the overall arrival rate of  
broken machines is 10 3 0.01 5 0.1, as indicated in cell H2.

47412_ch13_ptg01_721-753.indd   736 17/08/16   1:43 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



The M/M/s Model with Finite Population 737

The operating characteristics for this system are calculated in cells F6 through F12. 
According to cell F11, whenever a machine breaks down, it is out of operation for an 
average of 17.98 hours. Of this total down time, cell F10 indicates that the machine 
spends approximately 10 hours waiting for service to begin. Cell F9 indicates that 
approximately 1.524 machines are out of operation at any point in time.

We used columns H through J of the worksheet to calculate the economic conse-
quences of the current situation. There is one server (or service technician) in this prob-
lem who is paid $20 per hour. According to cell F9, an average of approximately 1.524 
machines are broken in any given hour. Because the company loses $100 each hour a 
machine is inoperable, cell J9 indicates the company is presently losing about $152.44 
per hour due to machine down time. Thus, with a single service technician, the com-
pany is incurring costs at the rate of $172.44 per hour.

S o f t w a r e  n o t e
The Q.xlsx file comes “protected” so that you will not inadvertently write over or 
delete important formulas in this template. Sometimes, you may want to turn off 
this protection on a sheet so you can do your own calculations off to the side or 
format your results (as shown in Figure 13.13). To do this, follow these steps:

1. Click Review.
2. Click Unprotect Sheet.

If you unprotect a sheet, you should take special care not to alter any of the for-
mulas on the sheet.

13.8.3 Adding ServerS
Figure 13.14 shows the expected operation of this system if Miller Manufacturing adds 
another service technician.

FIGURE 13.14

Results of an 
M/M/2 model 
with a finite 
population of 10 
machines for Miller 
Manufacturing’s 
machine repair 
problem
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738 Chapter 13 Queuing Theory

Cell F10 indicates that when a machine breaks down, repairs start, on average, in 
only 0.82 hours (or approximately 49 minutes), in comparison to the 10-hour waiting 
time with only one technician. Similarly, cell F9 indicates that with two technicians, an 
average of only 0.81 machines are out of operation at any point in time. Thus, by add-
ing another repair technician, Miller Manufacturing can keep approximately one more 
machine in operation at all times. While the additional service technician increases the 
total hourly cost to $40, the decrease in the average number of machines in the system 
saves the company $71.32 per hour (i.e., 152.44281.12 5 71.32). The net effect is a cost 
savings of $51.32 as the total hourly cost in cell J10 drops to $121.12.

Figure 13.15 shows the results of adding a third service technician for this prob-
lem. Notice that this has the effect of increasing labor costs by $20 per hour over the 
solution shown in Figure 13.14 while reducing the losses due to idle machines by 
only $6.36. So, as we go from two to three service technicians, the total hourly cost 
increases from $121.12 to $134.76 per hour. Thus, the optimal solution is for Miller 
Manufacturing to employ two service technicians because this results in the smallest 
total hourly cost.

FIGURE 13.15

Results of an M/M/3 
model with a finite 
population of 10 
machines for Miller 
Manufacturing’s 
machine repair 
problem

13.9 The M/G/1 Model
All the models presented so far assume that service times follow an exponential distri-
bution. As noted earlier in Figure 13.4, random service times from an exponential distri-
bution can assume any positive value. However, in some situations, this assumption is 
unrealistic. For example, consider the time required to change the oil in a car at an auto 
service center. This service probably requires at least 10 minutes and might require up 
to 30, 45, or even 60 minutes, depending on the service being performed. The M/G/1
queuing model enables us to analyze queuing problems in which service times cannot 
be modeled accurately using an exponential distribution. The formulas describing the 
operating characteristics of an M/G/1 queue are summarized in  Figure 13.16.

The M/G/1 queuing model is quite remarkable because it can be used to compute 
the operating characteristics for any one-server queuing system where arrivals follow a 
Poisson distribution and the mean μ and standard deviation s of the service times are 
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known. That is, the formulas in Figure 13.16 do not require that service times follow 
one specific probability distribution. The following example illustrates the use of the 
M/G/1 queuing model.

Zippy-Lube is a drive-through automotive oil change business that operates 
10 hours a day, 6 days a week. The profit margin on an oil change at Zippy-Lube is 
$15. Cars arrive randomly at the Zippy-Lube oil change center following a Poisson 
distribution at an average rate of 3.5 cars per hour. After reviewing the historical 
data on operations at this business, the owner of Zippy-Lube, Olie Boe, has deter-
mined that the average service time per car is 15 minutes (or 0.25 hours) with a 
standard deviation of 2 minutes (or 0.0333 hours). Olie has the opportunity to pur-
chase a new automated oil dispensing device that costs $5,000. The manufacturer’s 
representative claims this device will reduce the average service time by 3 minutes 
per car. (Currently, Olie’s employees manually open and pour individual cans of 
oil.) Olie wants to analyze the impact the new automated device would have on his 
business and determine the payback period for this device. 

13.9.1 the current SituAtion
We can model Olie’s current service facility as an M/G/1 queue. The operating charac-
teristics of this facility are shown in Figure 13.17.

FIGURE 13.16

Formulas describing 
the operating 
characteristics of an 
M/G/1 queue

P0 5 1 2 λ/μ

Lq 5
λ2s2 1 1λ/μ 2 2

2 11 2 λ/μ 2
L 5 Lq 1 λ/μ

Wq 5 Lq/λ

W 5 Wq 1 1/μ

Pw 5 λ/μ

FIGURE 13.17

Results of an 
M/G/1 model for 
the original Zippy- 
Lube problem
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Cell E3 contains the average arrival rate of 3.5 cars per hour. The average service 
time per car (also in hours) is indicated in cell E4, and the standard deviation of the 
service time (in hours) is indicated in cell E5.

Cell F11 shows that an average of about 3.12 cars wait for service at any given point 
in time. Cell F14 indicates that, on average, 1.14 hours (or about 68 minutes) elapse 
between the time a car arrives and leaves the system.

13.9.2 Adding the AutomAted diSpenSing device
If Olie purchases the automated oil dispensing device, the average service time per car 
should drop to 12 minutes (or 0.20 hours). Figure 13.18 show the impact this would 
have if the arrival rate remained constant at 3.5 cars per hour. 

FIGURE 13.18

Results of an 
M/G/1 model for the 
Zippy-Lube problem 
after purchasing 
the automatic oil 
dispensing machine 
and assuming an 
increase in arrivals

The value in cell F14 indicates that going to the automated oil dispensing device 
reduces the amount of time a car spends in the system from 1.14 hours to 0.4398 hours 
(or about 26 minutes). Cell F11 indicates that the expected queue in front of the service 
bay consists of only 0.8393 cars, on average. Thus, the addition of a new oil dispensing 
device would significantly improve customer service. 

The shorter queue at Zippy-Lube resulting from the acquisition of the automated 
dispensing device would likely result in an increase in the arrival rate, because custom-
ers who previously balked when confronted with a lengthy queue might now consider 
stopping for service. Thus, Olie might be interested in determining just how much the 
arrival rate could increase before the average queue length returned to its original level 
of about 3.12 shown in Figure 13.17. We can use the Goal Seek tool to answer this ques-
tion by following these steps:

1. Click Data, What-If Analysis.
2. Click Goal Seek.
3. Fill in the Goal Seek dialog box as shown in Figure 13.19.
4. Click OK.
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The results of this Goal Seek analysis are shown in Figure 13.20. Here, we see that 
if the arrival rate increases to approximately 4.37 cars per hour, the average length of 
the queue will return to approximately 3.12. Thus, by purchasing the automatic oil dis-
pensing machine, it is reasonable to expect that the average number of cars arriving for 
service at Zippy-Lube might increase from 3.5 per hour to approximately 4.371. 

FIGURE 13.19

Goal Seek settings 
to determine the 
arrival rate that 
produces an average 
queue length of  
3.12 cars

FIGURE 13.20

Results of an 
M/G/1 model for the 
Zippy-Lube problem 
after purchasing 
the automatic oil 
dispensing machine 
and assuming 
arrival rate will 
increase

Key Cell Formulas

Cell Formula Copied to

I8 5E323.5 --
I9 5I8*15 --
I10 5I9*10 --
I11 5I10*6 --
I13 55000 --
I15  5I13/I11 --

Column I in Figure 13.20 summarizes the financial impact of purchasing the new oil 
dispensing machine. Because the arrival rate may be expected to increase by approxi-
mately 0.871 cars per hour, weekly profits should increase by approximately $783.63 
per week. If this increase in profits occurs, the payback period for the new machine will 
be approximately 6.38 weeks.
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13.10 The M/D/1 Model
The M/G/1 model can be used when service times are random with known mean and 
standard deviation. However, service times might not be random in some queuing sys-
tems. For example, in a manufacturing environment, it is not unusual to have a queue 
of material or subassemblies waiting to be serviced by a certain machine. The machine 
time required to perform the service might be very predictable—such as exactly 10 sec-
onds of machine time per piece. Similarly, an automatic car wash might spend exactly 
the same amount of time on each car it services. The M/D/1 model can be used in 
these types of situations in which the service times are deterministic (not random).

The results for an M/D/1 model can be obtained using the M/G/1 model by set-
ting the standard deviation of the service time to 0 1s 5 0 2 . Setting s 5 0 indicates that 
no variability exists in the service times and, therefore, the service time for each unit is 
equal to the average service time μ.

13.11 Simulating Queues and  
the Steady-State Assumption
Queuing theory is one of the oldest and most well-researched areas of business 
analytics. Discussions of other types of queuing models can be found in advanced 
texts devoted solely to queuing theory. However, keep in mind that the technique 
of simulation can also be used to analyze virtually any queuing problem you might 
encounter. Indeed, not all queuing models have closed-form equations to describe 
their operating characteristics. So, simulation is often the only means available for 
analyzing complex queuing systems where customers balk (don’t join a queue upon 
arrival), renege (leave a queue before being served), or jockey (switch from one queue 
to another).

The formulas used in this chapter describe the steady-state operations of the various 
queuing systems presented. At the beginning of each day, most queuing systems start 
in an “empty and idle” condition and go through a transient period as business activity 
gradually builds up to reach the normal, or steady-state, level of operation. The queu-
ing models presented describe only the behavior of the system in its steady-state level 
of operation. A queuing system can have different levels of steady-state operations at 
different times throughout the day. For example, a restaurant might have one steady-
state level of operation for breakfast, and different steady-state levels at lunch and din-
ner. So, before using the models in this chapter, it is important to identify the arrival 
rate and service rate for the specific steady-state level of operation you want to study. If 
an analysis of the transient phase is needed or if you want to model the operation of the 
system across different steady-state levels, you should use simulation.

Figure 13.21 (and the file Fig13-21.xlsm that accompanies this book) contains a 
spreadsheet model that simulates the operation of a single server 1M/M/1 2  queue and 
plots several graphs associated with different operating characteristics of the system. 
(If you open this file, your graph may not match the one in Figure 13.21 because the 
random numbers used in the simulation will change.) The graph in Figure 13.21 shows 
a plot of the average waiting time per customer 1Wq 2  for 500 customers. The horizontal 
line indicates the steady-state value of Wq. Note that several hundred customers are 
processed in the system in the transient period before the observed average waiting 
time begins to converge on its steady-state value. 
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13.12 Summary
Waiting lines, or queues, are a common occurrence in many types of businesses. The 
study of the operating characteristics of waiting lines is known as queuing theory. 
Numerous mathematical models are available to represent and study the behavior of 
different types of queues. These models have different assumptions about the nature of 
the arrival process to the queuing system, the allowable size and nature of the queuing 
discipline, and the service process within the system. For many models, closed-form 
equations have been developed to describe various operating characteristics of the sys-
tem. When closed-form solutions are not possible, the technique of simulation must be 
used to analyze the behavior of the system.
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Graph of the average 
waiting time in 
the simulation of 
a single-server 
queuing system
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744 Chapter 13 Queuing Theory

the World oF BuSineSS AnAlyticS

“Wait Watchers” Try to Take Stress  
Out of Standing in Line

© Kathleen Doheny, a Los Angeles journalist. Reprinted with permission from the 
Los Angeles Times, 7/15/1991, vol. 110, p. B3, 14 col. in.

Standing in line—at the bank, the market, the movies—is the time-waster 
everyone loves to hate. Stand in just one 15-minute line a day, every day, and kiss 
goodbye four days of idle time by year’s end.

While we’ve been waiting and grumbling, researchers have been analyzing 
lines with an eye to making them, if not shorter, at least less stressful.

The field of line analysis—more scientifically known as queuing theory—
began in the early 1900s when a Danish telephone engineer devised a mathemati-
cal approach to help design phone switches. Researchers found that the principles 
developed through that system, which helped process calls more efficiently, could 
be applied to help move people through lines more efficiently.

The concept has spread from the communications and computer industries 
to other fields, helping modern researchers predict such things as how long cus-
tomers might wait for a restaurant lunch or how many customers might visit a 
bank ATM at noon on Saturday. Now, some researchers have gone beyond a mere 
mathematical analysis of lines, focusing as well on our psychological reactions.

In one recent study, Richard Larson, a professor of electrical engineering at 
the Massachusetts Institute of Technology, wanted to determine which of two 
approaches would be more tolerable to Bank of Boston customers. As Larson’s 
researchers filmed the customers, one group watched an electronic news board 
while waiting in line; the other group was advised via an electric clock how long 
the wait would be before each one entered the line. About 300 customers, nearly 
a third of those filmed, were interviewed after they finished their transactions. 
The findings, published in the Sloan Management Review, an MIT publication cir-
culated to corporate managers, showed that:

•	 Customers in both lines overestimated their waits by nearly a minute; those 
who watched the news board overestimated the most. On average, customers 
thought they waited 5.1 minutes to see a teller but actually waited 4.2 minutes.

•	 Watching the news board did not change customers’ perceptions of their waiting 
time, but it did make the time spent more palatable, customers reported. (After 
the bank removed the news board, many customers asked that it be reinstalled.)

•	 The news board also seemed to make customers less fidgety. Without it, they 
touched their faces and played with their hair. With the news board in view, 
they stood still with their arms at their sides.

•	 Customers who were advised of the length of the line via an electronic clock 
at the entry did not find the experience less stressful than those not told the 
expected waiting time, much to Larson’s surprise. Nor were they more sat-
isfied than the other group with the service. The electronic clock’s display of 
waiting time may backfire, Larson speculates, by making respondents even 
more aware of time wasted standing in line.

(Continued)
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•	 Customers in the lines with the clock tended to play “beat the clock.” They felt 
they had “won” if they spent less time in line than predicted. The clock also 
seemed to make more customers balk at joining the line if the predicted delay 
was lengthy.

•	 In both lines, customers altered their definition of a “reasonable” wait depend-
ing on their time of arrival. They were willing to wait longer during lunch time 
than during other times of day.

Larson’s recent findings bear out a formula published in 1984 by David Maister,  
a former Harvard Business School faculty member and now a business consul-
tant. When it comes to lines, Maister said, satisfaction is tied to both perception 
and expectation.

“Nowhere in that [equation] does reality appear,” Maister said with a laugh 
during a telephone interview. Giving a personal example of how perception influ-
ences reaction, he said he would wait “40 minutes for a performance by a world-
class musician but less than 30 seconds for a hamburger.”

Larson, a professional “wait watcher” for 20 years, puts it a bit differently: 
“When it comes to customer satisfaction, perception is reality.”

If those concepts are true, taming customer unrest does not necessarily mean a 
business must beef up its staff to eliminate lines, Larson and Maister contend. It’s 
much more a matter of “perception management,” they say. “People in the ser-
vice industries who think they have a line problem may be able to virtually erase 
customer dissatisfaction and customer complaints not by changing the statistic of 
the wait but by changing the environment of it,” Larson said.

He points to a number of companies already actively wooing waiters. Some 
companies use a “queue delay guarantee,” giving customers free dessert or 
money if the wait exceeds a preset time period.

Larson predicts customers can expect lines that segment them by personality 
type. Impatient souls may have the option of paying more to join an automated 
express line; “people watchers” could opt to wait for less expensive, friendlier 
human service.

Questions and Problems
1. Consider the three queuing configurations shown in Figure 13.2. For each config-

uration, describe a situation (besides the examples mentioned in the chapter) in 
which you have encountered or observed the same type of queuing system.

2. Of the queuing configurations shown in Figure 13.2, which would you prefer to 
wait in? Explain your response.

3. This chapter implies that customers find waiting in line to be an unpleasant expe-
rience. In addition to reducing the length of the wait itself, what other steps could 
a business take to reduce the frustration customers experience while waiting? Give 
specific examples.

4. Describe a situation in which a business might want customers to wait some amount 
of time before receiving service.
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5. The day after a snow storm, cars arrive at Mel’s Auto-Wash at an average rate of 10 
per hour according to a Poisson process. The automated car washing process takes 
exactly 5 minutes from start to finish. 
a. What is the probability that an arriving car will find the car wash empty?
b. On average, how many cars are waiting for service?
c. On average, what is the total length of time (from arrival to departure) cars will 

spend at the car wash?
6. Tri-Cities Bank has a single drive-in teller window. On Friday mornings, custom-

ers arrive at the drive-in window randomly, following a Poisson distribution at an 
average rate of 30 per hour.
a. How many customers arrive per minute, on average?
b.  How many customers would you expect to arrive in a 10-minute interval?
c.  Use equation 13.1 to determine the probability of exactly 0, 1, 2, and 3 arrivals in 

a 10-minute interval. (You can verify your answers using the POISSON( ) func-
tion in Excel.)

d.  What is the probability of more than three arrivals occurring in a 10-minute 
interval?

7. Refer to question 6. Suppose that service at the drive-in window is provided at a 
rate of 40 customers per hour and follows an exponential distribution.
a. What is the expected service time per customer?
b.  Use equation 13.2 to determine the probability that a customer’s service time 

is 1 minute or less. (Verify your answer using the EXPONDIST( ) function in 
Excel.)

c.  Compute the probabilities that the customer’s service time is: between 2 and 5 
minutes, less than 4 minutes, and more than 3 minutes.

8. Refer to questions 6 and 7 and answer the following questions:
a. What is the probability that the drive-in window is empty?
b.  What is the probability that a customer must wait for service?
c.  On average, how many cars wait for service?
d.  On average, what is the total length of time a customer spends in the system?
e.  On average, what is the total length of time a customer spends in the queue?
f.  What service rate would be required to reduce the average total time in the 

system to 2 minutes? (Hint: You can use Solver or simple what-if analysis to 
answer this question.)

9. Cuts-R-Us provides low cost haircuts at a shopping center in Boise, Idaho. During 
the day, customers arrive at an average rate of 9 per hour following an exponential 
distribution. After a customer is in a cosmetician’s chair, it takes an average of 
18 minutes for the haircut to be completed, with the actual service time following a 
Poisson distribution.
a. If there are 3 cosmetician’s on duty, how long will customers have to wait on 

average before receiving service and how many customers are typically waiting 
for service?

b. If there are 4 cosmetician’s on duty, how long will customers have to wait on 
average before receiving service and how many customers are typically waiting 
for service?

c. If there are 5 cosmetician’s on duty, how long will customers have to wait on 
average before receiving service and how many customers are typically waiting 
for service?

d. If you managed this store, how many cosmetician’s would you employ 
and why?
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10. On Friday nights, patients arrive at the emergency room at Mercy Hospital fol-
lowing a Poisson distribution at an average rate of seven per hour. Assume that 
an emergency-room physician can treat an average of three patients per hour, and 
that the treatment times follow an exponential distribution. The board of directors 
for Mercy Hospital wants patients arriving at the emergency room to wait no more 
than 5 minutes before seeing a doctor. 
a. How many emergency-room doctors should be scheduled on Friday nights to 

achieve the hospital’s objective?
11. Seabreeze Furniture in Orlando maintains a large, central warehouse where it stores 

items until they are sold or needed by the company’s many stores in the Central 
Florida area. A four-person crew works at the warehouse to load or unload trucks 
that arrive at the warehouse at a rate of one per hour (with exponentially distrib-
uted interarrival times). The time it takes the crew to unload each truck follows an 
exponential distribution with a mean service rate of 4 trucks per hour. Each worker 
costs the company $21 per hour in wages and benefits. Seabreeze’s management is 
currently trying to cut costs and is considering reducing the number of workers on 
this warehouse crew. They believe three workers would be able to provide a service 
rate of 3 trucks per hour, two workers a service rate of 2 trucks per hour, and one 
worker a service rate of 1 truck per hour. The company estimates it costs $35 for 
each hour a truck spends at the loading dock (whether it is waiting for service or 
being loaded or unloaded).
a. Should Seabreeze ever consider having just one worker on the crew? Explain 

your answer.
b.  For each possible crew size, determine the expected queue length, expected total 

time in the system, the probability that a customer waits, and the total hourly 
cost.

c.  What crew size would you recommend?
12. The Madrid Mist outlet store at Chiswell Mills sells discount luggage and does 

most of its daily business in the evening between the hours of 6 and 9 pm. During 
this time, customers arrive at the checkout desk at a rate of one every 2 minutes 
following a Poisson distribution. The checkout operation takes an average of 3 min-
utes per customer and can be approximated well by an exponential distribution. 
Madrid Mist’s corporate policy is that customers should not have to wait longer 
than 1 minute to begin the checkout operation.
a. What is the average service rate per minute?
b. What is the average arrival rate per minute?
c. What would happen if the store operated a single checkout station during the 

time period in question?
d. How many checkout stations should the store plan to operate during this time 

period to stay within the corporate policy on checkout operations?
13. Customers checking out at Food Tiger arrive in a single-line queue served by 

two cashiers at a rate of eight per hour according to a Poisson distribution. Each 
cashier processes customers at a rate of eight per hour according to an exponential 
distribution.
a. If, on average, customers spend 30 minutes shopping before getting in the check-

out line, what is the average time a customer spends in the store?
b. What is the average number of customers waiting for service in the checkout 

line?
c. What is the probability that a customer must wait?
d. What assumption did you make to answer this question?
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14. The manager of the Radford Credit Union (RCU) wants to determine how many 
part-time tellers to employ to cover the peak demand time in its lobby from 11:00 
a.m. to 2:00 p.m. RCU currently has three full-time tellers that handle the demand 
during the rest of the day, but during this peak demand time, customers have been 
complaining that the wait time for service is too long. The manager at RCU has 
determined that customers arrive according to a Poisson distribution with an aver-
age of 60 arrivals per hour during the peak period. Each teller services customers at 
a rate of 24 per hour, with service times following an exponential distribution.
a. On average, how long must customers wait in line before service begins?
b.  Once service begins for a customer, how long does it take to complete the trans-

action, on average?
c.  If one part-time teller is hired to work during the peak time period, what effect 

would this have on the average amount of time a customer spends waiting in the 
queue?

d.  If one part-time teller is hired to work during the peak time period, what effect 
would this have on the average amount of time it takes to serve a customer?

15. The Westland Title Insurance Company leases one copying machine for $45 per day 
that is used by all individuals at their office. An average of five persons per hour 
arrive to use this machine, with each person using it for an average of 8 minutes. 
Assume the interarrival times and copying times are exponentially distributed.
a. What is the probability that a person arriving to use the machine will find it idle?
b.  On average, how long will a person have to wait before getting to use the 

machine?
c.  On average, how many people will be using or waiting to use the copy machine?
d.  Suppose that the people who use the copy machine are paid an average of $9 

per hour. On average, how much does the company spend in wages during 
each 8-hour day paying the people who are using or waiting to use the copy 
machine?

e.  If the company can lease another copying machine for $45 per day, should they do it?
16. The Orange Blossom Marathon takes place in Orlando, Florida, each December. The 

organizers of this race are trying to solve a problem that occurs at the finish line 
each year. Thousands of runners take part in this race. The fastest runners finish 
the 26-mile course in just over 2 hours, but the majority of the runners finish about 
1 1/2 hours later. After runners enter the finish area, they go through one of four 
finish chutes where their times and places are recorded. (Each chute has its own 
queue.) During the time in which the majority of the runners finish the race, the 
chutes become backlogged, and significant delays occur. The race organizers want 
to determine how many chutes should be added to eliminate this problem. At the 
time in question, runners arrive at the finish area at a rate of 50 per minute accord-
ing to a Poisson distribution, and they randomly select one of the four chutes. The 
time required to record the necessary information for each finishing runner at any 
chute is an exponentially distributed random variable with a mean of four seconds.
a.  On average, how many runners arrive at each chute per minute?
b.  Under the current arrangement with four chutes, what is the expected length of 

the queue at each chute?
c.  Under the current arrangement, what is the average length of time a runner 

waits before being processed?
d.  How many chutes should be added if the race organizers want to reduce the 

queue time at each chute to an average of five seconds?
 17. State University allows students and faculty to access its super computer by high-

speed proxy servers. The university has 15 proxy server connections that can be 
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used. When all of the proxy server connections are in use, the system can keep up 
to 10 users in a queue waiting for a connection to become available. If all 15 con-
nections are in use, and 10 users are already holding, any new users are rejected. 
Requests to the proxy server pool follow a Poisson distribution and occur at an 
average rate of 60 per hour. The length of each session with the supercomputer is 
an exponential random variable with a mean of 15 minutes—therefore, each proxy 
server services an average of four users per hour.
a. On average, how many users are in the queue waiting for a connection?
b.  On average, how long is a user kept in the queue before receiving a connection?
c.  What is the probability that a user is rejected?
d.  How many connections would the university need to add to its server pool in 

order for there to be no more than a 1% chance of a user being rejected?
18. During tax season, the IRS hires seasonal workers to help answer the questions of 

taxpayers who call a special 800 telephone number for tax information. Suppose 
that calls to this line occur at a rate of 60 per hour and follow a Poisson distribution. 
The IRS workers manning the phone lines can answer an average of 5 calls per hour 
with the actual service times following an exponential distribution. Assume that 
10 IRS workers are available and, when they are all busy, the phone system can 
keep 5 additional callers on hold.
a. What is the probability that a caller receives a busy signal?
b.  What is the probability that a caller is put on hold before receiving service?
c.  On average, how long must a caller wait before speaking with an IRS agent?
d.  How many additional workers would be required if the IRS wants no more than 

a 5% chance of a caller receiving a busy signal?
19. Road Rambler sells specialty running shoes and apparel through catalogs and 

the Web. Customers can phone in orders at any time day or night, 7 days a week. 
During the 4 a.m. to 8 a.m. shift, a single sales rep handles all calls. During this time, 
calls arrive at a rate of 14 per hour following a Poisson distribution. It takes the 
sales rep an average of four minutes to process each call. The variability in service 
times is approximately exponentially distributed. All calls received while the sales 
rep is busy are placed in a queue.
a. On average, how long (in minutes) must callers wait before talking to the 

sales rep?
b. On average, how many customers are on hold?
c. What is the probability that the customer will be placed on hold?
d. What is the sales rep’s utilization rate?
e. Suppose Road Rambler wants there to be no more than a 10% chance that a 

customer will be placed on hold. How many sales reps should the company 
employ? 

20. Refer to the previous question. Suppose that Road Rambler’s phone system can 
only keep four calls on hold at any time, the average profit margin of each call is 
$55, and sales reps cost the company $12 per hour. 
a. If callers who receive a busy signal take their business elsewhere, how much 

money is the company losing per hour (on average) if it employed a single 
sales rep?

b. What is the net effect on average hourly profits if the company employs two sales 
reps instead of one?

c. What is the net effect on average hourly profits if the company employs three 
sales reps instead of one? 

d. How many sales reps should the company employ if it wants to maximize 
profit?
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21. Several hundred PCs are in use at the corporate headquarters for National Insurance 
Corporation. The pattern of breakdowns for these PCs follows a Poisson distribu-
tion with an average rate of 4.5 breakdowns per 5-day work week. The company 
has a repair technician on staff to repair the PCs. The average time required to repair 
a PC varies somewhat, but takes an average of 1 day with a standard deviation of 
0.5 days.
a. What is the average service time in terms of a 5-day work week?
b.  What is the standard deviation of the service times in terms of a 5-day work 

week?
c.  On average, how many PCs are either being repaired or waiting to be repaired?
d.  On average, how much time transpires from the time a PC breaks down to the 

time it is repaired?
e. Suppose that National Insurance estimates it loses $40 a day in productivity and 

efficiency for each PC that is out of service. How much should the company be 
willing to pay to increase service capacity to the point where an average of seven 
PCs a week could be repaired?

22.  Interstate 81 through southwest Virginia is heavily traveled by long-distance 
truckers. To cut down on accidents, The Virginia State Patrol carries out random 
inspections of a trucks weight and the condition of its brakes. On Fridays, trucks 
approach the inspection station at a rate of one every 45 seconds following a Pois-
son process. The time required to check a truck’s weight and brakes follows an 
exponential distribution with an average inspection time of 5 minutes. The state 
troopers only pull over trucks when at least one of their three portable inspection 
units is available.
a. What is the probability that all three inspection units will be idle at the same 

time?
b. What proportion of trucks traveling this section of Interstate 81 will be inspected?
c. On average, how many trucks will be pulled over for inspection each hour?

23. The drive-thru window at Hokie Burger requires 2.5 minutes on average to process 
an order with a standard deviation of 3 minutes. Cars arrive at the window at a rate 
of 20 per hour.
a. On average, how many cars are waiting to be served?
b. On average, how long will a car spend in the service process?
c. Suppose Hokie Burger can install an automated drink-dispensing device that 

would reduce the standard deviation of the service time to 1 minute. How would 
your answers to the previous questions change?

24. A manufacturer of engine belts uses multipurpose manufacturing equipment to 
produce a variety of products. A technician is employed to perform the setup opera-
tions needed to change the machines over from one product to the next. The amount 
of time required to set up the machines is a random variable that follows an expo-
nential distribution with a mean of 20 minutes. The number of machines requiring a 
new setup is a Poisson random variable with an average of two machines per hour 
requiring setup. The technician is responsible for setups on five machines.
a. What percentage of time is the technician idle, or not involved in setting up a 

machine?
b.  What should the technician do during this idle time?
c.  On average, how long is a machine out of operation while waiting for the next 

setup to be completed?
d.  If the company hires another, equally capable technician to perform setups on 

these machines, how long on average would a machine be out of operation while 
waiting for the next setup to be completed?
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25. DeColores Paint Company owns 10 trucks that it uses to deliver paint and deco-
rating supplies to builders. On average, each truck returns to the company’s single 
loading dock at a rate of three times per 8-hour day (or at a rate of 3/8 5 0.375
times per hour). The times between arrivals at the dock follow an exponential dis-
tribution. The loading dock can service an average of 4 trucks per hour with actual 
service times following an exponential distribution.
a. What is the probability that a truck must wait for service to begin?
b. On average, how many trucks wait for service to begin at any point in time?
c. On average, how long must a truck wait before service begins? 
d. If the company builds and staffs another loading dock, how would your answers 

to parts a, b, and c change?
e. The capitalized cost of adding a loading dock is $5.40 per hour. The hourly cost 

of having a truck idle is $50. What is the optimal number of loading docks that 
will minimize the sum of dock cost and idle truck cost?

26. Suppose that arrivals to a queuing system with one server follow a Poisson distri-
bution with an average of λ 5 5 per time period, and that service times follow an 
exponential distribution with an average service rate of μ 5 6 per time period.
a.  Compute the operating characteristics for this system using the M/M/s model 

with s 5 1.
b.  Compute the operating characteristics for this system using the M/G/1 model. 

(Note that the average service time for the exponential random variable is 1/μ
and the standard deviation of the service time is also 1/μ.)

c.  Compare the results obtained from the M/M/1 and M/G/1 models. (They 
should be the same.) Explain why they are the same.

 27.  Calls arrive at a rate of 150 per hour to the 800 number for the Land’s Beginning 
mail-order catalog company. The company currently employs 20 operators who are 
paid $10 per hour in wages and benefits and can each handle an average of 6 calls 
per hour. Assume that interarrival times and service times follow the exponential 
distribution. A maximum of 20 calls can be placed on hold when all the operators 
are busy. The company estimates that it costs $25 in lost sales whenever a customer 
calls and receives a busy signal. 
a.  On average, how many customers are waiting on hold at any point in time?
b.  What is the probability that a customer will receive a busy signal?
c.  If the number of operators plus the number of calls placed on hold cannot  

exceed 40, how many operators should the company employ?
d.  If the company implements your answer to part c, on average, how many cus-

tomers will be waiting on hold at any point in time and what is the probability 
that a customer will receive a busy signal?

May the (Police) Force Be with You
“I hope this goes better than last time,” thought Craig Rooney as he pictured walking 
into the city council’s chambers next week. Craig is the assistant chief of police in New-
port, VA and, each September, he has to provide the city council with a report on the 
effectiveness of the city’s police force. This report immediately precedes the council’s 
discussion of the police department’s budget. So Craig often feels like a tightrope artist 
trying to find the right balance in his presentation to both convince the council that 
the department is being run well and also persuade them to increase the department’s 
budget for new officers.

CasE 13.1
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The city of Newport has a total of 19 police officers assigned to 5 precincts. Cur-
rently, precinct A has 3 officers assigned to it while the others each have 4 officers. One 
of the town council’s primary concerns each year is the amount of time it takes for an 
officer to begin responding when a 911 emergency call is received. Unfortunately, the 
city’s information system does not track this data exactly, but it does keep track of the 
number of calls received in each precinct each hour and the amount of time that elapses 
between when an officer first begins responding to a call and the time he or she reports 
being available again to respond to other calls (this is also known as the service time for 
each call).

A student intern from a local university worked for Craig last summer and collected 
data shown in the file named CallData.xlsm that accompanies this book. One of the 
sheets in this workbook (named calls per hour) shows the number of 911 calls received 
during 500 randomly chosen hours of operation in each precinct. Another sheet (named 
service times) shows the service time required for each of these calls. 

The student intern also set up a worksheet (based on the formulas in Figure 13.6) 
to calculate operating characteristics of an M/M/s queue for each of Newport’s five 
precincts. Unfortunately, the student intern had to return to school before finishing this 
project. But Craig believes with a little work he can use the data collected to figure out 
appropriate arrival and service rates for each precinct and complete the analysis. More 
importantly, he feels sure the queuing model will allow him to quickly answer many of 
the questions he expects the city council to ask.

a. What are the arrival rate of 911 calls and the service rates for each precinct?
b. Does the arrival rate of calls for each precinct appear to follow a Poisson 

distribution?
c. Does the service rate for each precinct appear to follow an exponential distribution?
d. Using an M/M/s queue, on average, how many minutes must a 911 caller in each 

precinct wait before a police officer begins responding?
e. Suppose Craig wants to redistribute officers among precincts so as to reduce the 

maximum amount of time callers in any one precinct have to wait for a police 
response. What should he do and what impact would this have?

f. How many additional police officers would Newport have to hire in order for the 
average response time in each precinct to be less than two minutes?

Call Center Staffing at Vacations Inc.
Vacations Inc. (VI) markets time-share condominiums throughout North America. One 
way the company generates sales leads is by offering a chance to win a free mini-va-
cation to anyone who fills out an information card and places it in boxes VI has dis-
tributed at various restaurants and shopping malls. All those who fill out the card and 
indicate an adequate income level subsequently receive a letter from VI indicating they 
have indeed won the mini-vacation. To claim their prize, all the “winner” needs to do 
is call VI’s toll free number. When the “winner” calls the number, they learn that their 
mini-vacation consists of a free dinner, entertainment, and two-night stay at one of VI’s 
time-share properties; but they must agree to sit through a 2-hour property tour and 
sales presentation.

About half the people who call VI’s toll free number to claim their prize wind up 
rejecting the offer after they learn about the 2-hour property tour. About 40% of those 
who call accept the mini-vacation and do the property tour but don’t buy anything. 
The remaining 10% of those who call the toll free number accept the mini-vacation and 

CasE 13.2
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ultimately purchase a time-share. Each mini-vacation that VI awards costs the com-
pany about $250. Each sale of a time-share generates a net profit of $7,000 for VI after 
all commissions and other costs (including the $250 for the buyer’s mini-vacation) have 
been paid.

VI’s call center operates from 10 a.m. to 10 p.m. daily with four sales representatives 
and receives calls at a rate of 50 per hour following a Poisson distribution. It takes an 
average of 4 minutes to handle each call with actual times being exponentially distrib-
uted. The phone system VI uses can keep up to 10 callers on hold at any time. Assume 
those who receive a busy signal don’t call back. 

a. On average, how many customers per hour does each sales person process?
b. What is the expected value of each call to VI’s toll-free line?
c. Suppose VI pays its phone reps $12 per hour. How many phone reps should it 

employ if it wants to maximize profit?

Bullseye Department Store
Bullseye department store is a discount retailer of general merchandise in the south-
eastern United States. The company owns more than 50 stores in Florida, Georgia, 
South Carolina, and Tennessee that are serviced by the company’s main warehouse 
near Statesboro, GA. Most of the merchandise received at the warehouse arrives in 
trucks from ports in Jacksonville, FL and Savannah, GA.

Trucks arrive at the warehouse following a Poisson process with a rate of once every 
7 minutes. Eight loading docks are available at the warehouse. A single worker mans 
each dock and is able to unload a truck in approximately 30 minutes on average. When 
all the docks are occupied, arriving trucks wait in a queue until one becomes available. 

Bullseye has received complaints from some of the trucking firms that deliveries 
are taking too long at the warehouse. In response, Bullseye is considering a number of 
options to try to reduce the time trucks must spend at the warehouse. One option is to 
hire an extra worker for each of the loading docks. This is expected to reduce the aver-
age time it takes to unload a truck to 18 minutes. It costs approximately $17 per hour in 
salary and benefits to employ each additional worker. 

Alternatively, the company can continue to use a single worker at each loading 
dock but upgrade the forklift equipment workers use to unload trucks. The company 
can replace the existing forklift equipment with a new model that can be leased for $6 
per hour and is expected to reduce the average time required to unload a truck to 23 
minutes. 

Finally, the company can build two new loading docks for a capitalized cost of $6 
per hour and hire two additional workers at a rate of $17 per hour to man these loca-
tions. Bullseye estimates it costs $60 in good will for each hour a truck spends at the 
warehouse. Which, if any, of the three alternatives would you recommend Bullseye 
implement?

CasE 13.3
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Chapter 14
Decision Analysis

14.0 Introduction
The previous chapters in this book describe a variety of modeling techniques that can 
help managers gain insight and understanding about the decision problems they face. 
But models do not make decisions—people do. Although the insight and understand-
ing gained by modeling problems can be helpful, decision making often remains a 
difficult task. The two primary causes for this difficulty are uncertainty regarding the 
future and conflicting values or objectives.

For example, suppose that when you graduate from college you receive job offers 
from two companies. One company (company A) is in a relatively new industry that 
offers potential for spectacular growth—or rapid bankruptcy. The salary offered by this 
company is somewhat lower than you would like, but would increase rapidly if the 
company grows. This company is located in the city that is home to your favorite pro-
fessional sports team and close to your friends and family.

The other job offer is from an established company (company B) that is known for 
its financial strength and long-term commitment to its employees. It has offered you a 
starting salary that is 10 percent more than you asked, but you suspect it would take 
longer for you to advance in this organization. Also, if you work for this company, you 
would have to move to a distant part of the country that offers few of the cultural and 
sporting activities that you enjoy.

Which offer would you accept? Or would you reject both offers and continue looking 
for employment with other companies? For many, this might be a difficult decision. If you 
accept the job with company A, you might be promoted twice within a year—or you could 
be unemployed in six months. With company B, you can be reasonably sure of having a 
secure job for the foreseeable future. But if you accept the job with company B and then 
company A grows rapidly, you might regret not accepting the position with company A. 
Thus, the uncertainty associated with the future of company A makes this decision difficult.

To further complicate the decision, company A offers a more desirable location than 
company B, but the starting salary with company A is lower. How can you assess the 
trade-offs between starting salary, location, job security, and potential for advancement 
in order to make a good decision? There is no easy answer to this question, but this 
chapter describes a number of techniques that can help you structure and analyze diffi-
cult decision problems in a logical manner.

14.1 Good Decisions vs. Good Outcomes
The goal of decision analysis is to help individuals make good decisions. But good 
decisions do not always result in good outcomes. For example, suppose that after care-
fully considering all the factors involved in the two job offers, you decide to accept the 
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position with company B. After working for this company for nine months, it suddenly 
announces that, in an effort to cut costs, it is closing the office in which you work and 
eliminating your job. Did you make a bad decision? Probably not. Unforeseeable cir-
cumstances beyond your control caused you to experience a bad outcome, but it would 
be unfair to say that you made a bad decision. A good decision is one that is in har-
mony with what you know, what you want, what you can do, and to which you are 
committed. But good decisions sometimes result in bad outcomes.

The techniques for decision analysis presented in this chapter can help you make 
good decisions, but they cannot guarantee that good outcomes will always occur as a 
result of those decisions. Even when a good decision is made, luck often plays a role 
in determining whether a good or bad outcome occurs. However, using a structured 
approach to make decisions should give us enhanced insight and sharper intuition 
about the decision problems we face. As a result, it is reasonable to expect good out-
comes to occur more frequently when using a structured approach to decision making 
than if we make decisions in a more haphazard manner. 

14.2 Characteristics of Decision Problems
Although all decision problems are somewhat different, they share certain character-
istics. For example, a decision must involve at least two alternatives for addressing or 
solving a problem. An alternative is a course of action intended to solve a problem. The 
job selection example described earlier involves three alternatives: you could accept the 
offer from company A, accept the offer from company B, or reject both offers and con-
tinue searching for a better one.

Alternatives are evaluated on the basis of the value they add to one or more decision 
criteria. The criteria in a decision problem represent various factors that are import-
ant to the decision maker and influenced by the alternatives. For example, the criteria 
used to evaluate the job offer alternatives might include starting salary, expected sal-
ary growth, desirability of job location, opportunity for promotion and career advance-
ment, and so on. The impact of the alternatives on the criteria is of primary importance 
to the decision maker. Note that not all criteria can be expressed in terms of monetary 
value, making comparisons of the alternatives more difficult.

Finally, the values assumed by the various decision criteria under each alternative 
depend on the different states of nature that can occur. The states of nature in a decision 
problem correspond to future events that are not under the decision maker’s control. For 
example, company A could experience spectacular growth, or it might go bankrupt. Each of 
these contingencies represents a possible state of nature for the problem. Many other states 
of nature are possible for the company; for example, it could grow slowly, or not grow at 
all. Thus, an infinite number of possible states of nature could exist in this, and many other, 
decision problems. However, in decision analysis, we often use a relatively small, discrete 
set of representative states of nature to summarize the future events that might occur.

14.3 An Example
The following example illustrates some of the issues and difficulties that arise in deci-
sion problems.

Hartsfield-Jackson International Airport in Atlanta, Georgia is one of the busiest 
airports in the world. During the past 30 years, the airport has expanded again 
and again to accommodate the increasing number of flights being routed through 
Atlanta. Analysts project that this increase will continue well into the future. 
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However, commercial development around the airport prevents it from building 
additional runways to handle the future air-traffic demands. As a solution to this 
problem, plans are being developed to build another airport outside the city limits. 
Two possible locations for the new airport have been identified, but a final decision 
on the new location is not expected to be made for another year.

The Magnolia Inns hotel chain intends to build a new facility near the new airport 
after its site is determined. Barbara Monroe is responsible for real estate acquisition 
for the company, and she faces a difficult decision about where to buy land. Cur-
rently, land values around the two possible sites for the new airport are increasing 
as investors speculate that property values will increase greatly in the vicinity of the 
new airport. The spreadsheet in Figure 14.1 (and in the file Fig14-1.xlsm that accom-
panies this book) summarizes the current price of each parcel of land, the estimated 
present value of the future cash flows that a hotel would generate at each site if the 
airport is ultimately located at the site, and the present value of the amount for which 
the company believes it can resell each parcel if the airport is not built at the site. 

The company can buy either site, both sites, or neither site. Barbara must decide 
which sites, if any, the company should purchase.

14.4 The Payoff Matrix
A common way of analyzing this type of decision problem is to construct a payoff 
matrix. A payoff matrix is a table that summarizes the final outcome (or payoff) for 
each decision alternative under each possible state of nature. To construct a payoff 
matrix, we need to identify each decision alternative and each possible state of nature. 

14.4.1 Decision AlternAtives
The following four decision alternatives are available to the decision maker in our 
example problem:

1. Buy the parcel at location A.
2. Buy the parcel at location B.
3. Buy the parcels at locations A and B.
4. Buy nothing.

Figure 14.1

Data for the 
Magnolia Inns 
decision problem
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14.4.2 stAtes of nAture
Regardless of which parcel or parcels Magnolia Inns decides to purchase, two possible 
states of nature can occur. The two states of nature are as follows:

1. The new airport is built at location A.
2. The new airport is built at location B.

Figure 14.2 shows the payoff matrix for this problem. The rows in this spreadsheet 
represent the possible decision alternatives, and the columns correspond to the states 
of nature that might occur. Each value in this table indicates the financial payoff (in 
millions of dollars) expected for each possible decision under each state of nature.

Figure 14.2

Payoff matrix for 
the Magnolia Inns 
decision problem

14.4.3 the PAyoff vAlues
The value in cell B5 in Figure 14.2 indicates that if the company buys the parcel of land 
near location A, and the airport is built in this area, Magnolia Inns can expect to receive 
a payoff of $13 million. This figure of $13 million is computed from the data shown in 
Figure 14.1 as:

Present value of future cash flows if
hotel and airport are built at location A $31,000,000

minus:

Current purchase price of hotel site
at location A  2$18,000,000

$13,000,000

The value in cell C5 in Figure 14.2 indicates that if Magnolia Inns buys the parcel of 
land at location A (for $18 million) and the airport is built at location B, the company 
would later resell the parcel at location A for only $6 million, incurring a loss of $12 
million.

The calculations of the payoffs for the parcel near location B are computed using 
similar logic. The value in cell C6 in Figure 14.2 indicates that if the company buys the 
parcel of land near location B and the airport is built in this area, Magnolia Inns can 
expect to receive a payoff of $11 million. The value in cell B6 in Figure 14.2 indicates 
that if Magnolia Inns buys the parcel of land at location B (for $12 million) and the 
airport is built at location A, the company would later resell the parcel at location B for 
only $4 million, incurring a loss of $8 million.
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Let’s now consider the payoffs if the parcels at both locations A and B are purchased. 
The value in cell B7 in Figure 14.2 indicates that a payoff of $5 million will result if both 
parcels are purchased and the airport is built at location A. This payoff value is com-
puted as:

Present value of future cash flows if
hotel and airport are built at location A $31,000,000

plus:

Present value of future sales price for the
unused parcel at location B  1$ 4,000,000

minus:

Current purchase price of hotel site
at location A  2$18,000,000

minus:

Current purchase price of hotel site
at location B  2$12,000,000

$ 5,000,000

The value in cell C7 indicates that a loss of $1 million will occur if the parcels at both 
locations A and B are purchased, and the airport is built at location B.

The final alternative available to Magnolia Inns is not to buy either property at this 
point in time. This alternative guarantees that the company will neither gain nor lose 
anything, regardless of where the airport is located. Thus, cells B8 and C8 indicate that 
this alternative has a payoff of $0 regardless of which state of nature occurs.

14.5 Decision Rules
Now that the payoffs for each alternative under each state of nature have been deter-
mined, if Barbara knew with certainty where the airport was going to be built, it would 
be a simple matter for her to select the most desirable alternative. For example, if she 
knew the airport was going to be built at location A, a maximum payoff of $13 million 
could be obtained by purchasing the parcel of land at that location. Similarly, if she 
knew the airport was going to be built at location B, Magnolia Inns could achieve the 
maximum payoff of $11 million by purchasing the parcel at that location. The problem 
is that Barbara does not know where the airport is going to be built.

Several decision rules can be used to help a decision maker choose the best alter-
native. No one of these decision rules works best in all situations and, as you will 
see, each has some weaknesses. However, these rules help to enhance our insight and 
sharpen our intuition about decision problems so that we can make more informed 
decisions.

14.6 Nonprobabilistic Methods
The decision rules we will discuss can be divided into two categories: those that assume 
that probabilities of occurrence can be assigned to the states of nature in a decision 
problem (probabilistic methods), and those that do not (nonprobabilistic methods). 
We will discuss the nonprobabilistic methods first.
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14.6.1 the MAxiMAx Decision rule
As shown in Figure 14.2, the largest possible payoff will occur if Magnolia Inns buys 
the parcel at location A and the airport is built at this location. Thus, if the company 
optimistically believes that nature will always be “on its side” regardless of the deci-
sion it makes, the company should buy the parcel at location A because it leads to the 
largest possible payoff. This type of reasoning is reflected in the maximax decision 
rule, which determines the maximum payoff for each alternative and then selects the 
alternative associated with the largest payoff. Figure 14.3 illustrates the results of the 
maximax decision rule on our example problem.

Figure 14.3

The maximax 
decision rule for
the Magnolia Inns 
decision problem

Key Cell Formulas

Cell Formula Copied to

D5 5MAX(B5:C5) D6:D8

Although the alternative suggested by the maximax decision rule enables Mag-
nolia Inns to realize the best possible payoff, it does not guarantee that this payoff 
will occur. The actual payoff depends on where the airport is ultimately located. If we 
follow the maximax decision rule and the airport is built at location A, the company 
would receive $13 million; but if the airport is built at location B, the company would 
lose $12 million.

In some situations, the maximax decision rule leads to poor decisions. For example, 
consider the following payoff matrix:

State of Nature

Decision 1 2 MAX

A 30 210,000 30 d maximum

B 29 29 29

In this problem, alternative A would be selected using the maximax decision 
rule. However, many decision makers would prefer alternative B because its guar-
anteed payoff is only slightly less than the maximum possible payoff, and it avoids 
the potential large loss involved with alternative A if the second state of nature 
occurs.
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14.6.2 the MAxiMin Decision rule
A more conservative approach to decision making is given by the maximin decision
rule, which pessimistically assumes that nature will always be “against us” regardless 
of the decision we make. This decision rule can be used to hedge against the worst 
possible outcome of a decision. Figure 14.4 illustrates the effect of the maximin decision 
rule on our example problem.

Key Cell Formulas

Cell Formula Copied to

D5 5MIN(B5:C5) D6:D8

Figure 14.4

The maximin 
decision rule for 
the Magnolia Inns 
decision problem

To apply the maximin decision rule, we first determine the minimum possible pay-
off for each alternative and then select the alternative with the largest minimum payoff 
(or the maximum of the minimum payoffs—hence the term “maximin”). Column D in 
Figure 14.4 lists the minimum payoff for each alternative. The largest (maximum) value 
in column D is the payoff of $0 associated with not buying any land. Thus, the maximin 
decision rule suggests that Magnolia Inns should not buy either parcel because, in the 
worst case, the other alternatives result in losses whereas this alternative does not.

The maximin decision rule can also lead to poor decision making. For example, con-
sider the following payoff matrix:

State of Nature

Decision 1 2 MiN

A 1,000 28 28
B 29 29 29 d maximum

In this problem, alternative B would be selected using the maximin decision rule. 
However, many decision makers would prefer alternative A because its worst-case 
payoff is only slightly less than that of alternative B, and it provides the potential for a 
much larger payoff if the first state of nature occurs.

14.6.3 the MiniMAx regret Decision rule
Another way of approaching decision problems involves the concept of regret, or 
opportunity loss. For example, suppose that Magnolia Inns decides to buy the parcel 
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of land at location A as suggested by the maximax decision rule. If the airport is built 
at location A, the company will not regret this decision at all because it provides the 
largest possible payoff under the state of nature that occurred. However, what if the 
company buys the parcel at location A and the airport is built at location B? In this case, 
the company would experience a regret, or opportunity loss, of $23 million. If Magnolia 
Inns had bought the parcel at location B, it would have earned a payoff of $11 million, 
and the decision to buy the parcel at location A resulted in a loss of $12 million. Thus, 
there is a difference of $23 million in the payoffs between these two alternatives under 
this state of nature.

To use the minimax regret decision rule, we must first convert our payoff matrix 
into a regret matrix that summarizes the possible opportunity losses that could result 
from each decision alternative under each state of nature. Figure 14.5 shows the regret 
matrix for our example problem.

Key Cell Formulas

Cell Formula Copied to

B5 5MAX(Payoffs!B$5:B$8)2Payoffs!B5 B5:C8
D5 5MAX(B5:C5) D6:D8

Figure 14.5

The minimax 
regret decision rule 
for the Magnolia 
Inns decision 
problem

The entries in the regret matrix are generated from the payoff matrix as:

Formula for cell B5:    5MAX(Payoffs!B$5:B$8) 2 Payoffs!B5
 (Copy to B5 through C8.)

Each entry in the regret matrix shows the difference between the maximum  payoff 
that can occur under a given state of nature and the payoff that would be realized from 
each alternative under the same state of nature. For example, if Magnolia Inns buys the 
parcel of land at location A and the airport is built at this location, cell B5 indicates that 
the company experiences 0 regret. However, if the company buys the parcel at location 
B and the airport is built at location A, the company experiences an opportunity loss (or 
regret) of $21 million 113 2 128 2 5 21 2 .

Column D in Figure 14.5 summarizes the maximum regret that could be experienced 
with each decision alternative. The minimax regret decision corresponds to the alter-
native with the smallest (or minimum) maximum regret. As indicated in Figure 14.5, 
the minimax regret decision in our example problem is to buy the parcels at both sites. 
The maximum regret that could be experienced by implementing this decision is $12 
million, whereas all other decisions could cause a larger regret.
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762 Chapter 14 Decision Analysis

The minimax regret decision rule can also lead to peculiar decision making. For 
example, consider the following payoff matrix:

State of Nature

Decision 1 2

A 9 2

B 4 6

The regret matrix and minimax regret decision for this problem are represented by:

State of Nature

Decision 1 2 MAX

A 0 4 4 d minimum

B 5 0 5

Thus, if the alternatives are given by A and B, the minimax regret decision rule 
would select alternative A. Now, suppose that we add a new alternative to this deci-
sion problem to obtain the following payoff matrix:

State of Nature

Decision 1 2

A 9 2

B 4 6

C 3 9

Notice that the payoffs for alternatives A and B have not changed—we simply added 
a new alternative (C). The regret matrix and minimax regret decision for the revised 
problem are represented by:

State of Nature

Decision 1 2 MAX

A 0 7 7

B 5 3 5 d minimum

C 6 0 6

The minimax regret decision is now given by alternative B. Some decision makers 
are troubled that the addition of a new alternative, which is not selected as the final 
decision, can change the relative preferences of the original alternatives. For example, 
suppose that a person prefers apples to oranges, but would prefer oranges if given the 
options of apples, oranges, and bananas. This person’s reasoning is somewhat incon-
sistent or incoherent. But such reversals in preferences are a natural consequence of the 
minimax regret decision rule.

14.7 Probabilistic Methods
Probabilistic decision rules can be used if the states of nature in a decision problem can 
be assigned probabilities that represent their likelihood of occurrence. For decision prob-
lems that occur more than once, it is often possible to estimate these probabilities from 
historical data. However, many decision problems (such as the Magnolia Inns problem)  
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represent one-time decisions for which historical data for estimating probabilities are 
unlikely to exist. In these cases, probabilities are often assigned subjectively based on 
interviews with one or more domain experts. Highly structured interviewing tech-
niques exist to solicit probability estimates that are reasonably accurate and free of the 
unconscious biases that may impact an expert’s opinions. These interviewing tech-
niques are described in several of the references at the end of this chapter. Here, we will 
focus on the techniques that can be used once appropriate probability estimates have 
been obtained either from historical data or expert interviews.

14.7.1 exPecteD MonetAry vAlue
The expected monetary value decision rule selects the decision alternative with the 
largest expected monetary value (EMV). The EMV of alternative i in a decision problem 
is defined as:

EMVi 5 a
j

rijpj

where

rij 5  the payoff for alternative i under the jth state of nature
 pj 5  the probability of the jth state of nature

Figure 14.6 illustrates the EMV decision rule for our example problem. In this case, 
Magnolia Inns estimates a 40% chance that the airport will be built at location A and a 
60% chance that it will be built at location B.

The probabilities for each state of nature are computed in cells B10 and C10, respec-
tively. Using these probabilities, the EMV for each decision alternative is calculated in 
column D as:

Formula for cell D5:    5SUMPRODUCT(B5:C5,$B$10:$C$10)
 (Copy to D6 through D8.)

Key Cell Formulas

Cell Formula Copied to

D5 5SUMPRODUCT(B5:C5,$B$10:$C$10) D6:D8
C10 512B10 --

Figure 14.6

The expected 
monetary value 
decision rule for 
the Magnolia Inns 
decision problem
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The largest EMV is associated with the decision to purchase the parcel of land at 
location B. Thus, this is the decision suggested according to the EMV decision rule.

Let’s consider the meaning of the figures in the EMV column in Figure 14.6. For 
example, the decision to purchase the parcel at location B has an EMV of $3.4 million. 
What does this figure represent? The payoff table indicates that Magnolia Inns will 
receive a payoff of $11 million if it buys this land and the airport is built there, or it 
will lose $8 million if it buys this land and the airport is built at the other location. So, 
there does not appear to be any way for the company to receive a payoff of $3.4 million 
if it buys the land at location B. However, imagine that Magnolia Inns faces this same 
decision not just once, but over and over again (perhaps on a weekly basis). If the com-
pany always decides to purchase the land at location B, we would expect it to receive 
a payoff of $11 million 60% of the time, and incur a loss of $8 million 40% of the time. 
Over the long run, then, the decision to purchase land at location B results in an aver-
age payoff of $3.4 million.

The EMV for a given decision alternative indicates the average payoff we would 
receive if we encounter the identical decision problem repeatedly and always select this 
alternative. Selecting the alternative with the highest EMV makes sense in situations 
where the identical decision problem will be faced repeatedly and we can “play the 
averages.” However, this decision rule can be very risky in decision problems encoun-
tered only once (such as our example problem). For example, consider the following 
problem:

State of Nature

Decision 1 2 eMV

A 15,000 25,000 5,000 d maximum

B  5,000  4,000 4,500

Probability  0.5 0.5  

If we face a decision with these payoffs and probabilities repeatedly and always 
select decision A, the payoff over the long run would average to $5,000. Because this is 
larger than decision B’s average long-run payoff of $4,500, it would be best to always 
select decision A. But what if we face this decision problem only once? If we select 
decision A, we are equally likely to receive $15,000 or lose $5,000. If we select decision 
B, we are equally likely to receive payoffs of $5,000 or $4,000. In this case, decision A is 
more risky. Yet this type of risk is ignored completely by the EMV decision rule. Later, 
we will discuss a technique—known as the utility theory—that allows us to account for 
this type of risk in our decision making.

14.7.2 exPecteD regret
We can also use the probability of the states of nature to compute the expected regret, 
or expected opportunity loss (EOL), for each alternative in a decision problem. Figure 
14.7 illustrates this process for our example problem.

The calculations in Figure 14.7 are identical to those used in computing the EMVs, 
only here we substitute regret values (or opportunity losses) for the payoffs. As shown in 
Figure 14.7, the decision to purchase the parcel at location B results in the smallest EOL. 
It is not a coincidence that this same decision also resulted in the largest EMV in Figure 
14.6. The decision with the smallest EOL will also have the largest EMV. Thus, the EMV 
and EOL decision rules always result in the selection of the same decision alternative.
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e M v  a n d  e o l
The expected monetary value (EMV) and expected opportunity loss (EOL) deci-
sion rules always result in the selection of the same decision alternative.

14.7.3 sensitivity AnAlysis
When using probabilistic decision rules, one should always consider how sensitive the 
recommended decision is to the estimated probabilities. For instance, the EMV decision 
rule shown in Figure 14.6 indicates that if there is a 60% probability of the new airport 
being built at location B, the best decision is to purchase the land at location B. How-
ever, what if this probability is 55%? Or 50%? Or 45%? Would it still be best to purchase 
the land at location B?

We can answer this by building a data table that summarizes the EMVs for each 
alternative as we vary the probabilities. Figure 14.8 shows how to set up a data table for 
this problem.

First, in cells A14 through A24, we entered the values from 0 to 1 representing differ-
ent probabilities for the airport being built at location A. Next, in cells B13 through E13, 
we entered formulas that link back to the EMVs for each of the decision alternatives. To 
finish the data table, follow these steps:

1. Select cells A13 through E24.
2. Click Data, What-If Analysis, Data Table. 
3. Specify a Column Input Cell of B10 (as shown in Figure 14.8).
4. Click OK.

This causes Excel to plug each of the values in cells A14 through A24 into cell B10, 
recalculate the spreadsheet, and then record the resulting EMVs for each decision 

Figure 14.7

The expected regret 
decision rule for 
the Magnolia Inns 
decision problem

Key Cell Formulas

Cell Formula Copied to

B5 5MAX(Payoffs!B$5:B$8)2Payoffs!B5 B5:C8
D5 5SUMPRODUCT(B5:C5,$B$10:$C$10) D6:D8
C10 512B10 --
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766 Chapter 14 Decision Analysis

alternative in our table. (Note that the formula in cell C10 makes the probability of the 
airport being built at location B dependent on the value in cell B10.) The resulting data 
table is shown in Figure 14.9.

The data table in Figure 14.9 indicates that if the probability of the airport being built 
at location A is 0.4 or less, then purchasing the land at location B has the highest EMV. 
However, if the airport is equally likely to be built at either location, then the decision 
to purchase land at both locations A and B has the highest EMV. If the airport is more 
likely to be built at location A, then purchasing the land at location A becomes the pre-
ferred decision. 

The graph of the possible payoffs shown in Figure 14.9 makes it clear that buying the 
land at both locations A and B is a less risky alternative than buying either location indi-
vidually. If there is much uncertainty in the probability estimates, the preferred alter-
native may well be to buy both pieces of property. For probability values between 0.4 
and 0.6, the EMV of buying land at both locations A and B is always positive and varies 
from $1.4 million to $2.6 million. Within this same range of probabilities, a decision to 
buy at location A individually or location B individually poses a risk of a negative EMV. 

Key Cell Formulas

Cell Formula Copied to

D5 5SUMPRODUCT(B5:C5,$B$10:$C$10) D6:D8
C10 512B10 --
A15 5A141.1 A16:A24
B13 5D5 --
C13 5D6 --
D13 5D7 --
E13 5D8 --

Figure 14.8

Creating a data 
table of EMVs 
for the various 
alternatives as 
the probabilities 
change
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14.8 The Expected Value  
of Perfect Information
One of the primary difficulties in decision making is that we usually do not know 
which state of nature will occur. As we have seen, estimates of the probability of each 
state of nature can be used to calculate the EMV of various decision alternatives. How-
ever, probabilities do not tell us which state of nature will occur—they only indicate 
the likelihood of the various states of nature.

Suppose that we could hire a consultant who could tell us in advance and with 
100% accuracy which state of nature will occur. If our example problem were a repeat-
able decision problem, 40% of the time the consultant would indicate that the airport 
will be built at location A, and the company would buy the parcel of land at location 
A and receive a payoff of $13 million. Similarly, 60% of the time the consultant would 
indicate that the airport will be built at location B, and the company would buy the 
parcel at location B and receive a payoff of $11 million. Thus, with advance perfect 
information about where the airport is going to be built, the average payoff would be 
the following:

Expected value with perfect information 5 0.40 3 $13 1 0.60 3 $11 
 5 $11.8 (in millions)

Figure 14.9 Data table for the Magnolia Inns decision problem
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768 Chapter 14 Decision Analysis

So, how much should Magnolia Inns be willing to pay this consultant for such infor-
mation? From Figure 14.6, we know that without the services of this consultant, the 
best decision identified results in an EMV of $3.4 million. Therefore, the information 
provided by the consultant would enable the company to make decisions that increase 
the EMV by $8.4 million 1$11.8 2 $3.4 5 $8.4 2 . Thus, the company should be willing to 
pay the consultant up to $8.4 million for providing perfect information.

The expected value of perfect information (EVPI) is the expected value obtained 
with perfect information minus the expected value obtained without perfect informa-
tion (which is given by the maximum EMV), that is:

Expected value  of 
5

 Expected value with 
2

 
maximum EMVperfect information perfect information

Figure 14.10 summarizes the EVPI calculation for our example problem. Cell D6 in 
Figure 14.10 shows the calculation of the maximum EMV of $3.4 million, which was 
described earlier in our discussion of the EMV decision rule. The payoffs of the deci-
sions made under each state of nature with perfect information are calculated in cells 
B12 and C12 as:

Formula for cell B12:    =MAX(B5:B8)
    (Copy to C12.)

The expected value with perfect information is calculated in cell D12 as:

Formula for cell D12:    5SUMPRODUCT(B12:C12,B10:C10)

Finally, the expected value of perfect information is computed in cell D14 as:

Formula for cell D14:    5D12 2 MAX(D5:D8)

Key Cell Formulas

Cell Formula Copied to

B12 5MAX(B5:B8) C12
D5 5SUMPRODUCT(B5:C5,$B$10:$C$10) D6:D8 & D12
D14 5D122MAX(D5:D8) --

Figure 14.10

The expected 
value of perfect 
information for 
the Magnolia Inns 
decision problem
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Notice that the $8.4 million EVPI figure in cell D14 is identical to the minimum EOL 
shown earlier in Figure 14.7. This is not just a coincidence. The minimum EOL in a deci-
sion problem will always equal the EVPI.

K e y  P o i n t
The expected value of perfect information (EVPI) is equivalent to the minimum 
expected opportunity loss (EOL).

14.9 Decision Trees
Although some decision problems can be represented and analyzed effectively using 
payoff tables, we can also represent decision problems in a graphical form known as a 
decision tree. Figure 14.11 shows the decision problem for Magnolia Inns represented 
in this format.

1

2

3

4

Buy A

218

Buy B

212

Buy A&B

230

Buy nothing

0

Land purchase decision Airport location

A

B

A

B

B

B

A

A

Payoff

13

212

28

11

5

21

0

0

31

6

4

23

35

29

0

0

Figure 14.11

The decision tree 
representation of 
the Magnolia Inns 
problem

As shown in Figure 14.11, a decision tree is composed of a collection of nodes (rep-
resented by circles and squares) interconnected by branches (represented by lines). A 
square node is called a decision node because it represents a decision. Branches emanat-
ing from a decision node represent the different alternatives for a particular decision. In 
Figure 14.11, a single square decision node represents the decision Magnolia Inns faces 
about where to buy land. The four branches coming out of this decision node represent 
the four alternatives under consideration. The cash flow associated with each alternative 
is also listed. For example, the value –18 below the alternative labeled “Buy A” indicates 
that if the company purchases the parcel at location A, it must pay $18 million.
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The circular nodes in a decision tree are called event nodes because they represent 
uncertain events. The branches emanating from event nodes (called event branches) 
correspond to the possible states of nature or the possible outcomes of an uncertain 
event. Figure 14.11 shows that each decision alternative emanating from the decision 
node is followed by an uncertain event represented by the event nodes 1, 2, 3, and 4. 
The branches from each event node represent a possible location of the new airport. 
In each case, the airport can be built at location A or B. The value beneath each branch 
from the event nodes indicates the cash flow that will occur for that decision/event 
combination. For example, at node 1, the value 31 below the first event branch indicates 
that if the company buys the parcel at location A and the airport is built at this location, 
a cash flow of $31 million will occur.

The various branches in a decision tree end at objects called leaves. Because each 
leaf corresponds to one way in which the decision problem can terminate, leaves are 
also referred to as terminal nodes. Each terminal node in Figure 14.11 corresponds to 
an entry in the payoff table in Figure 14.2. The payoff occurring at each terminal node 
is computed by summing the cash flows along the set of branches leading to each leaf. 
For example, following the uppermost branches through the tree, a payoff of $13 mil-
lion results if the decision to buy the parcel at location A is followed by the new airport 
being built at this location 1218 1 31 5 13 2 . You should verify the cash-flow values on 
each branch and at each leaf before continuing.

14.9.1 rolling BAcK A Decision tree
After computing the payoffs at each terminal node, we can apply any of the decision 
rules described earlier. For example, we could identify the maximum possible payoff 
for each decision and apply the maximax decision rule. However, decision trees are 
used most often to implement the EMV decision rule—that is, to identify the decision 
with the largest EMV.

We can apply a process known as rolling back to a decision tree to determine the 
decision with the largest EMV. Figure 14.12 illustrates this process for our example 
problem.

Because the EMV decision rule is a probabilistic method, Figure 14.12 indicates the 
probabilities associated with each event branch emanating from each event node (i.e., 
a 0.4 probability exists of the new airport being built at location A, and a 0.6 probability 
exists of it being built at location B). To roll back this decision tree, we start with the 
payoffs and work our way from right to left, back through the decision tree, computing 
the expected values for each node. For  example, the event represented by node 1 has a 
0.4 probability of resulting in a payoff of $13 million, and a 0.6 probability of resulting 
in a loss of $12 million. Thus, the EMV at node 1 is calculated as:

EMV at node 1 5 0.4 3 13 1 0.6 3 212 5 22.0

The expected value calculations for the remaining event nodes in Figure 14.12 are sum-
marized as:

 EMV at node 2 5 0.4 3 28 1 0.6 3 11 5 3.4
 EMV at node 3 5 0.4 3 5 1 0.6 3 21 5 1.4
 EMV at node 4 5 0.4 3 0 1 0.6 3 0 5 0.0

The EMV for a decision node is computed in a different way. For example, at the 
(square) decision node, we face a decision among four alternatives that lead to events 
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with EMVs of 22, 3.4, 1.4, and 0, respectively. At a decision node, we always select 
the alternative that leads to the best EMV. Thus, the EMV at the decision node is 3.4, 
which corresponds to the EMV resulting from the decision to buy land at location B.  
(This decision is represented by the number 2 in the decision node because the deci-
sion to buy land at location B is the second decision alternative at this decision node.) 
The optimal alternative at a decision node is sometimes indicated by “pruning” 
the suboptimal branches. The pruned branches in Figure 14.12 are indicated by the 
 double vertical lines 1 0 0 2  shown on the suboptimal alternatives emanating from the 
decision node.

The relationship between the decision tree in Figure 14.12 and the payoff table in 
Figure 14.2 should now be clear. However, you might wonder if it is necessary to 
include event node 4 in the tree shown in Figure 14.12. If Magnolia Inns decides not 
to buy either property, the payoff it receives does not depend on where the airport is 
ultimately built—regardless of where the airport is built, the company will receive a 
payoff of 0.

Figure 14.13 shows an alternative, and perhaps more efficient, way of representing 
this problem as a decision tree in which it is clear that the decision not to purchase 
either parcel leads to a definite payoff of 0.

14.10 Creating Decision Trees  
with Analytic Solver Platform
Analytic Solver Platform includes a tool that can help us create and analyze decision 
trees in Excel. We will illustrate how to use this tool to implement the decision tree 
shown in Figure 14.13 in Excel.
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Figure 14.12

Rolling back the 
decision tree for 
the Magnolia Inns 
decision problem
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772 Chapter 14 Decision Analysis

To create a decision tree, open a new workbook and follow these steps:

1. Select cell A1.
2. Click the Analytic Solver Platform tab.
3. Click Decision Tree, Node, Add Node.

In response, Analytic Solver Platform displays the Decision Tree dialog box as 
shown in Figure 14.14. (Alternatively, you can also display the Decision Tree dialog 
box by selecting Decision Tree in the Analytic Solver task pane and clicking the green 
plus sign icon in the task pane.) 

In Figure 14.14, we filled in the entries shown for the “Node Name” and supplied 
names and values (cash flows) for each of the four branches that should emanate from 
the initial decision node (as shown in Figure 14.13). When you click OK on the Decision 
Tree dialog box, an initial decision tree is created in Excel as shown in Figure 14.15.

In Figure 14.15, note that a representation of the decision tree is also created in the 
Decision Tree section of Analytic Solver task pane. If you click the different elements 
of the tree in the task pane, various properties associated with the selected element 
appear in the lower part of the task pane. 

14.10.1 ADDing event noDes
Each of the first three decision branches in Figure 14.13 leads to an event node with two 
event branches. Thus, we need to add similar event nodes to the decision tree shown in 
Figure 14.15. To add the first event node follow these steps:

1. Select the terminal node for the branch labeled Buy A (cell F3).
2. Click Decision Tree, Node, Change Node.

Figure 14.13

Alternative decision 
tree representation 
of the Magnolia Inns 
decision problem
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This causes the Decision Tree dialog box to appear again. However, as shown in 
Figure 14.16, this time we select the Event option and provide the name, value (or cash 
flows), and chance (probability) information associated with the event node we want to 
add to the tree. The resulting spreadsheet is shown in Figure 14.27.

Figure 14.14 Initial Decision Tree dialog box

Figure 14.15 Initial tree with four decision branches
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Figure 14.16 Adding an event node

Figure 14.17 Modified decision tree with an event node
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The procedure used to create the event node for the Buy A decision could be repeated 
to create event nodes for the decisions corresponding to Buy B and Buy A & B. However, 
because all of the event nodes are identical in this problem (except for the values on the 
branches), we could also simply copy the existing event node two times. You might be 
tempted to copy and paste the existing event node using the standard Excel commands—
but if you do, Analytic Solver Platform cannot update the formulas in the tree properly. 
Thus, it is important to copy and paste portions of the decision tree using the Decision 
Tree tool’s Copy Node and Paste Node commands. To create a copy of the event node:

1. Select the node you want to copy (cell F5).
2. Click Decision Tree, Node, Copy Node.

This creates a copy of the selected event node in your computer’s memory. To paste 
a copy of this subtree onto the next branch in the decision tree:

1. Select the target cell location (cell F13).
2. Click Decision Tree, Node, Paste Node.

The resulting decision tree is shown in Figure 14.18. We can repeat this copy-and-
paste procedure to create the third event node needed for the decision to buy the parcels 
at both locations A and B. Figure 14.19 shows the resulting spreadsheet after the cash 
flow values have been updated on the branches from the newly added event nodes.

14.10.2 DeterMining the PAyoffs AnD eMvs
Next to each terminal node, the Decision Tree tool automatically created a formula 
that sums the payoffs along the branches leading to that node. For example, cell K3 in 

Figure 14.18 Decision tree with three event nodes
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Figure 14.19 contains the formula =SUM(H4,D6). Thus, when we enter or change the 
cash flows for the branches in the decision tree, the payoffs are updated automatically.

Immediately below and to the left of each node, the Decision Tree tool created for-
mulas that compute the EMV at each node in the same way as described earlier in our 
discussion of rolling back a decision tree. Thus, cell A20 in Figure 14.19 indicates that 
the largest EMV at the decision node is $3.4 million. The value 2 in the decision node 
(cell B19) indicates that this maximum EMV is obtained by selecting the second deci-
sion alternative (i.e., by purchasing the parcel at location B).

14.10.3 other feAtures
The preceding discussion was intended to give you an overview of how the Decision 
Tree tool operates and some of its capabilities and options. Many of its other capabili-
ties are self-explanatory. 

By default, the Decision Tree tool assumes that the EMVs it calculates represent 
profit values and that we want to identify the decision with the largest EMV. However, 
in some decision trees, the expected values could represent costs that we want to min-
imize. In Figure 14.19, note that when the Decision Tree component is selected on the 
Model tab in the Analytic Solver task pane, a number of properties are displayed in the 
lower portion of the task pane. The “Decision Node EV/CE” option allows you to spec-
ify whether you are using values that should be maximized or minimized. 

Figure 14.19 Completed decision tree for the Magnolia Inns decision problem
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Multistage Decision Problems 777

Also by default, the Decision Tree tool assumes that we want to analyze the decision 
tree using expected values. However, another technique (described later) uses expo-
nential utility functions in place of expected values. Thus, the Certainty Equivalents 
property controls whether the Decision Tree tool uses expected values or exponential 
utility functions while evaluating the alternatives in a decision tree. 

14.11 Multistage Decision Problems
To this point, our discussion of decision analysis has considered only single-stage deci-
sion problems—that is, problems in which a single decision must be made. However, 
most decisions that we face lead to other decisions. As a simple example, consider the 
decision of whether to go out to dinner. If you decide to go out to dinner, you must 
then decide how much to spend, where to go, and how to get there. Thus, before you 
actually decide to go out to dinner, you’ll probably consider the other issues and deci-
sions that must be made if you choose that alternative. These types of problems are 
called multistage decision problems. The following example illustrates how a multi-
stage decision problem can be modeled and analyzed using a decision tree.

The Occupational Safety and Health Administration (OSHA) has recently 
announced it will award an $85,000 research grant to the person or company sub-
mitting the best proposal for using wireless communications technology to enhance 
safety in the coal-mining industry. Steve Hinton, the owner of COM-TECH, a small 
communications research firm located just outside of Raleigh, North Carolina, is 
considering whether or not to apply for this grant. Steve estimates he would spend 
approximately $5,000 preparing his grant proposal and that he has about a 50–50 
chance of actually receiving the grant. If he is awarded the grant, he would then 
need to decide whether to use microwave, cellular, or infrared communications 
technology. He has some experience in all three areas, but would need to acquire 
some new equipment depending on which technology is used. The cost of the 
equipment needed for each technology is summarized as:

Technology equipment Cost

Microwave $4,000

Cellular $5,000

Infrared $4,000

In addition to the equipment costs, Steve knows he will spend money in research 
and development (R&D) to carry out the research proposal, but he does not know 
exactly what the R&D costs will be. For simplicity, Steve estimates the following 
best-case and worst-case R&D costs associated with using each technology, and he 
assigns probabilities to each outcome based on his degree of expertise in each area.

Possible r&D Costs

Best Case Worst Case

Cost Prob. Cost Prob.

Microwave $30,000 0.4 $60,000 0.6

Cellular $40,000 0.8 $70,000 0.2

Infrared $40,000 0.9 $80,000 0.1

Steve needs to synthesize all the factors in this problem to decide whether or not 
to submit a grant proposal to OSHA.
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14.11.1 A MultistAge Decision tree
The immediate decision in this example problem is whether or not to submit a grant 
proposal. To make this decision, Steve must also consider the technology selection deci-
sion that he will face if he receives the grant. So, this is a multistage decision problem. 
Figure 14.20 (and the file Fig14-20.xlsm that accompanies this book) shows the decision 
tree representation of this problem.

Figure 14.20 Multistage decision tree for COM-TECH’s grant proposal problem

This decision tree clearly shows that the first decision Steve faces is whether or not 
to submit a proposal, and that submitting the proposal will cost $5,000. If a proposal is 
submitted, we then encounter an event node showing a 0.5 probability of receiving the 
grant (and a payoff of $85,000), and a 0.5 probability of not receiving the grant (lead-
ing to a net loss of $5,000). If the grant is received, we then encounter a decision about 
which technology to pursue. Each of the three technology options has an event node 
representing the best-case (lowest) and worst-case (highest) R&D costs that might be 
incurred. The final (terminal) payoffs associated with each set of decisions and out-
comes are listed next to each terminal node. For example, if Steve submits a proposal, 
receives the grant, employs cellular technology, and encounters low R&D costs, he will 
receive a net payoff of $35,000.

According to this decision tree, Steve should submit a proposal because the expected 
value of this decision is $13,500 and the expected value of not submitting a proposal 
is $0. The decision tree also indicates that if Steve receives the grant, he should pursue 
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the infrared communications technology because the expected value of this decision 
($32,000) is larger than the expected values for the other technologies.

In Figure 14.20, note that the probabilities on the branches at any event node must 
always sum to 1 because these branches represent all the events that could occur. The 
R&D costs that would actually occur using a given technology could assume an infinite 
number of values. Some might argue that these costs could be modeled more accurately 
by some continuous random variable. However, our aim is to estimate the expected 
value of this random variable. Most decision makers probably would find it easier to 
assign subjective probabilities to a small, discrete set of representative outcomes for a 
variable such as R&D costs rather than try to identify an appropriate probability distri-
bution for this variable.

14.11.2 DeveloPing A risK Profile
When using decision trees to analyze one-time decision problems, it is particularly help-
ful to develop a risk profile to make sure the decision maker understands all the possi-
ble outcomes that might occur. A risk profile is simply a graph or tree that shows the 
chances associated with possible outcomes. Figure 14.21 shows the risk profile associated 
with not submitting the proposal and that of the optimal EMV decision-making strategy 
(submitting the proposal and using infrared technology) identified from  Figure 14.20. 

Figure 14.21

A risk profile for 
the alternatives 
of submitting or 
not submitting the 
proposal

From Figure 14.21, it is clear that if the proposal is not submitted, the payoff will 
be $0. If the proposal is submitted, there is a 0.50 chance of not receiving the grant 
and incurring a loss of $5,000. If the proposal is submitted, there is a 0.05 chance 
10.5 3 0.1 5 0.05 2  of receiving the grant but incurring high R&D costs with the infra-
red technology and suffering a $4,000 loss. Finally, if the proposal is submitted, there is 
a 0.45 chance 10.5 3 0.9 5 0.45 2  of enjoying low R&D costs with the infrared technol-
ogy and making a $36,000 profit.

A risk profile is an effective tool for breaking an EMV into its component parts and 
communicating information about the actual outcomes that can occur as the result of 
various decisions. By looking at Figure 14.21, a decision maker could reasonably decide 
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780 Chapter 14 Decision Analysis

that the risks (or chances) of losing money if a proposal is submitted are not worth the 
potential benefit to be gained if the proposal is accepted and low R&D costs occur. 
These risks would not be apparent if the decision maker was provided only with infor-
mation about the EMV of each decision.

14.12 Sensitivity Analysis
Before implementing the decision to submit a grant proposal as suggested by the pre-
vious analysis, Steve would be wise to consider how sensitive the recommended deci-
sion is to changes in values in the decision tree. For example, Steve estimated that a 
50–50 chance exists that he will receive the grant if he submits a proposal. But what if 
that probability assessment is wrong? What if only a 30%, 20%, or 10% chance exists of 
receiving the grant? Should he still submit the proposal? 

Using a decision tree implemented in a spreadsheet, it is fairly easy to determine 
how much any of the values in the decision tree can change before the indicated deci-
sion would change. For example, Figure 14.22 (and the file Fig14-22.xlsm that accom-
panies this book) shows how we can use optimization to determine how small the 

Key Cell Formulas

Cell Formula Copied to

H31 512H13 --

Figure 14.22 Using optimization to determine the sensitivity of a decision to changes in probabilities
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Sensitivity Analysis 781

probability of receiving the grant would need to be before it would no longer be wise to 
submit the grant proposal (according to the EMV decision rule). 

In this spreadsheet, we are using cell H13 (the probability of receiving the grant) as 
both our objective cell and our variable cell. In cell H31, we entered the following for-
mula to compute the probability of not receiving the grant:

Formula for cell H31:    51 2 H13

Minimizing the value in cell H13 (using Analytic Solver Platform’s GRG nonlinear 
engine) while constraining the value of B31 to equal 1 determines the probability of 
receiving the grant that makes the EMV of submitting the grant equal to zero. The 
resulting probability (i.e., approximately 0.1351) gives the decision maker some idea of 
how sensitive the decision is to changes in the value of cell H13.

If the EMV of submitting the grant is zero, most decision makers would probably not 
want to submit the grant proposal. Indeed, even with an EMV of $13,500 (as shown in 
Figure 14.20), some decision makers would still not want to submit the grant proposal 
because there is still a risk that the proposal would be turned down and a $5,000 loss 
incurred. As mentioned earlier, the EMV decision rule is most appropriately applied 
when we face a decision that will be made repeatedly and the results of bad outcomes 
can be balanced or averaged with good outcomes. 

14.12.1 tornADo chArts
As shown in the previous section, optimization can be used to determine the amount 
by which almost any value in a decision tree can be changed before a recommended 
decision (based on EMV) would change. However, given the number of probability and 
financial estimates used as inputs to a decision tree, it is often helpful to use tornado 
charts to identify the inputs that, if changed, have the greatest impact on the EMV. This 
helps to identify the areas where sensitivity analysis is most important and prioritize 
where time and resources should be applied in refining probability and financial esti-
mates represented in the decision tree. 

Analytic Solver Platform provides a simple way to create tornado charts. This tool 
allows you to specify an output cell of interest, and then it automatically identifies the 
input cells that have the greatest impact on the value of the output cell. (The tornado 
chart refers to the identified input cells as candidate cells.) The tornado chart tool incre-
mentally changes the value of each input cell from its base case value (while holding 
the other input cells constant) within a specified percentage range (610% by default) 
and records the effect of each change on the output cell’s value. 

As an example, suppose we are interested in identifying the input cells in  
COMTECH’s decision tree shown in Figure 14.23 (and the file Fig14-23.xlsm that 
accompanies this book) that have the greatest influence on the EMV shown in cell 
A32. The tornado chart in Figure 14.23 summarizes the impact on the decision tree’s 
EMV of each input cell being set at 110% and 210% of its original (base case) value. 
The input cell with the largest impact on the EMV’s range is shown first, the input 
cell with the next largest impact is shown second, and so on, creating the tornado 
shaped appearance in the chart. To create the tornado chart shown in Figure 14.23, 
follow these steps:

1. Select the output cell of interest (cell A32).
2. On the Analytic Solver Platform tab, click Parameters, Identify.

At the top of the tornado chart, we readily see that cell H16 (the grant award amount 
of $85,000) has the largest impact on the EMV as it is adjusted from 210% to 110% of 
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its original value. Cell H13 (the probability of receiving the grant) has the next largest 
influence, followed by cell P29 (the best case R&D costs for infrared technology), and so 
on. Thus, the tornado chart quickly gives us a good sense for which input cells have the 
most significant impact on the EMV and the associated recommended decision.

In Figure 14.23, note that Analytic Solver identified all the input cells that effect the 
output cell and summarized the most significant ones in the tornado chart. However, 
it is unlikely that the amount of the grant award (the “most significant” input cell) is 
actually going to differ from the stated value of $85,000. As a result, instead of having 
Analytic Solver automatically identify the input cells that, if changed, have the most sig-
nificant impact on the output cell, we might want to only consider the input cells whose 
values are most uncertain and/or subject to change. Fortunately, it is possible to spec-
ify the input cells of interest and only include those in the tornado chart. This is done 
by defining those cells as sensitivity parameter cells using the PsiSenParam(L, U, B) 
function, where L and U represent, respectively, lower and upper limits on the range of 
possible values for each cell and B is the base case value for the cell. 

For example, suppose we are only interested in considering the output cell’s (cell 
A32) sensitivity to changes of up to 20% in the best case and worst case R&D costs for 
each of the possible technology choices (i.e., cells P4, P9, P14, P19, P24, and P29). We 
would first replace the values in each of the cells representing R&D costs with PsiSen-
Param( ) functions that allow those cells to be varied within plus or minus 20% of their 
original values as shown in Figure 14.24 (and the file Fig14-24 that accompanies this 
book). If you then create a new tornado chart and select the Show Current Parameters 
option, the chart shows the change in the output cell as each of the parameter cells (i.e., 
those cells containing PsiSenParam( ) functions) are varied from their lower limits to 
their upper limits.

Figure 14.23 An automatic tornado chart for the COM-TECH decision problem
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s o f t w a r e  n o t e
The results plotted in a tornado chart can consist of two different types of input 
cells: those that Analytic Solver identifies automatically (referred to as candidate 
cells), and those that we manually identify as sensitivity parameter (via PsiSen-
Param( ) functions). The option labeled “Candidate % Change” in the lower sec-
tion of the tornado chart (see Figure 14.24) only applies to the candidate cells – it 
will not affect the cells containing PsiSenParam( ) functions. As a result, it is pos-
sible for a tornado chart to simultaneously display results where, for instance, 
candidate cells are varied from 610% from their base case values and sensitiv-
ity parameters are varied a different amount, such as 620% from their base case 
values.

Key Cell Formulas

Cell Formula Copied to

P4 5PsiSenParam(–60000*1.2, –60000*0.8, –60000) --
P9 5PsiSenParam(–30000*1.2, –30000*0.8, –30000) --
P14 5PsiSenParam(–70000*1.2, –70000*0.8, –70000) --
P19 5PsiSenParam(–40000*1.2, –40000*0.8, –40000) --
P24 5PsiSenParam(–80000*1.2, –80000*0.8, –80000) --
P29 5PsiSenParam(–40000*1.2, –40000*0.8, –40000) --

Figure 14.24 A customized tornado chart for the COM-TECH decision problem
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14.12.2 strAtegy tABles
A strategy table is another sensitivity analysis technique that allows a decision maker 
to analyze how the optimal decision strategy changes in response to two simultaneous 
changes in probability estimates. For example, the optimal strategy in Figure 14.20 is 
to submit the proposal and use infrared technology. However, suppose there is uncer-
tainty about the probability of receiving the grant and the probability of encountering 
high R&D costs while carrying out the research proposal. Specifically, suppose the deci-
sion maker wants to see how the optimal strategy changes as the probability of receiv-
ing the grant varies from 0.0 to 1.0 and the probability of encountering high infrared 
R&D costs varies from 0.0 to 0.5. As shown in Figure 14.25 (and the file Fig14-25.xlsm 
that accompanies this book), a two-way data table can be used to analyze this situation.

In Figure 14.25, cells W12 through W22 represent different probabilities of receiving the 
grant. Using the Data Table command, we will instruct Excel to plug each of these values 
into cell H13, representing the probability of receiving the grant. The following formula was 
entered in cell H31 to calculate the complementary probability of not receiving the grant.

Formula for cell H31:    51 2 H13

Figure 14.25 Setting up a strategy table for the COM-TECH decision problem

Key Cell Formulas

Cell Formula Copied to

H31 512H13 --
P26 512P21 --
W11 5IF(B3151,CHOOSE(J15,"Microwave","Cellular","Infrared"),"Don't") --
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Cells X11 through AC11 represent different probabilities of encountering high R&D 
costs. Using the Data Table command, we will instruct Excel to plug each of these values 
into cell P21, representing the probability of receiving the grant. The following formula was 
entered in cell P26 to calculate the complementary probability of not receiving the grant.

Formula for cell P26:    51 2 P21

As these different probabilities are changed, the spreadsheet will be recalculated and 
the value returned by the formula in cell W11 will be recorded in the appropriate cell 
in the data table.

Formula for cell W11:    5 IF(B3151,CHOOSE 
(J15,“Microwave”,“Cellular”,“Infrared”),“Don’t”)

This formula first inspects the value of cell B31; which equals 1 if the EMV of sub-
mitting the proposal is positive. Thus, if B31 is equal to 1, the formula then returns 
(chooses) the label “Microwave”, “Cellular”, or “Infrared” depending on whether the 
value in cell J15 is one, two, or three, respectively. Otherwise, the previous formula 
returns the label “Don’t” indicating that the proposal should not be submitted. The 
results of executing the Data Table command are shown in Figure 14.26.

Figure 14.26 Completed strategy table for the COM-TECH decision problem

Figure 14.26 summarizes the optimal strategy for the various probability combinations. 
For instance, if the probability of receiving the grant is 0.10 or less, the company should not 
submit a proposal. Note that cell Y17 corresponds to the base case solution shown earlier 
in Figure 14.20. The strategy table makes it clear that this solution is relatively insensitive 
to changes in the probability of receiving the grant. However, if the probability of encoun-
tering high infrared R&D costs increases, the preferred strategy quickly switches to the cel-
lular technology alternative. Thus, the decision maker might want to give closer attention 
to the risks of encountering high infrared R&D costs before implementing this strategy.
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14.12.3 strAtegy chArts
Similar to strategy tables, a strategy chart is a technique to graphically show how 
the optimal decision strategy changes in response to two simultaneous changes 
in probability estimates. Again, suppose there is uncertainty about the proba-
bility of receiving the grant and the probability of encountering high R&D costs 
while carrying out the research proposal. Specifically, assume the decision maker 
wants to see how the optimal strategy changes as the probability of receiving 
the grant varies from 0.0 to 1.0 and the probability of encountering high infrared 
R&D costs varies from 0.0 to 0.5. To create a strategy chart for this situation using 
Analytic Solver Platform, we first change cells P21 and H13 in Figure 14.27 (and 

Key Cell Formulas

Cell Formula Copied to

H13 5PsiSenParam(0,1) --
H31 512H13 --
P21 5PsiSenParam(0,0.5) --
P26 512P21 --
W2 5IF(B3152,0,J15) --

Figure 14.27 Setting up a strategy chart for the COM-TECH decision problem
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the file Fig14-27.xlsm that accompanies this book) to sensitivity parameter cells 
as follows,

Formula for cell P21:    5PsiSenParam(0,0.5)
Formula for cell H13:   5PsiSenParam(0,1)

We must also create an output cell that assigns a unique numeric value to each decision 
strategy. This is done in cell W2 as follows,

Formula for cell W2:    5IF(B3152,0,J15)

Note that the formula in cell W2 returns the value 0 if the optimal strategy is to not 
submit a proposal (i.e., if B31 5 2) and otherwise returns the value of 1, 2, or 3 (from 
cell J15) if the optimal decision is to submit a proposal and use microwave, cellular, or 
infrared technology, respectively.

We can then create a strategy chart for our problem as follows:

1. Select cell W2.
2. On the Analytic Solver ribbon, click Charts, Sensitivity Analysis, Parameter Analysis.
3. Complete the Sensitivity Report dialog box as shown Figure 14.27.
4. Click OK. 

Analytic Solver Platform then creates the 3D area chart shown in Figure 14.28. This 
chart shows how the optimal decision strategy changes for different combinations of 
probability values in cells P21 and H13. Note that the decision chart provides a graphi-
cal summary of the results in the strategy table shown in Figure 14.26. 

Figure 14.27 Setting up a strategy chart for the COM-TECH decision problem
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14.13 Using Sample Information  
in Decision Making
In many decision problems, we have the opportunity to obtain additional information 
about the decision before we actually make the decision. For example, in the Magnolia 
Inns decision problem, the company could have hired a consultant to study the eco-
nomic, environmental, and political issues surrounding the site selection process and 
predict which site will be selected for the new airport by the planning council. This 
information might help Magnolia Inns make a better (or more informed) decision. The 
potential for using this type of additional sample information in decision making raises 
a number of interesting issues that are illustrated using the following example.

Colonial Motors (CM) is trying to determine what size of manufacturing plant to 
build for a new car it is developing. Only two plant sizes are under consideration: 
large and small. The cost of constructing a large plant is $25 million and the cost 
of constructing a small plant is $15 million. CM believes there is a 70% chance that 
the demand for this new car will be high and a 30% chance that it will be low. The 
following table summarizes the payoffs (in millions of dollars) the company expects 
to receive for each factory size and demand combination (not counting the cost of 
the factory).

Demand

Factory Size High Low

Large $175 $95

Small $125 $105

A decision tree for this problem is shown in Figure 14.29 (and in the file Fig14-29.
xlsm that accompanies this book). The decision tree indicates that the optimal decision 
is to build the large plant and that this alternative has an EMV of $126 million.

Figure 14.29 Decision tree for the CM plant size problem
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Now suppose that before making the plant size decision, CM conducts a survey to 
assess consumer attitudes about the new car. For simplicity, we will assume that the 
results of this survey indicate either a favorable or unfavorable attitude about the new 
car. A revised decision tree for this problem is shown in Figure 14.30 (and in the file 
Fig14-30.xlsm that accompanies this book).

Figure 14.30

Decision tree if 
consumer survey 
is conducted before 
CM makes a plant 
size decision

The decision tree in Figure 14.30 begins with a decision node with a single branch 
representing the decision to conduct the market survey. For now, assume that this sur-
vey can be done at no cost. An event node follows, corresponding to the outcome of 
the market survey, which can indicate either favorable or unfavorable attitudes about 
the new car. We assume that CM believes that the probability of a favorable response is 
0.67 and the probability of an unfavorable response is 0.33.

14.13.1 conDitionAl ProBABilities
After the survey results are known, the decision nodes in the tree indicate that a deci-
sion must be made about whether to build a large plant or a small plant. Following each 
decision branch, event nodes occur with branches representing the market demands 
for the car that could occur. Four event nodes represent the market demand that might 
occur for this car. However, the probabilities we assign to the branches of these nodes 
are likely to differ depending on the results of the market survey.

Earlier, we indicated that CM believed a 0.70 probability exists that demand for the 
new car will be high, expressed mathematically as:

P 1high demand 2 5 0.7
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In this formula P 1A 2 5 X is read, “the probability of A is X.” If the market survey indi-
cates that consumers have a favorable impression of the new car, this will raise expec-
tations that demand will be high for the car. Thus, given a favorable survey response, 
we might increase the probability assessment for a high-market demand to 0.90. This is 
expressed mathematically as the following conditional probability:

P 1high demand 0  favorable response 2 5 0.90

In this formula P 1A 0  B 2 5 X is read, “the probability of A given B is X.”
As noted earlier, the probabilities on the branches at any event node must always 

sum to 1. If the favorable survey response increases the probability assessment of a high 
demand occurring, it must decrease the probability assessment of a low demand given 
this survey result. Thus, the probability of a low demand given a favorable response on 
the survey is:

 P 1 low demand 0  favorable response 2 5 1 2 P 1high demand 0  favorable response 2  
 5 1 2 0.90 5 0.10

These conditional probabilities are shown in Figure 14.30 on the first four event 
branches representing high and low demands given a favorable survey response.

If the market survey indicates consumers have an unfavorable response to the new 
car, this will lower expectations for high-market demand. Thus, given an unfavorable 
survey response, we might reduce the probability assessment of a high-market demand 
to 0.30:

P 1high demand 0  unfavorable response 2 5 0.30

We must also revise the probability assessment for a low-market demand given an 
unfavorable market response as:

 P 1 low deman d 0  unfavorable response 2 5 1 2 P 1high demand 0  unfavorable response 2
 5 1 2 0.3 5 0.70

These conditional probabilities are shown on the last four demand branches in Figure 
14.30. Later, we will discuss a more objective method for determining these types of 
conditional probabilities.

14.13.2 the exPecteD vAlue of sAMPle inforMAtion
The additional information made available by the market survey allows us to make 
more precise estimates of the probabilities associated with the uncertain market 
demand. This, in turn, allows us to make more precise decisions. For example, Figure 
14.30 indicates that if the survey results are favorable, CM should build a large plant; 
and if the survey results are unfavorable, it should build a small plant. The expected 
value of this decision-making strategy is $126.82 million, assuming that the survey can 
be done at no cost—which is unlikely. So, how much should CM be willing to pay to 
perform this survey? The answer to this question is provided by the expected value of 
sample information (EVSI), which is defined as:

EVSI 5 °
Expected value of the best
 decision with sample infor-
mation 1obtained at no cost 2

¢ 2 °
Expected value of the best
 decision without sample
information

¢

The EVSI represents the maximum amount we should be willing to pay to obtain 
sample information. From Figure 14.30, we know that the expected value of the best 
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Computing Conditional Probabilities 791

decision with sample information for our example problem is $126.82 million. From 
Figure 14.29, we know that the expected value of the best decision without sample infor-
mation is $126 million. So for our example problem, the EVSI is determined as:

EVSI 5 $126.82 million 2 $126 million 5 $0.82 million

Thus, CM should be willing to spend up to $820,000 to perform the market survey.

14.14 Computing Conditional Probabilities
In our example problem, we assumed that the values of the conditional probabilities were 
assigned subjectively by the decision makers at CM. However, a company often has data 
available from which it can compute these probabilities. We will illustrate this process for 
the CM example. To simplify our notation, we will use the following abbreviations:

 H 5 high demand
 L 5 low demand
 F 5 favorable response
 U 5 unfavorable response

To complete the decision tree in Figure 14.30, we determined values for the  following 
six probabilities:

P 1F 2
P 1U 2
P 1H 0  F 2
P 1L 0  F 2
P 1H 0  U 2
P 1L 0  U 2

Assuming that CM has been in the auto business for some time, it undoubtedly has 
performed other market surveys prior to introducing other new models. Some of these 
models probably achieved high consumer demand, whereas others achieved only low 
demand. Thus, CM can use historical data to construct the joint probability table shown 
at the top of Figure 14.31 (and in the file Fig14-31.xlsm that accompanies this book).

The value in cell B4 indicates that of all the new car models CM developed and per-
formed market surveys on, 60% received a favorable survey response and subsequently 
enjoyed high demand. This is expressed mathematically as:

P 1F d H 2 5 0.60

In this formula P 1A d B 2 5 X is read, “the probability of A and B is X.” Similarly, in the 
joint probability table we see that:

 P 1F d L 2 5 0.067
 P 1U d H 2 5 0.10
 P 1U d L 2 5 0.233

The column totals in cells B6 and C6 represent, respectively, the estimated probabili-
ties of high and low demands as:

 P 1H 2 5 0.70

 P 1L 2 5 0.30
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792 Chapter 14 Decision Analysis

The row totals in cells D4 and D5 represent, respectively, the estimated probabilities 
of a favorable and unfavorable response. These values correspond to the first two of the 
six probability values listed earlier; that is:

 P 1F 2 5 0.667
 P 1U 2 5 0.333

With these values, we are now ready to compute the necessary conditional probabil-
ities. One general definition of a conditional probability is:

P 1A 0  B 2 5
P 1A d B 2

P 1B 2
We can use this definition, along with the values in the joint probability table, to 

compute the conditional probabilities required for Figure 14.30 as:

 P 1H 0  F 2 5
P 1H d F 2

P 1F 2 5
0.60
0.667

5 0.90

 P 1L 0  F 2 5
P 1L d F 2

P 1F 2 5
0.067
0.667

5 0.10

 P 1H 0  U 2 5
P 1H d U 2

P 1U 2 5
0.10
0.333

5 0.30

 P 1L 0  U 2 5
P 1L d U 2

P 1U 2 5
0.233
0.333

5 0.70

Figure 14.31

The calculation 
of conditional 
probabilities for 
the CM decision 
problem
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Computing Conditional Probabilities 793

We can calculate these conditional probabilities of the demand levels for a given sur-
vey response in the spreadsheet. This is done in the second table in Figure 14.31 using 
the following formula:

Formula for cell B12:    5B4/$D4
(Copy to B12 through C13.)

Although not required for Figure 14.30, we can also compute the conditional proba-
bilities of the survey responses for a given level of demand as:

 P 1F 0  H 2 5
P 1H d F 2

P 1H 2 5
0.60
0.70

5 0.857

 P 1U 0  H 2 5
P 1H d U 2

P 1H 2 5
0.10
0.70

5 0.143

 P 1F 0  L 2 5
P 1L d F 2

P 1L 2 5
0.067
0.30

5 0.223

 P 1U 0  L 2 5
P 1L d U 2

P 1L 2 5
0.233
0.30

5 0.777

The third table in Figure 14.31 calculates conditional probabilities of the survey 
responses for a given level of demand using the following formula:

Formula for cell B19:    5B4/B$6
  (Copy to B20 through C20.)

14.14.1 BAyes’s theoreM
Bayes’s Theorem provides another definition of conditional probability that is some-
times useful. This definition is:

P 1A 0  B 2 5
P 1B 0  A 2P 1A 2

P 1B 0  A 2P 1A 2 1 P 1B 0  A 2P 1A 2

In this formula, A and B represent any two events, and A is the complement of A. 
To see how this formula might be used, suppose that we want to determine P 1H 0  F 2  
but we do not have access to the joint probability table in Figure 14.31. According to 
Bayes’s Theorem, we know that:

P 1H 0  F 2 5
P 1F 0  H 2P 1H 2

P 1F 0  H 2P 1H 2 1 P 1F 0  L 2P 1L 2

If we know the values for the various quantities on the RHS of this equation, we can 
compute P(H|F) as in the following example:

P 1H 0  F 2 5
P 1F 0  H 2P 1H 2

P 1F 0  H 2P 1H 2 1 P 1F 0  L 2P 1L 2 5
10.857 2 10.70 2

10.857 2 10.70 2 1 10.223 2 10.30 2 5 0.90

This result is consistent with the value of P 1H 0  F 2  shown in cell B12 in Figure 14.31.
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794 Chapter 14 Decision Analysis

14.15 Utility Theory
Although the EMV decision rule is widely used, sometimes the decision alternative 
with the highest EMV is not the most desirable or most preferred alternative by the 
decision maker. For example, suppose that we could buy either of the two companies 
listed in the following payoff table for exactly the same price:

State of Nature

Company 1 2 eMV

A 150,000 230,000 60,000 d maximum

B  70,000     40,000 55,000

Probability        0.5          0.5

The payoff values listed in this table represent the annual profits expected from this 
business. Thus, in any year, a 50% chance exists that company A will generate a profit 
of $150,000 and a 50% chance that it will generate a loss of $30,000. On the other hand, 
in each year, a 50% chance exists that company B will generate a profit of $70,000 and a 
50% chance that it will generate a profit of $40,000.

According to the EMV decision rule, we should buy company A because it has the 
highest EMV. However, company A represents a far more risky investment than com-
pany B. Although company A would generate the highest EMV over the long run, we 
might not have the financial resources to withstand the potential losses of $30,000 per 
year that could occur in the short run with this alternative. With company B, we can be 
sure of making at least $40,000 each year. Although company B’s EMV over the long 
run might not be as great as that of company A, for many decision makers, this is more 
than offset by the increased peace of mind associated with company B’s relatively sta-
ble profit level. However, other decision makers might be willing to accept the greater 
risk associated with company A in hopes of achieving the higher potential payoffs this 
alternative provides.

As this example illustrates, the EMVs of different decision alternatives do not nec-
essarily reflect the relative attractiveness of the alternatives to a particular decision 
maker. Utility theory provides a way to incorporate the decision maker’s attitudes and 
preferences toward risk and return in the decision-analysis process so that the most 
desirable decision alternative is identified.

14.15.1 utility functions
Utility theory assumes that every decision maker uses a utility function that translates 
each of the possible payoffs in a decision problem into a nonmonetary measure known 
as a utility. The utility of a payoff represents the total worth, value, or desirability of 
the outcome of a decision alternative to the decision maker. For convenience, we will 
begin by representing utilities on a scale from 0 to 1, where 0 represents the least value 
and 1 represents the most.

Different decision makers have different attitudes and preferences toward risk and 
return. Those who are “risk neutral” tend to make decisions using the maximum EMV 
decision rule. However, some decision makers are risk avoiders (or “risk averse”), and 
others look for risk (or are “risk seekers”). The utility functions typically associated 
with these three types of decision makers are shown in Figure 14.32.

Figure 14.32 illustrates how the same monetary payoff might produce different levels 
of utility for three different decision makers. A “risk averse” decision maker assigns the 
largest relative utility to any payoff but has a diminishing marginal utility for increased 
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Utility Theory 795

payoffs (i.e., every additional dollar in payoff results in smaller increases in utility). 
The “risk seeking” decision maker assigns the smallest utility to any payoff but has an 
increasing marginal utility for increased payoffs (i.e., every additional dollar in payoff 
results in larger increases in utility). The “risk neutral” decision maker (who follows 
the EMV decision rule) falls in between these two extremes and has a constant mar-
ginal utility for increased payoffs (i.e., every additional dollar in payoff results in the 
same amount of increase in utility). The utility curves in Figure 14.32 are not the only 
ones that can occur. In general, utility curves can assume virtually any form depending 
on the preferences of the decision maker.

14.15.2 constructing utility functions
Assuming that decision makers use utility functions (perhaps at a subconscious level) to 
make decisions, how can we determine what a given decision maker’s utility function 
looks like? One approach involves assigning a utility value of 0 to the worst outcome 
in a decision problem and a utility value of 1 to the best outcome. All other payoffs are 
assigned utility values between 0 and 1. (Although it is convenient to use endpoint 
values of 0 and 1, we can use any values provided that the utility value assigned to the 
worst payoff is less than the utility value assigned to the best payoff.)

We will let U 1x 2  represent the utility associated with a payoff of $x. Thus, for the 
decision about whether to buy company A or B, described earlier, we have:

U 1230,000 2 5 0
U 1150,000 2 5 1

0.00

0.25

0.50

0.75

1.00

Utility

Payoff

Risk averse

Risk neutral

Risk seeking

Figure 14.32

Three common types 
of utility functions
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796 Chapter 14 Decision Analysis

Now suppose that we want to find the utility associated with the payoff of $70,000 in 
our example. To do this, we must identify the probability p at which the decision maker 
is indifferent between the following two alternatives:

Alternative 1. Receive $70,000 with certainty.
Alternative 2.  Receive $150,000 with probability p and lose  

$30,000 with probability 11 2 p 2
If p 5 0, most decision makers would choose alternative 1 because they would prefer 

to receive a payoff of $70,000 rather than lose $30,000. On the other hand, if p 5 1, most 
decision makers would choose alternative 2 because they would prefer to receive a 
payoff of $150,000 rather than $70,000. So as p increases from 0 to 1, it reaches a point—
p*—at which the decision maker is indifferent between the two alternatives. That is, 
if p , p*, the decision maker prefers alternative 1, and if p . p*, the decision maker 
prefers alternative 2. The point of indifference, p*, varies from one decision maker to 
another, depending on the decision maker’s attitude toward risk and according to his 
ability to sustain a loss of $30,000.

In our example, suppose that the decision maker is indifferent between alternative 1 
and 2 when p 5 0.8 (so that p* 5 0.8). The utility of the $70,000 payoff for this decision 
maker is computed as:

U 170,000 2 5 U 1150,000 2p* 1 U 1230,000 2 11 2 p* 2 5 1p* 1 0 11 2 p* 2 5 p* 5 0.8

Notice that when p 5 0.8, the expected value of alternative 2 is:

$150,000 3 0.8 2 $30,000 3 0.2 5 $114,000

Because the decision maker is indifferent between a risky decision (alternative 2) 
that has an EMV of $114,000 and a nonrisky decision (alternative 1) that has a certain 
payoff of $70,000, this decision maker is “risk averse.” That is, the decision maker is 
willing to accept only $70,000 to avoid the risk associated with a decision that has an 
EMV of $114,000.

The term certainty equivalent refers to the amount of money that is equivalent 
in a decision maker’s mind to a situation that involves uncertainty. For example, 
$70,000 is the decision maker’s certainty equivalent for the uncertain situation rep-
resented by alternative 2 when p 5 0.8. A closely related term, risk premium, refers 
to the EMV that a decision maker is willing to give up (or pay) in order to avoid a 
risky decision. In our example, the risk premium is $114,000 2 $70,000 5 $44,000;
that is:

Risk premium 5 a EMV of an
uncertain situation

b 2 a certainty equivalent of
the same uncertain situation

b

To find the utility associated with the $40,000 payoff in our example, we must iden-
tify the probability p at which the decision maker is indifferent between the following 
two alternatives:

Alternative 1: Receive $40,000 with certainty.
Alternative 2:  Receive $150,000 with probability p and lose  

$30,000 with probability 11 2 p 2 .
Because we reduced the payoff amount listed in alternative 1 from its earlier value of 

$70,000, we expect that the value of p at which the decision maker is indifferent would 
also be reduced. In this case, suppose that the decision maker is indifferent between the 
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Utility Theory 797

two alternatives when p 5 0.65 (so that p* 5 0.65). The utility associated with a payoff 
of $40,000 is:

U 140,000 2 5 U 1150,000 2p* 1 U 1230,000 2 11 2 p* 2 5 1p* 1 0 11 2 p* 2 5 p* 5 0.65

Again, the utility associated with the amount given in alternative 1 is equivalent to the 
decision maker’s indifference point p*. This is not a coincidence.

K e y  P o i n t
When utilities are expressed on a scale from 0 to 1, the probability p* at which the 
decision maker is indifferent between alternatives 1 and 2 always corresponds to 
the decision maker’s utility for the amount listed in alternative 1.

Notice that when p 5 0.65, the expected value of alternative 2 is:

$150,000 3 0.65 2 $30,000 3 0.35 5 $87,000

Again, this is “risk averse” behavior because the decision maker is willing to accept 
only $40,000 (or pay a risk premium of $47,000) to avoid the risk associated with a deci-
sion that has an EMV of $87,000.

For our example, the utilities associated with payoffs of 2$30,000, $40,000, $70,000, 
and $150,000 are 0.0, 0.65, 0.80, and 1.0, respectively. If we plot these values on a graph 
and connect the points with straight lines, we can estimate the shape of the decision 
maker’s utility function for this decision problem, as shown in Figure 14.38. Note that 
the shape of this utility function is consistent with the general shape of the utility func-
tion for a “risk averse” decision maker given in Figure 14.32.

Figure 14.33

An estimated utility 
function for the 
example problem
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798 Chapter 14 Decision Analysis

14.15.3 using utilities to MAKe Decisions
After determining the utility value of each possible monetary payoff, we can apply the 
standard tools of decision analysis to determine the alternative that provides the high-
est expected utility. We do so using utility values in place of monetary values in payoff 
tables or decision trees. For our current example, we substitute the appropriate utilities 
in the payoff table and compute the expected utility for each decision alternative as:

State of Nature

Company 1 2 expected utility

A 1.00 0.00 0.500

B 0.80 0.65 0.725 d maximum

Probability 0.5 0.5

In this case, the decision to purchase company B provides the greatest expected level 
of utility to this decision maker—even though our earlier analysis indicated that its 
EMV of $55,000 is less than company A’s EMV of $60,000. Thus, by using utilities, deci-
sion makers can identify the alternative that is most attractive given their personal atti-
tudes about risk and return.

14.15.4 the exPonentiAl utility function
In a complicated decision problem with numerous possible payoff values, it might be 
difficult and time-consuming for a decision maker to determine the different values for 
p* that are required to determine the utility for each payoff. However, if the decision 
maker is “risk averse,” the exponential utility function can be used as an approxima-
tion of the decision maker’s actual utility function. The general form of the exponential 
utility function is:

U 1x 2 5 1 2 e2x/R

In this formula, e is the base of the natural logarithm 1e 5 2.718281 c2  and R is a 
parameter that controls the shape of the utility function according to a decision maker’s 
risk tolerance. Figure 14.34 shows examples of the graph of this function for several 
values of R. Note that as R increases, the shape of the utility curve becomes flatter (or 
less “risk averse”). Also note that as x becomes large, U 1x 2  approaches 1; when x 5 0,
then U 1x 2 5 0; and if x is less than 0, then U 1x 2 , 0.

To use the exponential utility function, we must determine a reasonable value for 
the risk tolerance parameter R. One method for doing so involves determining the 
maximum value of Y for which the decision maker is willing to participate in a game of 
chance with the following possible outcomes:

Win $Y with probability 0.5
Lose $Y/2 with probability 0.5

The maximum value of Y for which the decision maker would accept this gamble 
should give us a reasonable estimate of R. Note that a decision maker willing to accept 
this gamble only at very small values of Y is “risk averse,” whereas a decision maker 
willing to play for larger values of Y is less “risk averse.” This corresponds with the 
relationship between the utility curves and values of R shown in Figure 14.34. (As a 
rule of thumb, anecdotal evidence suggests that many firms exhibit risk tolerances of 
approximately one-sixth of equity or 125% of net yearly income.) 
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14.15.5 incorPorAting utilities in Decision trees
Analytic Solver Platform’s Decision Tree tool provides a simple way to use the expo-
nential utility function to model “risk averse” decision preferences in a decision tree. 
We will illustrate this using the decision tree developed earlier for Magnolia Inns, 
where Barbara needs to decide which parcel of land to purchase. The decision tree 
developed for this problem is shown again in Figure 14.35 (and in the file Fig14-35.xlsm 
that accompanies this book).

To use the exponential utility function, we first construct a decision tree in the usual 
way. We then determine the risk tolerance value of R for the decision maker using 
the technique described earlier. Because Barbara is making this decision on behalf of 
Magnolia Inns, it is important that she provide an estimated value of R based on the 
acceptable risk levels of the corporation—not her own personal risk tolerance level.

In this case, let’s assume that $4 million is the maximum value of Y for which Barbara 
believes Magnolia Inns is willing to gamble winning $Y with probability 0.5 and losing 
$Y/2 with probability 0.5. Therefore, R 5 Y 5 4. (Note that the value of R should be 
expressed in the same units as the payoffs in the decision tree.)

We can now instruct the Decision Tree tool to use an exponential utility function to 
determine the optimal decision by following these steps:

1. Select the Decision Tree element in the Analytic Solver task pane.
2. Change the Risk Tolerance property to 4.
3. Change the Certainty Equivalents property to Exponential Utility Function. 

The decision tree is then automatically converted so that the rollback operation is 
performed using expected utilities rather than EMVs. The resulting tree is shown in 

Figure 14.34

Examples of the 
exponential utility 
function
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800 Chapter 14 Decision Analysis

Figure 14.36. The certainty equivalent at each node appears in the cell directly below 
and to the left of each node (previously the location of the EMVs). The expected utility 
at each node appears immediately below the certainty equivalents. According to this 
tree, the decision to buy the parcels at locations A and B provides the highest expected 
utility for Magnolia Inns. Here again, it might be wise to investigate how the recom-
mended decision might change if we had used a different risk tolerance value and/or 
different probabilities. 

14.16 Multicriteria Decision Making
A decision maker often uses more than one criterion or objective to evaluate the alter-
natives in a decision problem. Sometimes, these criteria conflict with one another. For 
example, consider again the criteria of risk and return. Most decision makers desire 
high levels of return and low levels of risk. But high returns are usually accompanied 
by high risks, and low levels of return are associated with low risk levels. In making 
investment decisions, a decision maker must assess the trade-offs between risk and 
return to identify the decision that achieves the most satisfying balance of these two 
criteria. As we have seen, utility theory represents one approach to assessing the trade-
offs between the criteria of risk and return.

Figure 14.35 Decision tree for the Magnolia Inns land purchase problem
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The Multicriteria Scoring Model 801

Many other types of decision problems involve multiple conflicting criteria. For exam-
ple, in choosing between two or more different job offers, you must evaluate the alterna-
tives on the basis of starting salary, opportunity for advancement, job security, location, 
and so on. If you purchase a video camcorder, you must evaluate a number of different 
models based on the manufacturer’s reputation, price, warranty, size, weight, zoom capa-
bility, lighting requirements, and a host of other features. If you must decide whom to hire 
to fill a vacancy in your organization, you will likely have to evaluate a number of candi-
dates on the basis of education, experience, references, and personality. This section pres-
ents two techniques that can be used in decision problems that involve multiple criteria.

14.17 The Multicriteria Scoring Model
The multicriteria scoring model is a simple procedure in which we score (or rate) each 
alternative in a decision problem based on each criterion. The score for alternative j 
on criterion i is denoted by sij. Weights (denoted by wi) are assigned to each criterion 
indicating its relative importance to the decision maker. For each alternative, we then 
compute a weighted average score as:

 Weighted average score for alternative j 5 a
i

wisij

Figure 14.36 Analysis of the Magnolia Inns decision tree using an exponential utility function
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802 Chapter 14 Decision Analysis

We then select the alternative with the largest weighted average score.
The beginning of this chapter described a situation that many students face when 

they graduate from college—choosing between two job offers. The spreadsheet in Fig-
ure 14.37 (and in the file Fig14-37.xlsm that accompanies this book) illustrates how we 
might use a multicriteria scoring model to help in this problem.

Key Cell Formulas

Cell Formula Copied to

C10 5AVERAGE(C6:C9) D10
C15 5C6*$E15 C15:D18
C19 5SUM(C15:C18) D19:E19

Figure 14.37

A multicriteria 
scoring model

In choosing between two (or more) job offers, we would evaluate criteria for each 
alternative, such as the starting salary, potential for career development, job security, 
location of the job, and perhaps other factors as well. The idea in a scoring model is to 
assign a value from 0 to 1 to each decision alternative that reflects its relative worth on 
each criterion. These values can be thought of as subjective assessments of the utility 
that each alternative provides on the various criteria.

In Figure 14.37, scores for each criterion were entered in cells C6 through D9. These 
scores indicate the starting salary offered by company B provides the greatest value, 
but the salary offered by company A is not much worse. (Note that these scores do not 
necessarily mean that the starting salary offered by company B was the highest. These 
scores reflect the value of the salaries to the decision maker, taking into account such 
factors as the cost of living in the different locations.) The remaining scores in the table 
indicate that company A provides the greatest potential for career advancement and 
is in the most attractive location, but provides considerably less job security than that 
offered by company B. The average scores associated with each job offer are calculated 
in cells C10 and D10 as follows:

Formula for cell C10:    5AVERAGE(C6:C9)
(Copy to D10.)
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The Multicriteria Scoring Model 803

Notice that the offer from company A has a higher average score than that of company 
B. However, this implicitly assumes that all the criteria are of equal importance to the 
decision maker – which is not often the case.

Next, the decision maker specifies weights that indicate the relative importance of 
each criterion. Again, this is done subjectively. Hypothetical weights for each criterion 
in this example are shown in cells E15 through E18 in Figure 14.37. Note that these 
weights must sum to 1. The weighted scores for each criterion and alternative are calcu-
lated in cells C15 through D18 as:

Formula for cell C15:    = C6*$E15
(Copy to C15 to D18.)

We can then sum these values to calculate the weighted average score for each alter-
native as:

Formula for cell C19:    =SUM(C15:C18)
(Copy to E19.)

In this case, the total weighted average scores for company A and B are 0.79 and 
0.82, respectively. Thus, when the importance of each criterion is accounted for via 
weights, the model indicates that the decision maker should accept the job with com-
pany B because it has the largest weighted average score.

Radar charts provide an effective way of graphically summarizing numerous alter-
natives in a multicriteria scoring model. Figure 14.38 shows the raw scores associated 
with each of the alternatives in our job selection example. A glance at this chart makes 
it clear that the offers from both companies offer very similar values in terms of salary, 

Figure 14.38

Radar chart of the 
raw scores
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804 Chapter 14 Decision Analysis

company A is somewhat more desirable in terms of career potential and location, and 
company B is quite a bit more desirable in terms of job security.

Figure 14.39 shows another radar chart of the weighted scores for each of the alterna-
tives. Using the weighted scores, the radar chart tends to accentuate the differences on 
criteria that were heavily weighted. For instance, here the offers from the two compa-
nies are very similar in terms of salary and location and are most different with respect 
to career potential and job security. The radar chart’s ability to graphically portray the 
differences in the alternatives can be quite helpful—particularly for decision makers 
that do not relate well to tables of numbers.

Figure 14.39

Radar chart of the 
weighted scores

c r e a t i n g  a  r a d a r  c h a r t
To create a radar chart like the one shown in Figure 14.39:

1. Select cells B14 through D18.
2. Click the Insert menu.
3.  Click Other Charts.
4. Click Radar with Markers.

Excel then creates a basic chart that you can customize in many ways. Right-click-
ing a chart element displays a dialog box with options for modifying the appear-
ance of the element.
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14.18 The Analytic Hierarchy Process
Sometimes, a decision maker finds it difficult to subjectively determine the criterion 
scores and weights needed in the multicriteria scoring model. In this case, the analytic 
hierarchy process (AHP) can be helpful. AHP provides a more structured approach for 
determining the scores and weights for the multicriteria scoring model described ear-
lier. This can be especially helpful in focusing attention and discussion on the important 
aspects of a problem in group decision-making environments. However, the validity of 
AHP is not universally accepted. As with any structured decision-making process, the 
recommendations of AHP should not be followed blindly but should be carefully con-
sidered and evaluated by the decision maker(s). 

To illustrate AHP, suppose that a company wants to purchase a new payroll and 
personnel records information system and is considering three systems, identified as X, 
Y, and Z. The systems differ with respect to three key criteria: price, user support, and 
ease of use.

14.18.1 PAirwise coMPArisons
The first step in AHP is to create a pairwise comparison matrix for each alternative on 
each criterion. We will illustrate the details of this process for the price criterion. The 
values shown in Figure 14.40 are used in AHP to describe the decision maker’s prefer-
ences between two alternatives on a given criterion.

Figure 14.40

Scale for pairwise 
comparisons in AHP

Value Preference

1 Equally Preferred
2 Equally to Moderately Preferred
3 Moderately Preferred
4 Moderately to Strongly Preferred
5 Strongly Preferred
6 Strongly to Very Strongly Preferred
7 Very Strongly Preferred
8 Very Strongly to Extremely Preferred
9 Extremely Preferred

To create a pairwise comparison matrix for the price criterion, we must perform 
pairwise comparisons of the prices of systems X, Y, and Z using the values shown in 
Figure 14.40. Let Pij denote the extent to which we prefer alternative i to alternative j 
on a given criterion. For example, suppose that when comparing system X to Y, the 
decision maker strongly prefers the price of X. In this case, PXY 5 5. Similarly, suppose 
that when comparing system X to Z, the decision maker very strongly prefers the price 
of X, and when comparing Y to Z, the decision maker moderately prefers the price of Y. 
In this case, PXZ 5 7 and PYZ 5 3. We used the values of these pairwise comparisons to 
create the pairwise comparison matrix shown in Figure 14.41 (and the file Fig14-41.xlsm 
that accompanies this book).

The values of PXY, PXZ, and PYZ are shown in cells D4, E4, and E5 in Figure 14.41. 
We entered the value 1 along the main diagonal in Figure 14.41 to indicate that if an 
alternative is compared against itself, the decision maker should equally prefer either 
alternative (because they are the same).
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The entries in cells C5, C6, and D6 correspond to PYX, PZX, and PZY, respectively. To 
determine these values, we could obtain the decision maker’s preferences between Y 
and X, Z and X, and Z and Y. However, if we already know the decision maker’s pref-
erence between X and Y 1PXY 2 , we can conclude that the decision maker’s preference 
between Y and X 1PYX 2  is the reciprocal of the preference between X and Y; that is, 
PYX 5 1/PXY. So, in general, we have:

 Pji 5
1
Pij

Thus, the values in cells C5, C6, and D6 are computed as:

Formula for cell C5:     5 1/D4
Formula for cell C6:     5 1/E4
Formula for cell D6:     5 1/E5

14.18.2 norMAlizing the coMPArisons
The next step in AHP is to normalize the matrix of pairwise comparisons. To do this, 
we first calculate the sum of each column in the pairwise comparison matrix. We then 
divide each entry in the matrix by its column sum. Figure 14.42 shows the resulting 
normalized matrix.

We will use the average of each row in the normalized matrix as the score for each 
alternative on the criterion under consideration. For example, cells F11, F12, and F13 
indicate that the average scores on the price criterion for X, Y, and Z are 0.724, 0.193, 
and 0.083, respectively. These scores indicate the relative desirability of the three alter-
natives to the decision maker with respect to price. The score for X indicates that this 
is by far the most attractive alternative with respect to price, and alternative Y is some-
what more attractive than Z. Note that these scores reflect the preferences expressed by 
the decision maker in the pairwise comparison matrix.

Key Cell Formulas

Cell Formula Copied to

C5 51/D4 --
C6 51/E4 --
D6 51/E5 --

Figure 14.41

Pairwise compari-
sons of the price 
criterion for the 
three systems
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14.18.3 consistency
In applying AHP, the decision maker should be consistent in the preference ratings 
given in the pairwise comparison matrix. For example, if the decision maker strongly 
prefers the price of X to that of Y, and strongly prefers the price of Y to that of Z, it 
would be inconsistent for the decision maker to indicate indifference (or equal pref-
erence) regarding the price of X and Z. Thus, before using the scores derived from the 
normalized comparison matrix, the preferences indicated in the original pairwise com-
parison matrix should be checked for consistency.

A consistency measure for each alternative is obtained as:

Consistency measure for X 5
0.724 3 1 1 0.193 3 5 1 0.083 3 7

0.724
5 3.141

Consistency measure for Y 5
0.724 3 0.2 1 0.193 3 1 1 0.083 3 3

0.193
5 3.043

Consistency measure for Z 5
0.724 3 0.143 1 0.193 3 0.333 1 0.083 3 1

0.083
5 3.014 

The numerator in each of these calculations multiplies the scores obtained from the nor-
malized matrix by the preferences given in one of the rows of the original pairwise compar-
ison matrix. The products are summed and then divided by the score for the alternative in 
question. These consistency measures are shown in Figure 14.43 in cells G11 through G13.

If the decision maker is perfectly consistent in stating preferences, each consistency 
measure will equal the number of alternatives in the problem (which, in this case, is 
three). So, there appears to be some amount of inconsistency in the preferences given 
in the pairwise comparison matrix. This is not unusual. It is difficult for a decision 

Key Cell Formulas

Cell Formula Copied to

C7 5SUM(C4:C6) D7:E7
C11 5C4/C$7 C11:E13
F11 5AVERAGE(C11:E11) F12:F13

Figure 14.42

Price scores obtained 
from the normalized 
comparison matrix
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808 Chapter 14 Decision Analysis

maker to be perfectly consistent in stating preferences between a large number of 
pairwise comparisons. Provided that the amount of inconsistency is not excessive, the 
scores obtained from the normalized matrix will be reasonably accurate. To determine 
whether the inconsistency is excessive, we compute the following quantities:

 Consistency Index 1CI 2 5
λ 2 n
n 2 1

 Consistency Ratio 1CR 2 5
CI
RI

where:

λ 5 the average consistency measure for all alternatives
n 5 the number of alternatives

RI 5 the appropriate random index from Figure 14.44

Figure 14.43

Checking the 
consistency of 
the pairwise 
comparisons

Key Cell Formulas

Cell Formula Copied to

G11 5MMULT(C4:E4,$F$11:$F$13)/F11 G12:G13
G15 5(AVERAGE(G11:G13)23)/(2*0.58) --

Figure 14.44

Values of RI for use 
in AHP

n ri

2 0.00
3 0.58
4 0.90
5 1.12
6 1.24
7 1.32
8 1.41
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If the pairwise comparison matrix is perfectly consistent, then λ 5 n and the con-
sistency ratio is 0. The values of RI in Figure 14.44 give the average value of CI if all 
the entries in the pairwise comparison matrix were chosen at random, given that all 
the diagonal entries equal 1 and Pij 5 1/Pji. If CR # 0.10, the degree of consistency 
in the pairwise comparison matrix is satisfactory. However, if CR . 0.10, serious 
inconsistencies might exist and AHP might not yield meaningful results. The value 
for CR shown in cell G15 in Figure 14.43 indicates that the pairwise comparison 
matrix for the price criterion is reasonably consistent. Therefore, we can assume that 
the scores for the price criterion obtained from the normalized matrix are reason-
ably accurate.

Figure 14.45

Spreadsheet used 
to calculate scores 
for the user support 
criterion

Figure 14.46

Spreadsheet used 
to calculate scores 
for the ease-of-use 
criterion
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14.18.4 oBtAining scores for the reMAining criteriA 
We can repeat the process for obtaining the price criterion scores to obtain scores for the 
user support and ease-of-use criteria. Hypothetical results for these criteria are shown 
in Figures 14.45 and 14.46, respectively.

We can create these two spreadsheets easily by copying the spreadsheet for the price 
criterion (shown in Figure 14.43) and having the decision maker fill in the pairwise 
comparison matrices with preferences related to the user support and ease-of-use crite-
ria. Notice that the preferences given in Figures 14.45 and 14.46 appear to be consistent.

14.18.5 oBtAining criterion weights
The scores shown in Figures 14.43, 14.45, and 14.46 indicate how the alternatives com-
pare with respect to the price, user support, and ease-of-use criteria. Before we can use 
these values in a scoring model, we must also determine weights that indicate the rel-
ative importance of the three criteria to the decision maker. The pairwise comparison 
process used earlier to generate scores for the alternatives on each criterion can also be 
used to generate criterion weights.

The pairwise comparison matrix in Figure 14.47 shows the decision maker’s pref-
erences for the three criteria. The values in cells C5 and C6 indicate that the decision 
maker finds user support and ease of use to be more important (or more preferred) 
than price, and cell D6 indicates that ease of use is somewhat more important than user 
support. These relative preferences are reflected in the criterion weights shown in cells 
F11 through F13.

Figure 14.47

Spreadsheet used 
to determine the 
criterion weights

14.18.6 iMPleMenting the scoring MoDel
We now have all the elements required to analyze this decision problem using a scor-
ing model. Thus, the last step in AHP is to calculate the weighted average scores for 
each decision alternative. The weighted average scores are shown in cells C8 through 
E8 in Figure 14.48. According to these scores, alternative Y should be selected.
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14.19 Summary
This chapter presented a number of techniques for analyzing a variety of decision prob-
lems. First, it discussed how a payoff table can be used to summarize the alternatives in 
a single-stage decision problem. Then, a number of nonprobabilistic and probabilistic 
decision rules were presented. No one decision rule works best in all situations, but 
together, the rules help to highlight different aspects of a problem and can help develop 
and sharpen a decision maker’s insight and intuition about a problem so that better 
decisions can be made. When probabilities of occurrence can be estimated for the alter-
natives in a problem, the EMV decision rule is the most commonly used technique.

Decision trees are particularly helpful in expressing multistage decision problems in 
which a series of decisions must be considered. Each terminal node in a decision tree is 
associated with the net payoff that results from each possible sequence of decisions. A 
rollback technique determines the alternative that results in the highest EMV. Because 
different decision makers derive different levels of value from the same monetary pay-
off, the chapter also discussed how utility theory can be applied to decision problems 
to account for these differences.

Finally, the chapter discussed two procedures for dealing with decision problems 
that involve multiple conflicting decision criteria. The multicriteria scoring model 
requires the decision maker to assign a score for each alternative on each criterion. 
Weights are then assigned to represent the relative importance of the criteria, and a 
weighted average score is computed for each alternative. The alternative with the 
highest score is the recommended alternative. AHP provides a structured approach to 
determining the scores and weights used in a multicriteria scoring model if the decision 
maker has difficulty specifying these values.
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Final scoring model 
for selecting the 
information system

Key Cell Formulas

Cell Formula Copied to

C8 5SUMPRODUCT(C5:C7,$G$5:$G$7)     D8:E8
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the worlD of Business AnAlytics

Decision Theory Helps Hallmark Trim Discards

Many items distributed by Hallmark Cards, Incorporated can be sold only during 
a single season. Leftovers, or discards, must then be disposed of outside normal 
dealer channels. For example, table items such as napkins can be used in the com-
pany’s cafeteria, donated to charity, or sold without the brand name to volume 
discounters. Other items have no salvage value at all.

A product manager deciding the size of a production run or quantity to purchase 
from a supplier faces two risks. First is the consequence of choosing a quantity that is 
larger than the eventual demand for the product. Products that have been paid for must 
be discarded, and the salvage value (if any) might not make up for the cost. The second 
risk is that the quantity might be less than demand, in which case revenues are lost.

A substantial increase in the dollar volume of discards prompted Hallmark 
management to initiate a training program for product managers and inventory 
controllers. They were taught to use product cost and selling price together with a 
probability distribution of demand to make order quantity decisions. The format 
for conducting the analysis was a payoff matrix in which rows represented order 
quantities and columns represented demand levels. Each cell in the payoff matrix 
contained a computed contribution to profit. 

Salvage values and shortage costs were not included in the values of the payoff 
matrix cells. Instead, sensitivity analysis provided ranges of values within which 
the order quantity was still optimal.

Although some probability distributions could be estimated from sales data for 
previous years, it was sometimes necessary to use subjective probabilities. This 
was especially true for special promotions that had no relevant product history. 
For this reason, product managers were trained in specifying subjective proba-
bilities. Although direct assessment of a cumulative distribution function would 
have tied into the order quantity decision more efficiently, it turned out that the 
managers became more adept at estimating a discrete probability function.

Enough managers adopted the payoff matrix technique, with positive results, 
that the training program has been continued and expanded within the company.

Source: F. Hutton Barron. “Payoff Matrices Pay Off at Hallmark.” Interfaces, vol. 15, no. 4, August 1985, 
pp. 20–25.
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Questions and Problems
1. This chapter presented the problem of having to decide between two job offers. The 

decision maker could accept the job with company A, accept the job with company 
B, or reject both offers and hope for a better one. What other alternatives can you 
think of for this problem?

2. Give an example of a national business, political, or military leader who made a 
good decision that resulted in a bad outcome, or a bad decision that resulted in a 
good outcome.

3. Consider the following payoff matrix:

State of Nature

Decision  1 2 3

A 50 75 35

B 40 50 60

C 40 35 30

  Should a decision maker ever select decision alternative C? Explain your answer.
 4.  One of Philip Mahn’s investments is going to mature, and he wants to determine 

how to invest the proceeds of $30,000. Philip is considering two new investments: a 
stock mutual fund and a one-year certificate of deposit (CD). The CD is guaranteed 
to pay an 8% return. Philip estimates the return on the stock mutual fund as 16%, 
9%, or 22%, depending on whether market conditions are good, average, or poor, 
respectively. Philip estimates the probability of a good, average, and poor market to 
be 0.1, 0.85, and 0.05, respectively.
a.  Construct a payoff matrix for this problem.
b.  What decision should be made according to the maximax decision rule?
c.  What decision should be made according to the maximin decision rule?
d.  What decision should be made according to the minimax regret decision rule?
e.  What decision should be made according to the EMV decision rule?
f.  What decision should be made according to the EOL decision rule?
g.  How much should Philip be willing to pay to obtain a market forecast that is 

100% accurate?
 5.  Lori Henderson runs a specialty ski clothing shop outside of Boone, North Caro-

lina. She must place her order for ski parkas well in advance of ski season because 
the manufacturer produces them in the summer months. Brenda needs to deter-
mine whether to place a large, medium, or small order for parkas. The number sold 
will depend largely on whether the area receives a heavy, normal, or light amount 
of snow during the ski season. The following table summarizes the payoffs Brenda 
expects to receive under each scenario.

Amount of Snow

Size of Order Heavy Normal Light

Large 10 7 3

Medium  8 8 6

Small  4 4 4
             Payoffs (in $1000s)

  Brenda estimates the probability of heavy, normal, and light snowfalls as 0.25, 0.6, 
and 0.15, respectively.
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a. What decision should be made according to the maximax decision rule?
b.  What decision should be made according to the maximin decision rule?
c.  What decision should be made according to the minimax regret decision rule?
d.  What decision should be made according to the EMV decision rule?
e.  What decision should be made according to the EOL decision rule?

6. The Fish House (TFH) in Norfolk, Virginia sells fresh fish and seafood. TFH receives 
daily shipments of farm-raised trout from a nearby supplier. Each trout costs $2.45 
and is sold for $3.95. To maintain its reputation for freshness, at the end of the day 
TFH sells any leftover trout to a local pet food manufacturer for $1.25 each. The 
owner of TFH wants to determine how many trout to order each day. Historically, 
the daily demand for trout is:

Demand 10 11 12 13 14 15 16 17 18 19 20

Probability 0.02 0.06 0.09 0.11 0.13 0.15 0.18 0.11 0.07 0.05 0.03

a.  Construct a payoff matrix for this problem.
b.  What decision should be made according to the maximax decision rule?
c.  What decision should be made according to the maximin decision rule?
d.  What decision should be made according to the minimax regret decision rule?
e.  What decision should be made according to the EMV decision rule?
f.  What decision should be made according to the EOL decision rule?
g.  How much should the owner of TFH be willing to pay to obtain a demand fore-

cast that is 100% accurate?
h.  Which decision rule would you recommend TFH use in this case? Why?
i.  Suppose that TFH receives a quantity discount that reduces the price to $2.25 per 

trout if it purchases 15 or more. How many trout would you recommend TFH 
order each day in this case?

 7.  A car dealer is offering the following three two-year leasing options:

Plan Fixed Monthly Payment Additional Cost per Mile

I $200 $0.095 per mile.

II $300 $0.061 for the first 6,000 miles; 
$0.050 thereafter.

III $170 $0.000 for the first 6,000 miles; 
$0.14 per mile thereafter.

  Assume a customer expects to drive between 15,000 to 35,000 miles during the next 
two years according to the following probability distribution:

P(driving 15,000 miles) 5 0.1
P(driving 20,000 miles) 5 0.2
P(driving 25,000 miles) 5 0.2
P(driving 30,000 miles) 5 0.3
P(driving 35,000 miles) 5 0.2

a.  Construct a payoff matrix for this problem.
b.  What decision should be made according to the maximax decision rule? (Keep in 

mind that the “payoffs” here are costs, where less is better.)
c.  What decision should be made according to the maximin decision rule?
d.  What decision should be made according to the minimax regret decision rule?
e.  What decision should be made according to the EMV decision rule?
f.  What decision should be made according to the EOL decision rule?
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8. Bob Farrell, owner of Farrell Motors, is trying to decide whether to buy an insur-
ance policy to cover hail damage on his inventory of more than 200 cars and trucks. 
Thunderstorms occur frequently and they sometimes produce hail the size of golf 
balls that can severely damage automobiles. Bob estimates the potential damage 
from hail in the next year as:

Hail Damage
(in $1000s) 0 15 30 45 60 75 90 105

Probability 0.25 0.08 0.10 0.12 0.15 0.12 0.10 0.08

Bob is considering the following three alternatives for dealing with this risk:
•	 Bob can buy an insurance policy for $47,000 that would cover 100% of any losses 

that occur.
•	 Bob can buy an insurance policy for $25,000 that would cover all losses in excess 

of $35,000.
•	 Bob can choose to self-insure, in which case he will not have to pay any insur-

ance premium but will pay for any losses that occur.
a. Construct a payoff matrix for this problem.
b.  What decision should be made according to the maximax decision rule?
c.  What decision should be made according to the maximin decision rule?
d.  What decision should be made according to the minimax regret decision rule?
e.  What decision should be made according to the EMV decision rule?
f.  What decision should be made according to the EOL decision rule?

9. Morley Properties is planning to build a condominium development on St. Simons 
Island, Georgia. The company is trying to decide between building a small, 
medium, or large development. The payoffs received for each size of development 
will depend on the market demand for condominiums in the area, which could be 
low, medium, or high. The payoff matrix for this decision problem is:

Market Demand

Size of Development Low Medium High

Small 400 400 400
Medium 200 500 500
Large 2400 300 800

(Payoffs in $1000s)

The owner of the company estimates a 20% chance that market demand will be low, 
a 35% chance that it will be medium, and a 45% chance that it will be high.
a. What decision should be made according to the maximax decision rule?
b.  What decision should be made according to the maximin decision rule?
c.  What decision should be made according to the minimax regret decision rule?
d.  What decision should be made according to the EMV decision rule?
e.  What decision should be made according to the EOL decision rule?

10. Refer to the previous question. Morley Properties can hire a consultant to predict 
the most likely level of demand for this project. This consultant has done many sim-
ilar studies and has provided Morley Properties with the following joint probability 
table summarizing the accuracy of the results:

Actual Demand
Forecasted Demand Low Medium   High

Low 0.1600 0.0300 0.0100
Medium 0.0350 0.2800 0.0350
High 0.0225 0.0450 0.3825
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The sum of the entries on the main diagonal of this table indicates that the consul-
tant’s forecast is correct about 82.25% of the time, overall.
a. Construct the conditional probability table showing the probabilities of the vari-

ous actual demands given each of the forecasted demands.
b.  What is the EMV of the optimal decision without the consultant’s assistance?
c.  Construct a decision tree Morley Properties would use to analyze the decision 

problem if the consultant is hired at a cost of $0.
d.  What is the EMV of the optimal decision with the consultant’s free assistance?
e.  What is the maximum price Morley Properties should be willing to pay the 

consultant?
11.  Refer to question 9. Suppose that the utility function for the owner of Morley Prop-

erties can be approximated by the exponential utility function:

U 1x 2 5 1 2 e2x/R

where the risk tolerance value R 5 100 (in $1000s).
a.  Convert the payoff matrix to utility values.
b.  What decision provides the owner of the company with the largest expected 

utility?
12.  Refer to question 10. Suppose that the consultant’s fee is $5,000 and the utility func-

tion for the owner of Morley Properties can be approximated by the exponential 
utility function:

U 1x 2 5 1 2 e2x/R

where the risk tolerance value R 5 100 (in $1000s).
a.  What expected level of utility is realized if Morley Properties hires the consultant?
b.  What expected level of utility is realized if Morley Properties does not hire the 

consultant?
c.  Based on this analysis, should Morley Properties hire the consultant?

13.  The Tall Oaks Wood Products Company is considering purchasing timberland for 
$5 million that would provide a future source of timber supply for the company’s 
operations over the next 10 years. Alternatively, for $5 million, the company could 
also buy timber as needed on the open market. The future cash flows from using 
the timber are estimated to have a present value of $6 million regardless of whether 
the company buys the timberland today or waits to purchase its timber as needed 
over the next 10 years. This means there is a $1 million net present value (NPV) of 
either buying the timberland now or buying the timber as needed. In other words, 
from a financial standpoint, the two alternative timber acquisition strategies would 
be equal. Now suppose, that the company believes there is only a 60% chance that 
the environmental regulations affecting timber supply will remain unchanged. Fur-
thermore, the company believes that there is a 30% chance these regulations will 
become stricter during the next 10 years and only a 10% chance that these regula-
tions will be relaxed. A reduction in timber supply should cause an increase in both 
the present value of future cash flows from using the timber due to higher sales 
prices and an increase in the present value of the cost of purchasing the timber as 
needed. (Of course, the change in selling price and buying cost may not be equal.) 
Should regulations become stricter, the company believes the NPV from buying the 
timberland now would increase to $1.5 million while an NPV of buying the timber 
as needed would decrease to 2$0.50 million. Increases in the timber supply should 
have the opposite effects. Thus, should regulations become less strict, the company 
believes the NPV from buying the timberland now would decrease to 2$0.5 million 
while an NPV of buying the timber as needed would increase to $1.50 million. 
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a. Construct a payoff matrix for this problem.
b.  What decision should be made according to the maximax decision rule? 
c.  What decision should be made according to the maximin decision rule?
d.  What decision should be made according to the minimax regret decision rule?
e.  What decision should be made according to the EMV decision rule?
f.  What decision should be made according to the EOL decision rule?
g. Construct a decision tree for this problem.

14. Medical studies have shown that 10 out of 100 adults have heart disease. When a 
person with heart disease is given an EKG test, a 0.9 probability exists that the test 
will indicate the presence of heart disease. When a person without heart disease 
is given an EKG test, a 0.95 probability exists that the test will indicate the person 
does not have heart disease. Suppose that a person arrives at an emergency room 
complaining of chest pains. An EKG is given and indicates that the person has heart 
disease. What is the probability that the person actually has heart disease?

15. A manufacturer has two machines that make the same parts for diesel truck engines. 
One machine is 5 years older than the other one. The older machine runs slower and 
makes 35% of the parts, of which 85% are of acceptable quality and don’t require 
re-work. Only 8% of the parts made by the newer machine require re-work. 
a) If a part is found to be out of specification and in need of re-work, what is the 

probability that it was made by the older machine?
16. Bill and Ted are going to the beach with hopes of having an excellent adventure. 

Before going, they read a report by the world’s leading authority on tiger shark 
behavior indicating that when a tiger shark is in the vicinity of swimmers at the 
beach, there is a 0.20 probability of the shark biting a swimmer. Shortly after arriv-
ing at the beach and getting in the water, Bill and Ted spot the unmistakable dorsal 
fin of a tiger shark on the surface of the water in the vicinity of where they are 
swimming. Bill says to Ted, “Dude, let’s get out of the water, there’s a 0.20 proba-
bility someone is going to get bitten by that shark.” Ted replies to Bill, “You are way 
wrong man! That probability could be zero. Chill out and enjoy the surf, dude.” 
a. Show that Ted is correct about the probability. (Hint: Consider that 

P 1A 2 5 P 1A d B 2 1 P 1A d B 2 .)
b. Suppose Bill and Ted decide to stay in the water and are bitten by the shark. Was 

staying in the water a good decision? Was the outcome of the decision good or 
bad?

c. Suppose Bill and Ted decide to stay in the water and are not bitten by the shark. Was 
staying in the water a good decision? Was the outcome of the decision good or bad?

17.  MicroProducts, Incorporated (MPI) manufactures printed circuit boards for a major 
PC manufacturer. Before a board is sent to the customer, three key components must 
be tested. These components can be tested in any order. If any of the components 
fail, the entire board must be scrapped. The costs of testing the three components 
are provided in the following table, along with the probability of each component 
failing the test:

Component Cost of Test Probability of Failure

X $1.75 0.125

Y $2.00 0.075

Z $2.40 0.140

a.  Create a decision tree for this problem that could be used to determine the order 
in which the components should be tested to minimize the expected cost of per-
forming the tests.

47412_ch14_ptg01_754-828.indd   817 08/11/16   1:33 PM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



818 Chapter 14 Decision Analysis

b.  In which order should the components be tested?
c.  What is the expected cost of performing the tests in this sequence?

18. Refer to the previous question. A manufacturing engineer for MPI collected the fol-
lowing data on the failure rates of components X, Y, and Z in a random sample of 
1,000 circuit boards:

X Y Z Number of Boards

p p p 710

p f p 45

p p f 110

p f f 10

f p p 95

f f p 10

f p f 10

f f f 10

Total: 1000

(p 5 pass, f 5 fail)

  For example, the first row in this table indicates that components X, Y, and Z all 
passed their inspections in 710 out of the 1,000 boards checked. The second row 
indicates that 45 boards passed inspection on components X and Z, but failed on 
component Y. The remaining rows can be interpreted similarly.
a.  Using this data, compute conditional probabilities for the decision tree 

you developed in question 13. (Note that P 1A 0B 2 5 P 1A d B 2/P 1B 2  and 
P 1A 0B  d  C 2 5 P 1A d B  d  C 2/P 1B  d  C 2 .)

b.  According to the revised probabilities, in which order should the components be 
tested?

c. What is the expected cost of performing the tests in this sequence?
19.  Southern Gas Company (SGC) is preparing to make a bid for oil and gas leasing 

right in a newly opened drilling area in the Gulf of Mexico. SGC is trying to decide 
whether to place a high bid of $16 million or a low bid of $7 million. SGC expects 
to be bidding against its major competitor, Northern Gas Company (NGC) and pre-
dicts NGC to place a bid of $10 million with probability 0.4 or a bid of $6 million 
with probability 0.6. Geological data collected at the drilling site indicates a 0.15 
probability of the reserves at the site being large, a 0.35 probability of being average, 
and a 0.50 probability of being unusable. A large or average reserve would most 
likely represent a net asset value of $120 million or $28 million, respectively, after all 
drilling and extraction costs are paid. The company that wins the bid will drill an 
exploration well at the site for a cost of $5 million.
a.  Develop a decision tree for this problem.
b.  What is the optimal decision according to the EMV criterion?
c.  Create a strategy table showing how the optimal decision would change if the 

probability of the NGC bidding $10 million varies from 0% to 100% in steps of 10%.
d.  Create a strategy table showing how the optimal decision would change if the 

net asset value of a large reserve varies from $100 million to $140 million in $5 
million increments and the net asset value of an average reserve varies from $20 
million to $36 million in increments of $2 million.

20.  Bulloch County has never allowed liquor to be sold in restaurants. However, in 
three months, county residents are scheduled to vote on a referendum to allow 
liquor to be sold by the drink. Currently, polls indicate there is a 60% chance that 
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the referendum will be passed by voters. Phil Jackson is a local real estate speculator 
who is eyeing a closed restaurant building that is scheduled to be sold at a sealed 
bid auction. Phil estimates that if he bids $1.25 million, there is a 25% chance he will 
obtain the property; if he bids $1.45 million, there is a 45% chance he will obtain 
the property; and if he bids $1.85 million, there is an 85% chance he will obtain the 
property. If he acquires the property and the referendum passes, Phil believes he 
could then sell the restaurant for $2.2 million. However, if the referendum fails, he 
believes he could sell the property for only $1.15 million.
a. Develop a decision tree for this problem.
b.  What is the optimal decision according to the EMV criterion?
c.  Create a strategy table showing how the optimal decision might change if the 

probability of the referendum passing varies from 0% to 100% in steps of 10%.
d.  To which financial estimate in the decision tree is the EMV most sensitive?

21. The Banisco Corporation is negotiating a contract to borrow $300,000 to be repaid 
in a lump sum at the end of nine years. Interest payments will be made on the loan 
at the end of each year. The company is considering the following three financing 
arrangements:
•	 The company can borrow the money using a fixed rate loan (FRL) that requires 

interest payments of 9% per year.
•	 The company can borrow the money using an adjustable rate loan (ARL) that 

requires interest payments of 6% at the end of each of the first five years. At the 
beginning of the sixth year, the interest rate on the loan could change to 7%, 9%, 
or 11% with probabilities of 0.1, 0.25, and 0.65, respectively.

•	 The company can borrow the money using an ARL that requires interest pay-
ments of 4% at the end of each of the first three years. At the beginning of the 
fourth year, the interest rate on the loan could change to 6%, 8%, or 10% with 
probabilities of 0.05, 0.30, and 0.65, respectively. At the beginning of the seventh 
year, the interest rate could decrease by 1 percentage point with a probability of 
0.1, increase by 1 percentage point with a probability of 0.2, or increase by 3 per-
centage points with a probability of 0.7.

a. Create a decision tree for this problem, computing the total interest paid under 
each possible scenario.

b.  Which decision should the company make if it wants to minimize its expected 
total interest payments?

22. Refer to the previous question. The present value (PV) of a future cash-flow value 
(FV) is defined as:

PV 5
FV

11 1 r 2n

where n is the number of years into the future in which the cash flow occurs and r is 
the discount rate. Suppose that the discount rate for Banisco is 10% 1r 5 0.1 2 .
a. Create a decision tree for this problem, computing the PV of the total interest 

paid under each possible scenario.
b.  Which decision should the company make if it wants to minimize the expected 

PV of its total interest payments?
23. From industry statistics, a credit card company knows that 0.8 of its potential 

card holders are good credit risks and 0.2 are bad credit risks. The company uses 
discriminant analysis to screen credit card applicants and determine which ones 
should receive credit cards. The company awards credit cards to 70% of those who 
apply. The company has found that of those awarded credit cards, 95% turn out to 
be good credit risks. What is the probability that an applicant who is a bad credit 
risk will be denied a credit card?
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820 Chapter 14 Decision Analysis

24. The Mobile Oil company has recently acquired oil rights to a new potential source 
of natural oil in Alaska. The current market value of these rights is $90,000. If there 
is natural oil at the site, it is estimated to be worth $800,000; however, the com-
pany would have to pay $100,000 in drilling costs to extract the oil. The company 
believes there is a 0.25 probability that the proposed drilling site actually would hit 
the natural oil reserve. Alternatively, the company can pay $30,000 to first carry out 
a seismic survey at the proposed drilling site. The probability of a favorable seismic 
survey when oil is present at the drilling site is 0.6. The probability of an unfavor-
able seismic survey when no oil is present is 0.80.
a. What is the probability of a favorable seismic survey?
b.  What is the probability of an unfavorable seismic survey?
c.  Construct a decision tree for this problem.
d.  What is the optimal decision strategy using the EMV criterion?
e.  To which financial estimate in the decision tree is the EMV most sensitive?

25. Johnstone & Johnstone (J&J) has developed a new type of hand lotion with a distinc-
tive fragrance. Before distributing it nationally, J&J will test market the new prod-
uct. The joint probability of a successful test market and high sales upon national 
distribution is 0.5. The joint probability of a successful test market and low sales 
nationally is 0.1. The joint probabilities of an unsuccessful test market and either 
high or low sales are both 0.2.
a. Use this data to construct a joint probability table.
b. What is the marginal probability of a successful test market?
c. What is the conditional probability of high sales given a successful test market?
d. What is the conditional probability of a successful test market given that the 

product is destined for high sales nationally?
26. Eagle Credit Union (ECU) has experienced a 10% default rate with its commer-

cial loan customers (i.e., 90% of commercial loan customers pay back their loans). 
ECU has developed a statistical test to assist in predicting which commercial loan 
customers will default. The test assigns either a rating of “Approve” or “Reject” to 
each loan applicant. When applied to recent commercial loan customers who paid 
their loans, the test gave an “Approve” rating in 80% of the cases examined. When 
applied to recent commercial loan customers who defaulted, it gave a “Reject” rat-
ing in 70% of the cases examined.
a. Use this data to construct a joint probability table.
b. What is the conditional probability of a “Reject” rating given that the customer 

defaulted?
c. What is the conditional probability of an “Approve” rating given that the cus-

tomer defaulted?
d. Suppose a new customer receives a “Reject” rating. If they are given the loan 

anyway, what is the probability that they will default?
27. Thom DeBusk, an architect, is considering buying, restoring, and reselling a home 

in the Draper-Preston historic district of Blacksburg, VA. The cost of the home is 
$240,000 and Thom believes it can be sold for $450,000 after being restored. Thom 
expects he can sell the house as soon as the restoration is completed and expects to 
pay $1500 a month in finance charges from the time he purchases the house until 
it is sold. Thom has developed two sets of plans for the restoration. Plan A will 
cost $125,000 and require three months to complete. This plan does not require 
changes to the front of the house. Plan B is expected to cost $85,000 and require four 
months of work. This plan does involve changes to the front of the house—which 
will require the approval of the town’s historic preservation committee. Thom 
expects the approval process for plan B to take two months and cost about $5,000. 
Thom thinks there is a 40% chance the historic preservation committee will approve 
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this design. Thom plans to buy the home immediately but cannot decide what he 
should do next. He could immediately proceed with restoration plan A or he could 
start immediately with restoration plan B. Of course, if he starts immediately with 
plan B, he will not know for two months whether the historic preservation com-
mittee approves of this plan. If they do not approve it, he will have to start over 
and implement plan A instead. Starting over with plan A would cost an additional 
$20,000 over plan A’s normal cost and add an additional month to plan A’s normal 
completion schedule. Alternatively, Thom can hold off implementing either plan 
until he knows the outcome of the historic planning committee’s decision.
a. Create a decision tree for this problem.
b.  What set of decisions should Thom make if he follows the maximum EMV 

criterion?
28. Suppose that you are given the following two alternatives:

Alternative 1: Receive $200 with certainty.
Alternative 2:  Receive $1,000 with probability p  

or lose $250 with probability 1 2 p.

a. At what value of p would you be indifferent between these two alternatives?
b.  Given your response to part a, would you be classified as risk averse, risk neu-

tral, or risk seeking?
c.  Suppose that alternative 2 changed so that you would receive $1,000 with proba-

bility p or lose $0 with probability 11 2 p 2 . At what value of p would you now be 
indifferent between these alternatives?

d.  Given your response to part c, would you be classified as risk averse, risk neu-
tral, or risk seeking?

29. Rusty Reiker is looking for a location to build a new restaurant. He has narrowed 
the options down to three possible locations. The following table summarizes how 
he rates each location on the criteria that are most important to his business.

Criterion Location 1 Location 2 Location 3

Price 0.9 0.7 0.4
Accessibility 0.6 0.7 0.8
Traffic Growth 0.9 0.8 0.7
Competition 0.4 0.5 0.8

  Upon reflection, Rusty decides that the weights he would assign to each criterion are 
as follows: Price 20%, Accessibility 30%, Traffic Growth 20%, and Competition 30%.
a. Create a multicriteria scoring model for this problem.
b. Create a radar chart showing the weighted scores for each location on each of the 

criteria.
c. According to this model, which location should Rusty purchase?

30. Hiro Tanaka is going to purchase a new car and has narrowed the decision down to 
three different sedans. The following table summarizes how he rates each sedan on 
the criteria that are most important to him.

Criterion Sedan 1 Sedan 2 Sedan 3

Economy 0.9 0.7 0.4
Safety 0.6 0.7 0.8
Reliability 0.9 0.8 0.7
Style 0.4 0.5 0.8
Comfort 0.5 0.8 0.9
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Upon reflection, Hiro decides that the weights he would assign to each criteria are 
as follows: Economy 30%, Safety 15%, Reliability 15%, Style 15%, and Comfort 25%.
a. Create a multicriteria scoring model for this problem.
b. Create a radar chart showing the weighted scores for each car on each of the 

criteria.
c. According to this model, which car should Hiro purchase?
d. Suppose Hiro is uncertain about the weights he assigned to the comfort and 

safety criteria. If he is willing to trade comfort for safety, how would the solution 
change?

e. Suppose Hiro is uncertain about the weights he assigned to the economy and 
safety criteria. If he is willing to trade economy for safety, how would the solu-
tion change?

31.  The president of Pegasus Corporation is trying to decide which of three candi-
dates (denoted as candidates A, B, and C) to hire as the firm’s new vice president 
of marketing. The primary criteria the president is considering are each candi-
date’s leadership ability, interpersonal skills, and administrative ability. After 
carefully considering their qualifications, the president used AHP to create the 
following pairwise comparison matrices for the three candidates on the various 
criteria:

Leadership Ability interpersonal Skills

A B C A B C

A 1 3 4 A 1 1/2 3
B 1/3 1 2 B 2 1 8
C 1/4 1/2 1 C 1/3 1/8 1

Administrative Ability

A B C

A 1 1/5 1/8
B 5 1 1/3
C 8 3 1

Next, the president of Pegasus considered the relative importance of the three crite-
ria. This resulted in the following pairwise comparison matrix:

Criteria

Leadership 
Ability

interpersonal 
Skills

Administrative 
Ability

Leadership Ability 1 1/3 1/4
Interpersonal Skills 3 1 1/2
Administrative Ability 4 2 1

a. Use AHP to compute scores for each candidate on each of the three criteria, and 
to compute weights for each of the criteria.

b.  Was the president consistent in making pairwise comparisons?
c.  Compute the weighted average score for each candidate. Which candidate 

should be selected according to your results?
32. Kathy Jones is planning to buy a new minivan but, after narrowing her choices 

down to three models (X, Y, and Z) within her price range, she is having difficulty 
deciding which one to buy. Kathy has compared each model against the others on 
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the basis of four criteria: price, safety, economy, and comfort. Her comparisons are 
summarized as:

Price Safety

X Y Z X Y Z

X 1 1/4 3 X 1 1/2 3
Y 4 1 7 Y 2 1 8
Z 1/3 1/7 1 Z 1/3 1/8 1

economy Comfort

X Y Z X Y Z

X 1 1/3 1/6 X 1 1/4 1/8
Y 3 1 1/3 Y 4 1 1/3
Z 6 3 1 Z 8 3 1

  Kathy wants to incorporate all of these criteria into her final decision, but not all of 
the criteria are equally important. The following matrix summarizes Kathy’s com-
parisons of the importance of the criteria:

Criteria

Price Safety economy Comfort

Price 1 1/7 1/2 1/5
Safety 7 1 4 2
Economy 2 1/4 1 1/2
Comfort 5 1/2 2 1

a.  Use AHP to compute scores for each minivan on each of the four criteria, and to 
compute weights for each of the criteria.

b.  Was Kathy consistent in making pairwise comparisons?
c.  Compute the weighted average score for each minivan. Based on this analysis, 

which minivan should Kathy buy?
33.  Identify a consumer electronics product that you want to purchase (e.g., a TV, digi-

tal camera, tablet computer). Identify at least three models of this product that you 
would consider purchasing. Identify at least three criteria on which these models 
differ (e.g., price, quality, warranty, options). 
a. Create a multicriteria scoring model and radar charts for this decision problem. 

Using this model, which product would you choose?
b. Use AHP to determine scores for each model on each of the criteria and to deter-

mine weights for the criteria. Which model should you choose according to the 
AHP results?

Prezcott Pharma
Developed in association with Dr. Cem Saydam, Belk College of Business, UNC Charlotte.

Anyone who has suffered with an acute or chronic illness is probably very appreciative 
for whatever drugs are available to cure or manage the disease. In the United States, 
the Food and Drug Administration (FDA) is the governmental agency that oversees 
the drug development, testing, and monitoring process see http://www.fda.gov

CASe 14.1
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/Drugs/). Developing new drugs that safely address particular medical issues without 
producing unpleasant or dangerous side-effects is a very long and expensive process, 
often taking 10–15 years of work and costing an average of $4 billion. The long lead-
time for brining drugs to market is mostly due to required clinical trials. Thus, drug 
manufacturers have to make very important, high-stakes decisions when they consider 
whether or not to place a new drug into the clinical trials process.

Suppose scientists at Prezcott Pharma have discovered a potential drug break-
through for the treatment of Alzheimer’s disease, and corporate executives now need 
to decide whether to go forward to conduct clinical trials and seek FDA approval to 
market the drug. The company has spent $295 million to date in research expenses. 
The cost of clinical trials is expected to be $145 million, and the probability of a suc-
cessful outcome with only minor side effects is 0.15 whereas the probability of a suc-
cessful outcome with major side effects is 0.2. After the clinical trials are completed, 
the company may seek approval from the Food and Drug Administration (FDA) at an 
estimated cost of $25 million. If the clinical trials suggested the drug produced only 
minor side effects, the chance of FDA approval is 0.6. Alternatively, the chance of gain-
ing FDA approval if the drug has major side effects is 0.35. The market potential for 
the drug has been estimated as large, medium, or small, with the following probabili-
ties and characteristics:

Minor Side effects Major Side effects

revenue Probability revenue Probability

Large  $ 4,200 55%  $ 2,300 35%
Medium  $ 2,150 35%  $ 1,400 50%
Small  $ 1,500 10%  $    850 15%

(Revenue is expressed in millions of dollars.)

If Prezcott cannot secure FDA approval, it can still try to sell the drug to an interna-
tional company known to seek drugs that have successfully completed clinical trials but 
failed to get FDA approval. A business analyst at Prezcott estimates that if the drug fails 
to secure FDA approval, there is a 50% chance that the company can sell the drug for 
$500 million if the clinical trials reported minor side effects and a 30% chance the com-
pany could get $200 million for the drug if the clinical trials reported major side effects.

 1. Develop a decision tree to determine the best course of action recommended by the 
EMV criterion. 

 2. Which sequence of decisions may lead to the worst outcome?
 3. What is your recommended sequence of decisions and why? 

Hang On or Give Up?
Success or failure as a farmer depends in large part of the uncertainties of the 
weather during the growing seasons. Consider the following quote from a recent 
news article:

 “…In a summer plagued by drought and heat, many Southern crops are wither-
ing in the fields, taking farmers’ profits down with them. Some farmers are fight-
ing to break even. But others have had to give up hope that this year’s crop will 
survive to harvest. ‘Farmers must decide if they’re going to continue to nurture 

CASe 14.2
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that crop or give up and plow it under,’ said George Shumaker, an Extension Ser-
vice economist with the University of Georgia College of Agricultural and Envi-
ronmental Sciences. Making that decision takes courage and careful calculation.”

Assume that you are a farmer facing the decision of whether or not to plow under 
your crops. Suppose you have already invested $50 per acre in seed, water, fertilizer, 
and labor. You estimate it will require another $15 per acre to produce and harvest a 
marketable crop. If the weather remains favorable, you estimate your crop will bring 
a market price of $26 per acre. However, if the weather becomes unfavorable, you 
estimate your crop will bring a market price of $12 per acre. Currently, the weather 
forecasters are predicting favorable weather conditions with a probability of 0.70. The 
owner of the farm next to yours (who is growing the same product and has made the 
same $50 per acre investment) has just decided to plow his fields under because the 
additional $15 per acre to produce a marketable crop would just be “throwing good 
money after bad.” 

1. Develop a decision tree for your decision problem.
2. What is the EMV of harvesting and bringing the crop to market?
3. Would you bring this crop to market or plow it under like your neighbor?
4. By how much would the probability of favorable weather have to change before 

your answer to the question in part c would change?
5. By how much would the $15 per acre cost of bringing the crop to market have to 

change before your answer to the question in part 3 would change? 
6. What other factors might you want to consider in making this decision?

Should Larry Junior Go to Court or Settle?
In the mid-1990s, DHL was the world’s largest shipping company, with $5.7 billion in 
revenue and 60,000 employees. Larry Hillblom was the “H” in DHL and founder of the 
company. DHL started on a shoestring budget in 1969 with a business plan to deliver 
shipping documents by air courier to ports of call days before cargo ships arrived, so 
that vessels could be unloaded quickly upon arrival and be on their way. The company 
grew into an international air courier, making Hillblom a millionaire before he turned 
30. While not as famous in the United States as Federal Express, overseas DHL is so 
ubiquitous that its name is synonymous with next-day-air shipping in the same man-
ner that the word “Coke” is used to mean “soft drink.” 

To avoid U.S. income taxes, Hillblom moved from the San Francisco Bay area to 
Saipan, a tropical tax haven a thousand miles off the southeast coast of Japan. He 
became a Micronesian kingpin, launching dozens of businesses and financing land 
development projects in the Philippines, Hawaii, and Vietnam. He owned European 
castles and hotels, a Chinese jet, an airline called Continental Micronesia and, in addi-
tion to his mansion in Saipan, maintained residences in Manila, Hawaii, and Half Moon 
Bay. His hobbies included high-end stereo equipment, boats, airplanes, fancy cars and, 
reportedly, illicit relationships with young Asian girls.

On May 21, 1995, Hillblom and two business associates took off for Saipan in Hill-
blom’s twin-engine seaplane from nearby Pagan Island for a short business trip. Bad 
weather turned the travelers back and, soon thereafter, dispatchers lost track of the 
plane. The next morning a search party located parts of the plane and the sodden bod-
ies of Hillblom’s companions. Hillblom’s body was never found. 

Larry Hillblom never married and had no legitimate children. Unfortunately for the 
Hillblom estate, his will did not contain a clause disinheriting any illegitimate children. 
Under the prevailing laws, he could have written his children out of the will, but since 
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826 Chapter 14 Decision Analysis

he didn’t, anyone who could prove to be his child would be entitled to an inheritance. 
Shortly after Hillblom’s death one such child, Larry Junior (age 12), filed suit claiming 
a share of the estate. (Months after Hillblom’s death, several young women emerged 
from Vietnam, the Philippines, and the Islands of Micronesia claiming that Hillblom 
had taken up with them briefly and left them with children. See http://dna-view.com
/sfstory.htm for additional sordid details.)

Several possible impediments stood in the way of Larry Junior’s claim to the Hillb-
lom estate. First, Larry Junior and his attorneys must await the outcome of a proposed 
law (known as the Hillblom Law) written under serious financial pressure from attor-
neys for the Hillblom estate. If passed by the legislature and signed by the governor, 
the proposed law would retroactively invalidate the claims of illegitimate heirs not spe-
cifically mentioned in a will. Larry Junior’s advisers estimate a 0.60 probability of the 
proposed law passing. If the law passes, Larry Junior’s attorneys plan to challenge its 
constitutionality and assign a 0.7 probability to this challenge being successful. 

If the Hillblom Law does not pass (or passes and is later deemed unconstitutional), 
Larry Junior will still have to present evidence that he is the son of the deceased Larry 
Hillblom. Such claims of paternity are routinely proven or disproven using DNA 
matching. However, Hillblom disappeared without leaving a physical trace. (Twelve 
gallons of muriatic acid were delivered to Hillblom’s house shortly after his death, 
and by the time Larry Junior’s attorney’s got there, the house was antiseptically clean.) 
However, during facial reconstruction surgery following another plane crash that Larry 
Hillblom had been in and survived, a mole was removed from his face. That mole could 
be used for DNA testing if Larry Junior’s attorneys can gain access to it. But the mole 
is in possession of a medical center that is the primary beneficiary of the estate under 
the contested will. Without DNA evidence, the case cannot go forward. Larry Junior’s 
attorneys estimate a 0.8 probability of being able to obtain appropriate DNA evidence 
in one way or another. If they are able to obtain a DNA sample, the attorneys estimate a 
0.7 probability of it proving a biological relation between Larry Junior and the decedent. 

If DNA proof of Larry Junior’s claimed parentage is established, his attorney’s 
believe the Hillblom estate will offer a settlement of approximately $40 million to 
avoid going to court. If this settlement offer is rejected, Larry Junior’s legal team faces 
an uncertain outcome in court. His attorney’s believe there is a 0.20 chance that their 
claim could be dismissed by the court (in which case Larry Junior would receive $0). 
However, even if they are successful in court, the amount of the award to Larry Junior 
would depend on how many other illegitimate children make successful claims against 
the estate. Larry Junior’s advisors estimate a 0.04 probability that he would win $338 
million, a 0.16 probability that he would receive $68 million, a 0.40 probability that he 
would receive $34 million, and a 0.20 probability that he would receive $17 million.

While vehemently denying that Larry Junior was Mr. Hillblom’s son, in early 1996 
(and prior to the outcome of the Hillblom Law) the trustees of the Hillblom estate offered 
Larry Junior a settlement worth approximately $12 million if he would relinquish all his 
claims to the Hillblom estate. So Larry Junior and his attorneys face a difficult decision. 
Do they accept the estate’s settlement offer or hope the Hillblom Law doesn’t pass and 
that DNA evidence will establish Larry Junior’s rightful claim to the Hillblom estate?

1. Create a decision tree for this problem.
2. What decision should Larry Junior make according to the EMV criterion?
3. What is the minimum settlement offer Larry Junior should accept according to the 

EMV criterion?
4. What would you do if you were Larry Junior?
5. If you were advising Larry Junior, what other issues might you want to consider in 

making this decision?
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Case 14.4 827

The Spreadsheet Wars
Contributed by Jack Yurkiewicz, Lubin School of Business, Pace University, New York.

Sam Ellis is worried. As president and CEO of Forward Software, Sam introduced a 
new spreadsheet product, Cinco, to the market last year. Forward Software has been 
developing and marketing high-quality software packages for more than five years, but 
these products are mostly computer software language interpreters, similar to Pascal, 
FORTRAN, and C. These products received excellent critical reviews, and because of 
Forward’s aggressive pricing and marketing, the company quickly captured a major 
share of that software market. Buoyed by its wide acceptance, last year Forward 
decided to enter the applications arena for the IBM and compatible audience, leading 
off with Cinco and following up with a word-processing application, Fast.

The spreadsheet market is dominated by Focus Software, whose product—Focus 
A-B-C—has an 80% market share. Focus A-B-C was released in 1981, shortly after the 
IBM PC was introduced, and the two products had an immediate symbiotic effect. The 
spreadsheet was a major advance over what was available at the time, but required the 
extra 16-bit processing power that the IBM PC offered. IBM, on the other hand, needed 
an application that would make its PC a “must buy.” Sales of Focus A-B-C and the IBM 
PC took off as a result of their near-simultaneous release.

At the time of its release, Focus A-B-C was a superb product, but it did have flaws. 
For example, because the software was copy-protected, it could be installed on a hard 
disk, but the original floppy disk had to be inserted each time before the software could 
run. Many users found this step an annoyance. Another problem with A-B-C was 
printing graphs. In order to print a graph, users had to exit the software and load a new 
program, called Printgraf, which would then print the graph. Finally, the product had a 
list price of $495, and the best discounted price available was approximately $300.

However, Focus A-B-C had a unique menu system that was intuitive and easy to 
use. Pressing the slash key (/) displayed the menu system at the top of the spreadsheet. 
The menu allowed the user to make choices and provided a one-line explanation of 
each menu option. Compared to the cryptic commands or keystrokes users had to enter 
in other products, the Focus A-B-C menu system was a model of simplicity and clarity. 
Millions of users became accustomed to the menu system and hailed its use.

Another advantage of Focus A-B-C was its ability to let users write their own mac-
ros. Literally a program, a macro allowed a user to automate spreadsheet tasks and 
then run them with a keystroke or two.

In 1985, a small company named Discount Software introduced its own spreadsheet 
to the market. Called VIP Scheduler, the product looked and worked exactly the same 
as Focus A-B-C. Pressing the slash key displayed the identical menu as found in Focus 
A-B-C, and the product could read any macros developed with Focus A-B-C. VIP Sched-
uler was designed to look and work exactly as Focus A-B-C so that users would not have 
to learn a new system and could start productive work immediately. VIP Scheduler also 
offered two advantages over Focus A-B-C: its list price was $99, and the software was 
not copy-protected. Sales for VIP Scheduler were strong, but many consumers, perhaps 
feeling safer with the Focus name, did not buy the product, even though critical reviews 
were positive. VIP Scheduler did find a receptive market in academia.

When Forward released its first spreadsheet product, Cinco, it was hailed by crit-
ics as a better all-around product than Focus A-B-C. It had better graphics, allowed 
users to print graphs from within Cinco, and was 100% compatible with Focus A-B-C. 
Cinco had its own menu system, which was as flexible as the Focus A-B-C system, but 
the menus and options were arranged more intuitively. For users who did not want 
to invest the time to learn a new menu system, Cinco could emulate the Focus A-B-C 
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828 Chapter 14 Decision Analysis

menu system. Both menus were activated by pressing the slash key, and users could 
specify easily which menu system they wanted. All macros written for Focus A-B-C 
ran perfectly on Cinco, provided that the Focus A-B-C menu system was being used. 
Because of favorable reviews and aggressive marketing by Forward, Cinco quickly 
gained market share.

In a move that surprised the industry, Focus recently sued Discount Software, pub-
lisher of VIP Scheduler, for copyright infringement. Focus claimed that its menu sys-
tem was an original work, and that VIP Scheduler, by incorporating that menu system 
in its product, had violated copyright laws. Focus claimed that the look and feel of its 
menu system could not be used in another product without permission. Sam is certain 
that Focus initiated this lawsuit because Cinco has made such dramatic progress in 
gaining a share of the spreadsheet market. Sam also is sure that Focus’s target is not 
really VIP Scheduler, because it has such a small market share, but Cinco.

After discussions with Forward’s attorneys, Sam thinks that if he makes a quiet 
overture to Focus to settle out of court, Focus would be amenable to such a proposal. 
This would stave off potential negative publicity if Focus wins its suit against Discount 
Software and then follows up with a lawsuit against Forward. Based on projections of 
Cinco’s sales, Forward’s attorneys think that Focus could ask for $5, $8, or as much as 
$15 million in damages. Sam believes that the probability of Focus agreeing to $5 mil-
lion is 50%, $8 million is 30%, and $15 million is 20%.

Sam knows that settling now means an immediate loss of income, in the amount of one 
of the three estimates given, plus an admission of defeat and guilt for Forward. On the 
other hand, Sam could wait for the outcome of the Focus versus Discount Software unit. 
Forward’s attorneys believe that Focus has a 40% chance of winning its lawsuit against 
Discount Software. With a win, Focus would have its legal precedent to sue Forward. 
It is by no means certain that Focus would institute a lawsuit against Forward because 
Forward is a much larger company than Discount Software and could afford a vigorous 
legal defense. Also the case against Forward is not as clear cut because Cinco has its own 
menu system as the primary mode of operation, only offering the Focus A-B-C menu 
system for those who want to use it. VIP Scheduler provides only the Focus A-B-C menu 
system. However, Forward’s attorneys believe there is an 80% chance that Focus would 
initiate a lawsuit against Forward if Focus wins its suit against Discount Software.

Sam believes that even if Focus sues Forward, he could still try to settle the case out 
of court at that time or decide to go to trial. An attempt to settle out of court at that 
time would be more expensive for Forward because Focus would feel secure that it 
would win its case against Forward, having already won its lawsuit against Discount 
Software. Thus, Forward’s attorneys think that Focus would settle for no less than $7 
million, possibly asking for $10 million or even $12 million. The respective probabilities 
that Focus would settle for these amounts ($7, $10, and $12 million) are estimated to be 
30%, 40%, and 30%. Also, Forward would have to pay its attorneys roughly $1 million 
to go through the settling process.

However, if Focus sues Forward and Forward decides to go to trial instead of initiat-
ing settlement proceedings, Forward could lose the case. Forward’s attorneys estimate 
there is an 80% chance that Forward would lose the trial, resulting in a judgment of 
either $10 million, $12 million, or $18 million against Forward, with probabilities of 
10%, 20%, and 70%, respectively. The attorneys also estimate that their fees for a trial 
could run as high as $1.5 million.

Use decision analysis to determine what Sam’s optimal strategy should be. Create 
the decision tree for this problem, including all costs and probabilities, and find the 
optimal decision strategy and expected cost for that strategy. Consider Sam to be “risk 
neutral” in this analysis.
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Index

A
Absolute cell references, 70
Accuracy, measurement of, 567–568
Additive effects, 578, 579–584
Additive seasonal effects (Holt-

Winter’s method), 595–599
Ad hoc sensitivity analysis, 157–164
Adjusted R2 statistic, 474
Adjusting trend predictions with 

seasonal indices, 609–615
Affinity analysis, 548–551
Aggarwal, A., 222
Ahkam, S. N., 542
Algorithms

backpropagation, 536
branch-and-bound (B&B), 254, 

293–300
evolutionary optimization, 

415–416
generalized reduced gradient 

(GRG), 373
k-means, 552
Minimal Spanning Tree problem, 

222
supervised learning, 501
unsupervised learning, 501

Alliance for Paired Donations (APD), 
2

Allowable Decrease column, 155
Allowable Increase column, 155
Alternate optimal solutions, 34
Alternate RNG entry methods, 

647–648
Alternatives, 755, 756
Altman, E. I., 542
Analysis

affinity, 548–551
best-case, 637–638, 652–653
blending problem, 87–89
cluster, 551–557
Contract Award problem, 287–288
Data Envelopment Analysis 

(DEA), 106–114
data mining, 499–502. See also Data 

mining
decision, 1–16. See also Decision 

analysis
discriminant analysis (DA), 

512–520
economic, 732

economic order quantity (EOQ) 
models, 381

Employee Scheduling problem, 
263

existing financial spreadsheet 
models, optimizing, 401

Fixed-Charge problem, 283–284
forming fair teams, 418–419
Generalized Network Flow 

problem, 210–211
goal programming, 334–335
investment problems, 75–76
location problems, 385–386
make vs. buy decisions, 71
multiperiod cash-flow problem, 

101, 105–106
network flow problem, 391–393
Portfolio Selection problem, 

406–408
production and inventory 

planning problem, 94
regression. See Regression analysis
risk, 636–639
sensitivity, 141–145, 410–413, 

780–787
simulation using Solver, 686–687, 

692–695
transportation problems, 82
transshipment problem, 195–196
Traveling Salesperson problem, 

423
what-if, 638
worst-case, 637–638, 652–653

Analysis of variances (ANOVA), 
464–465

Analytic hierarchy process (AHP), 
805–811

Analytics
business, 1, 2. See also Business 

analytics
tools, 7–10

Analytic Solver Platform. See Solver
Anchoring effects, 10–11
Andrews, B., 725
Andrus, S., 290
Answer Report, 143–145
Antecedents, 549
Arcs

directed, 190
dummy/artificial, 218

Ariely, D., 12

Arrival rates, 724–725
Assessments, honest, 502
Association

data mining, 501
rules (affinity analysis), 548–551

Assumption, steady-state, 742–743
Auditability, 65
Automatic scaling, 86
Average group linkage, 553
AVERAGEIF() function, 417–418
Averages

exponential smoothing, 575–578
linkage, 553
moving, 569–572
weighted, 572–575

Avery, R. B., 542

B
Backpropagation algorithm, 536
Balance-of-flow rules, 192
Balancing objectives for enlightened 

self-interest, 327
Balk, 733, 742
Banks, J., 679
Barron, F. Hutton, 812
Base-case analysis scenarios, 637, 641
Basic feasible solutions, 170
Basic variables, 170
Bayes’ theorem, 793
Bazaraa, M., 39, 172, 424
Bazerman, M., 12
Bean, J., 301
Benefits 

of modeling, 3–4
of simulation, 661–662

Bernstein, Peter, 567
Berry, M., 559
Berry, W., 424
Best-case analysis, 637–638, 652–653
Betts, Mitch, 14
Big M, determining values for, 

280–281
Binary independent variables, 478
Binary integer variables, 264
Binary variables

integer linear programming (ILP), 
264

and logical conditions, 268–269
setting up, 265

Binding constraints, 144, 148
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Black, M., 222
Blackstone, Lee, 340
Blake, J., 301
Blending problem, 82–89

analysis, 87–89
constraints, 83–85
decision variables, 83
implementing models, 86–87
objective function, 83
reporting, 84–85
scaling, 84–86
solving problems, 87

Blue Ridge Hot Tubs problem,  
44–45

analyzing changes in constraint 
coefficients, 154–155

Answer Report, 143–145
conservative robust solution, 167, 

168
Limits Report, 156–157
robust optimization, 165
sensitivity analysis example, 

142–143 
solver parameters for the relaxed, 

255, 257
Spider Plots and Tables, 157–161
spreadsheet models, 49–52, 411
Sensitivity Report, 145–156

Blum, E., 424
Bodin, L., 811
Bodtke, Steve, 327
Booth, D. E., 542
Borders, 66
Boundary lines, plotting, 25
Bounds

integer linear programming (ILP), 
250–252

representation of, 51–52
Boyd, Kevin, 620
Braklow, John W., 224
Branch-and-bound (B&B) algorithm, 

254, 293–300
bounding, 296, 296-299
branching, 295–296, 286–287
integer linear programming (ILP), 

293–300
Branches, event, 770
Brock, Frank, 4, 9
Brock Candy Company, 4
Brown, G., 116
Bruce, P., 559
Built-in Solver, Excel, 64–65
Bullseye Department Store case, 753
Business analytics, 1, 2, 7–10

cases and examples, 15–16
discriminant analysis (La Quinta 

Motor Inns), 559–560
Hallmark Cards, Inc., 812
nonlinear optimization (Pacific 

Gas and Electric Company), 
424–425

problem-solving processes, 7–10
production optimization 

(Kellogg’s), 116
U.S. Postal Service, 696

C
Calculations

M/M/s model, 729
seasonal indices, 612
value optimizations, 438

Call Center Staffing at Vacations, Inc. 
case, 752–753

Calloway, R., 290
Campbell, T. S., 559
Candidate cells, 781
Capital Budgeting problem, 264–268

comparing optimal/heuristic 
solutions, 268

constraints, 265
decision variables, 265
implementing the model, 265–266
objective function, 265
setting up binary variables, 265
solving the model, 266–267

Carlsen, A., 812
Carson, J., 695
Cases and examples

association rules, 550–551
classification, 503–510, 532–535
cluster analysis, 553
Data Envelopment Analysis 

(DEA), 106–114
data mining (Detecting 

Management Fraud), 564–565
decision analysis, 755–756

Hang On or Give Up?, 824–825
Should Larry Junior Go to Court 

or Settle?, 825–826
Spreadsheet Wars case, The, 

827–828
discriminant analysis, 514–520
goal programming, 327–337

analysis, 334–335
decision variables, 328
defining constraints, 328–329
defining hard constraints, 329
defining the objective, 331–332
implementing the model, 

332–333
the nature of, 336
objective functions, 330–331
Planning Diets for the Food 

Stamp Program, 368–369
Removing Snow in Montreal, 

366–367
revising the model, 335–336
Sales Territory Planning at Caro-

Life, 369–370
solving the model, 333–334
summary of, 337

hierarchical clustering, 556–557
integer linear programming (ILP)

MasterDebt Lockbox problem, 
323–324

Optimizing a Timber Harvest, 
321

Power Dispatching at Old 
Dominion, 322–323

Removing Snow in Montreal, 
324–325

k-means clustering, 553–556
k-nearest neighbor (k-NN), 

527–528
linear programming (LP), 21
logistic regression, 522–525
Maximal Flow problem, 214–216
Minimal Spanning Tree problem, 

222–223
M/M/s model, 730, 735–736
modeling and business analytics, 

15–16
multiple objective linear 

programming (MOLP), 
340–351

constraints, 341
decision variables, 340
defining the objectives,  

340–341
determining target values, 

342–344
GP objectives, 345–347
implementing revised model, 

348
implementing the model, 

341–342
MINIMAX objective, 347–348
solving the model, 348–351
summarizing target solutions, 

344–345
multiple objective optimization

Planning Diets for the Food 
Stamp Program, 368–369

Removing Snow in Montreal, 
366–367

Sales Territory Planning at Caro-
Life, 369–370

naïve Bayes, 543–546
network modeling

Hamilton and Jacobs, 241–242
The Major Electric Corporation, 

244–246
Old Dominion Energy, 242–243
U.S. Express, 243–244

nonlinear programming (NLP)
Electing the Next President, 

443–444
Making Windows at Wella, 

444–445
Newspaper Advertising Insert 

Scheduling, 445–446
Tour de Europe, 442–443
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optimization and linear 
programming, 44–45

queuing theory, 721
Bullseye Department Store, 753
Call Center Staffing at 

Vacations, Inc., 752–753
May the (Police) Force Be With 

You, 751–752
regression analysis, 447–449

Diamonds Are Forever, 494–496
Fiasco in Florida, 496–497
Georgia Public Service 

Commission, The, 497–498
multiple regression, 469–470

seasonality, 578–579
sensitivity analysis, 142–143
sensitivity analysis and simplex 

method, 142–143
Kamm Industries case, 187–188
Nut case, 183–184
Parket sisters case, 184–186

simulation using Analytic Solver 
Platform

Corporate Health Insurance, 
639–641

Death and Taxes, 712–713
Foxridge Investment Group 

example, The, 717–720
Inventory Control example, 

667–683
Live Well, Die Broke, 711–712
Portfolio Optimization example, 

689–695
Project Selection, 684–688
Reservation Management 

example, 662–667
Sound’s Alive Company 

example, The, 713–717
simultaneous changes in objective 

functions, 155–156
solving LP problems in a 

spreadsheet
Baldwin Enterprises case, 

136–137
Putting the Link in Supply 

Chains, 134–136
Saving the Manatees case, 

138–140
Wolverine Retirement Fund, 

137–138
summary of the LP model, 23
time series forecasting

Forecasting COLAs, 631–632
PB Chemical Company, 630–631
Strategic Planning at Fysco 

Foods, 633–634
trend models, 588

Cebry, M., 696
Cells

absolute cell references, 70
candidate, 781

comments, 53, 66
constraints, 52, 53, 57–59, 405
formulas, 162
input/output, 5
objective function, 55–56
output. See Output cells
removal of, 48
variables, 56–57

Cell Value column, 144
Certainty equivalent, 796
Characteristics of decision  

problems, 755
Charnes, C., 115
Charts

lift, 518, 525
radar, 803, 804
strategy, 786–787
tornado, 781–783

Chart Tool command (Excel), 449
Chart Wizard dialog box, 508
Chevron, 2
Chief information officer  

(CIO), 13
CHOOSE() function, 387
Classification, 502

cases and examples, 503–510
combining, 547
comments on, 546–547
data mining, 502–510
partitioning, 510–511
trees, 528–535

Clayton, E., 424
Clemen, R. T., 620, 811
Clements, D., 620
Cluster analysis, 551–557
Coefficients

alternate optimal solutions, 148
changes in objective function, 

155–156
constancy, 147–148
of determination, 458. See also R2 

statistic
objective function, 24
sensitivity analysis, 141–142

Colors, 66
Columns, 66

Allowable Decrease, 155
Allowable Increase, 155
Cell Value, 144
Constraint R.H. Side, 148
Objective Coefficient, 147
Reduced Cost, 152
Slack, 144

Combining
classifications, 547
forecasts, 619

Comments
cells, 53, 66
on classification, 546–547
economic order quantity (EOQ) 

models, 381–382

existing financial spreadsheet 
models, optimizing, 401

goal programming, 337–338
location problems, 388
multiple objective linear 

programming (MOLP), 
351–352

sensitivity analysis, 164
Communication, 65
Comparisons

normalizing, 806–807
pairwise, 805–806

Complete linkage, 553
Computer models, 1
Computing

conditional probabilities, 791–793
seasonal indices, 609–611

Conditional formatting, 161
Conditional probabilities, 791–793
Conditional value at risk constraint, 

682
Conditions

integrality, 247–248
logical and binary variables, 

268–269
nonnegativity, 52, 60–61, 144
special conditions in linear 

programming (LP), 34–38
Confidence

intervals
constructing for population 

proportions, 659
constructing for the true 

population mean, 657–658
for mean values of Y, 463
widths, 659

of rules, 547
Configurations, queuing theory, 

722–723
Confusion matrix, 515
Consequent, 549
Consistency, 807–808
Constancy, 147–148
Constraint cells, 52, 53, 57–59, 405
Constraint R.H. Side column, 148
Constraints, 18, 19–20

adding, 59
alldifferent, 422
binding, 144
blending problem, 83–84
Capital Budgeting problem, 265
changes in coefficients, 154–155
conditional value at risk 

constraint, 682
Contract Award problem, 288–292
creating equality, 168–169
Data Envelopment Analysis 

(DEA), 107–108
Employee Scheduling problem, 

260–261
Fixed-Charge problem, 280
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goal, 328–329
hard, 326, 329
implementing the risk, 104–105
investment problems, 73
location problems, 384
loosening, 38
make vs. buy decisions, 68
missing, 287
multiperiod cash-flow problem, 

96–98
multiple objective linear 

programming (MOLP), 341
network flow problems, 192–193, 

389–390
nonbinding, 144
nonlinear sets, 372
observations about, 84–85
plotting boundary lines, 25, 26–28
Portfolio Selection problem, 404
production and inventory 

planning problem, 90–91
project selection problems, 

394–395
Quantity Discounts problem, 287
redundant, 34–36
representation of, 51
shadow prices for nonbinding, 149
side, 200, 218, 290–292
soft, 327
transportation problems, 78
USet, 165–166
value at risk constraint, 682

Construction of utility functions, 
795–797

Continuous random variables, 
644–645

Continuous variables, 248
Contract Award problem, 287–293

analysis, 293
constraints, 289–290
objective function, 288–289
side constraints, 290–292
solving the model, 292–293

Converting variables, 507
Convex sets, 374
Corel Quattro Pro, 47
Corner, J., 811
Corner points, 29, 32
Corporate Health Insurance 

example, 639–641
Correlation dialog box, 507
Correlation matrices, 692
Costs of misclassification, 517
COUNT() function, 571
COUNTIF() function, 505
COVAR() function, 402
Coyle, R., 812
CPLEX, 46
Credit scoring, 502
Criteria, 755

criterion weights, 810

multicriteria decision making, 
800–801

multicriteria scoring model, 
801–804

obtaining scores for remaining, 
810

Crossover, 415
Cummins, M., 301
Cumulative distributions, output 

cells, 654–655
Cumulative probabilities, 655–656
Curves, level, 29–32

D
Dantzig, G., 39
Darnell, D., 173
Data analysis, 65–70, 652–656
Data Envelopment Analysis (DEA), 

106–114
analysis, 113–114
constraints, 107–108
decision variables, 107
efficiency scores, 113
implementing models, 108–110
objective function, 107
solving problems, 110–113

Data mining, 499
association rules (affinity analysis), 

548–551
association/segmentation, 501
cases and examples

classification, 503–510
Detecting Management Fraud, 

564–565
classification, 501, 502–510

comments on, 546–547
partitioning, 510–511
trees, 528–535

cluster analysis, 551–557
discriminant analysis (DA), 

512–520
k-nearest neighbor (k-NN), 

525–528
logistic regression, 520–525
naïve Bayes, 539–546
neural networks, 536–539
overview of, 499–502
predictions, 501, 548
questions and problems, 560–564
time series, 557–558

Dawes, R., 12, 812
Death and Taxes example, 712–713
Decision analysis, 1–16, 754

analytic hierarchy process (AHP), 
805–811

anchoring and framing effects, 
10–11

cases and examples, 755–756
Hang On or Give Up?, 824–825
Prezcott Pharma, 823–824

Should Larry Junior Go to Court 
or Settle?, 825–826

Spreadsheet Wars case, The, 
827–828

characteristics of decision 
problems, 755

computing conditional 
probabilities, 791–793

decision trees, 769–771
creating with Analytic Solver 

Platform, 771–777
incorporating utilities in, 

799–800
expected value of perfect 

information (EVPI), 767–769
good decisions vs. good outcomes, 

11–12, 754–755
multicriteria

decision making, 800–801
scoring model, 801–804

multistage decision problems, 
777–780

nonprobabilistic methods,  
758–762

payoff matrix, 756–758
probabilistic methods, 762–767
problem-solving processes, 7–10
questions and problems, 813–823
rules, 758
sample information, 788–791
sensitivity analysis, 780–787
utility theory, 794–800

Decision making, 639
Decision nodes, 769
Decisions, make vs. buy, 67–71
Decision Tree dialog box, 772, 773
Decision variables, 19

blending problems, 83
Capital Budgeting problem, 265
Data Envelopment Analysis 

(DEA), 107
Employee Scheduling problem, 

260
Fixed-Charge problem, 279
goal programming, 328
identifying, 22
investment problems, 72
Line Balancing problem, 269–270
location problems, 383
make vs. buy decisions, 68
multiperiod cash-flow problem, 

95–96
multiple objective linear 

programming (MOLP), 340
network flow problems, 191, 388
nonnegativity conditions, 61
Portfolio Selection problem, 403
production and inventory 

planning problem, 90
project selection problems, 

393–394
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representation of, 50
representing the bounds on,  

51–52
transportation problems, 77

Defined benefit plans, 631
Defined contribution plans, 631
Defining “Best Fit” (regression 

analysis), 451–452
Degeneracy, 156
Demand nodes, 190
Dendrograms, 553–556
Dependent variables, 5, 449–450
Descriptive models, 6, 7
Descriptive statistics, 505, 506
Design guidelines for spreadsheets, 

65–66
DeSilva, A., 696
Detecting Management Fraud case, 

564–565
Determination, coefficients of, 458
Determinations of product mix, 17
Deviational variables, 329
Deviations, mean absolute deviation 

(MAD), 568
DeWitt, C., 424
Diagrams, scatter, 448
Dialog boxes

Chart Wizard, 508
Correlation, 507
Decision Tree, 772, 773
Fit Options, 648
Options, 648
Regression, 455

Diamonds Are Forever case,  
494–496

Diaz, A., 224
Dictionaries, variables, 504
Dietrich, J. K., 559
DiLisio, F., 696
Directed arcs, 190
Discrete random variables, 669
Discriminant analysis (DA), 512–520
Distributions

fitting to sample data, 648
output cells

cumulative, 654–655
frequency, 653–654

performance, 633
Poisson, 724, 725, 729
Psi, 648
random number generator (RNG), 

643, 644
of values, 450

Doheny, Kathleen, 744
Donald, J., 301
Double exponential smoothing 

(Holt’s method), 591–595
Double moving averages, 589–591
Dummy/artificial

arcs, 218
nodes, 218

E
Economic analysis, 732
Economic order quantity (EOQ) 

models, 376–382
analysis, 381
comments, 381–382
implementing the model, 379
solving the model, 379–380

Edwards, J., 12
Effects, seasonal, 579–584
Efficiency scores, Data Envelopment 

Analysis (DEA), 113
Efficient frontier, 407, 689
Electing the Next President case, 

443–444
Elkington, John, 339
Ellenbogen, Bill, 327
Employee Scheduling problem, 

259–263
analysis, 263
constraints, 260–261
decision variables, 260
implementing the model, 261–262
objective function, 260
solving the model, 263

Engine option, 380
Engine tab (Solver), 62
Enumeration, corner points, 32
Eppen, G., 39
Equality constraints, creating using 

slack variables, 168–169
Equal to constraint, 19
Equipment replacement problem, 

201–204
Erickson, W., 115
Erlang, A. K., 721
Errors

estimation, 452
mean absolute percent error 

(MAPE), 568
mean squared error (MSE), 464, 

568
predictions, 461–463
root mean square error (RMSE), 

568
Error sum of squares (ESS), 452, 459
Estimation errors, 452
Euclidean distance, 512
Evaluating the fit, regression 

analysis, 456–458
Evans, J., 695
Events

branches, 770
nodes, 770, 772–775

Evolutionary optimization, 371
algorithms, 415–416
forming fair teams, 416–419
questions and problems, 425–442
Traveling Salesperson problem, 

419–423

Examples. See Cases and examples
Excel, 46

built-in Solver, 64–65
Chart Tool command, 449
Correlation dialog box, 507
macros in, 49
XLMiner, 499

Existing financial spreadsheet 
models, optimizing, 398–401

analysis, 401
comments, 401
implementing the model, 398–399
optimizing the spreadsheet model, 

399–400
Expected monetary value (EMV) 

decision rule, 763–764, 765
Expected opportunity loss (EOL), 

764, 765, 769
Expected regret, 764–765
Expected value of perfect 

information (EVPI), 767–769
Expected value of sample 

information, 790–791
Exponential smoothing, 575–578, 

591–595
Exponential utility function, 798–799
Expressing nonlinear relationships, 

480–484
Extrapolation

models, 567
moving averages, 569–572
predictions, 463

Extreme points, 29

F
F1 score, 518
Feasibility, Generalized Network 

Flow problem and, 211–214
Feasible regions, 25, 28–29

convex, 374
integers, 249
nonlinear, 371

Feasible solutions (simplex method), 
169–171

Federal Express, 13
Fiasco in Florida case, 496–497
Files, macros, 49
Financial planning, 18
Finlay, P., 12
First-in, first-out (FIFO), 722, 729, 735
Fit Options dialog box, 648
Fitting distributions to sample data, 

648
Fitzsimmons, James A., 560
Fixed-Charge problem, 278–285

analysis, 283–284
constraints, 280
decision variables, 279
determining values for Big M, 

280–281
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IF() functions, 284–285
implementing the model, 281–282
objective function, 279–280
solving the model, 282–283

Fixed-cost problems, 278
Fleming, Jon, 221
Flow

network models and integer 
solutions, 200–201

network problems, 189–190
total, 218

Fluctuation, 448
Flury, B., 559
Forecasting

with additive seasonal effects, 
583–584

combining, 619
with double moving averages, 

590–591
with exponential smoothing 

models, 576–578
with Holt’s method, 594–595
with Holt-Winter’s method, 599, 

603
importance of, 567
initializing models, 584
with linear trend models, 605–606
with moving average models, 

571–572
with multiplicative seasonal 

effects, 586–587
with quadratic trend models, 

608–609
with seasonal indices, 611–612
with seasonal regression models, 

618
time series, 567. See also Time 

series forecasting
with weighted average models, 

575
Forecasting COLAs case, 631–632
Forehand, G., 12
Foreign exchange trading at Baldwin 

Enterprises, 136–137
Forgione, G., 12
Forming fair teams, 416–419

analysis, 418–419
solving the model, 418
spreadsheet models, 417–418

Formulas
cells, 162
creation of, 48
linear programming (LP) models, 

21–23
random number generator (RNG), 

642
Foxridge Investment Group 

example, The, 717–720
Framing effects, 10–11
Franz Edelman Awards, 2
Freeland, J., 301

Frequency distributions, output 
cells, 653–654

Frontier, efficient, 407, 689
Frontline Systems, Inc., 47, 642
Functions

AVERAGEIF(), 417–418
CHOOSE(), 387
COUNT(), 571
COUNTIF(), 505
COVAR(), 402
IF(), 284–285, 387
IFERROR(), 418
INDEX, 110, 421
LOOKUP(), 387
MAX(), 387
MIN(), 387
PsiCurrentOpt(), 111
PsiOptValue(), 111, 112, 113
PsiUniform(Lower, Upper), 165
random number generator (RNG), 

642, 643
SUMIF(), 99, 194, 417
SUMPRODUCT(), 80, 104, 262
SUMXMY2(), 571
TREND(), 456, 457, 462, 606
utility, 794–795
VLOOKUP(), 194–195

Fylstra, D., 424

G
Gale, J., 812
Gallwey, Timothy, 639
Gardner, E., 620
Gass, S., 352, 811
General integer variables, 264
Generalized Network Flow problem, 

205–214
analysis, 210–211
and feasibility, 211–214
implementing the model, 208–210
LP model for the recycling 

problem, 207–208
Generalized reduced gradient (GRG) 

algorithm, 373
Georgia Public Service Commission, 

The (case), 497–498
Georgoff, D., 620
Gilliam, R., 743
Glassey, R., 223
Global optimal solutions, 374–376
Glover, F., 223
Goal programming, 326–327

cases and examples, 327–337
comments, 337–338
objectives, 345–347
questions and problems, 353–366
references, 352

Good decisions, 11–12, 754–755
Gould, F., 39
Gradients, reduced, 413

Graham, William W., 224
Grant, Nancy, 206
Graphical approach to LP problems, 

25–34
Graphs, regression analysis, 447–448
Greater than or equal to constraint, 

19
Gross, D., 743
Gross, George, 425
Grossman, T., 12
Guided Mode, 64
Guidelines for spreadsheets, 65–66
Gupta, V., 223
GUROBI Optimizer, 46

H
Hall, Gene Sand, 425
Hall, R., 12, 743
Hamilton and Jacobs case, 241–242
Hand, D. J., 559
Hang On or Give Up? case, 824–825
Hansen, P., 224
Hard constraints, 326, 329
Hardin, J., 12
Harris, C., 743
Hassler, Stephen M., 224
Hastie, R., 12, 812
Headings of reports, 145
Heat maps, 161
Heian, B., 812
Helmer, Mark C., 353
Heuristic solutions for models, 80–81
Hickle, R., 695
Hierarchies

analytic hierarchy process (AHP), 
805–811

clustering, 553
Hilal, S., 115
Hirsch, Fred, 717
Holland, J. H., 424
Holnback, Roger, 327
Holt’s method, 591–595
Holt-Winter’s method

for additive seasonal effects, 
595–599

for multiplicative seasonal effects, 
599–603

Honest assessments, 502
Howard, R. A., 812
Hube, Karen, 662
Hyperplanes, 469
Hypothetical data, 488, 512

I
Ideal solutions, 330
IFERROR() function, 418
IF() functions, 284–285, 387
Ignizio, J., 352
Ikura, Yoshiro, 425
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Independent variables, 5
binary, 478
multicollinearity, 475
observations, 566. See also Time 

series
regression analysis models, 

471–474
INDEX function, 110, 421
Indices, adjusting trend predictions 

with seasonal, 609–615
Individual retirement accounts 

(IRAs), 18
Industrial and Commercial Bank of 

China (ICBC), 2
Infeasibility, 37–38
Infinite populations, 651
Inflating R2 statistics, 474
Inflow, 192
Information systems (IS), 13
Input cells, 5
Input X-Range option, 472, 473
Installing Analytic Solver Platform, 

54
Institute for Operations Research 

and the Management Sciences 
(INFORMS), 2

Insurance rating, 502
Integer linear programming (ILP), 

247
binary variables, 264
bounds, 250–252
branch-and-bound (B&B) 

algorithm, 293–300
cases and examples, 321–325
conditions, 247–248
logical conditions and binary 

variables, 268–269
problems

Capital Budgeting, 264–268
Contract Award, 287–293
Employee Scheduling, 259–263
Fixed-Charge, 278–285
Line Balancing, 269–278
Minimum Order/Purchase Size, 

285–286
other ILP, 258
Quantity Discounts, 286–287
solving the relaxed, 249–250
solving using Solver, 255–258

questions and problems, 302–320
references, 301
relaxation, 248–249
rounding, 252–254
stopping rules, 254–255

Integer values, 248
Interactive simulation, 652, 660–661
Interactive simulation mode, 652
Interarrival time, 725
Intercept cell, 455
Intergrality conditions, 247–248
Intervals

confidence, 659
constructing for a population 

proportion, 659 
constructing for the true 

population mean, 657–658
for mean values of Y, 463
widths, 659

for new values of Y, predictions, 
461–463

Intuitive solutions to LP problems, 
24–25

Inventory Control example, 667–683
Investment problems, 72–76

analysis, 75–76
constraints, 73
decision variables, 72
implementing models, 73–75
objective function, 73
solving problems, 75

Iterative solution procedures, 326

J
Jarvis, J., 39, 172
Jockey, 742
Jones, Howie, 21, 44, 47, 148, 173, 247

K
Keegan, J., 116
Keeney, R., 812
Kelton, W., 695
Kendall notation, 727
Keown, A., 352
Khoshnevis, B., 695
Kimes, Sheryl E., 560
Kirkwood, C., 811
Klingman, D., 223
K-means clustering, 552
K-nearest neighbor (k-NN), 525–528
Kolesar, P., 424, 743
Krajewski, L., 486
Kroger Company, 2
Kutner, M., 485
Kwak, N. K., 353

L
Labe, R., 559
Labels, adding, 160
Lagrange multipliers, 413
Lanzenauer, C., 115
Lasdon, L., 424
Law, A., 695
Least squares, method of, 452
Leaves, 770
Left-hand-side (LHS), 20, 48, 98
Less than or equal to constraint, 19
Level curve optimization, 29–32
Lift charts, 518, 525
Lift ratio, 550

Lightner, C., 301
Limits Report, 156–157
LINDO, 46
Linear combinations, 22
Linear programming (LP), 17, 21

Blue Ridge Hot Tubs problem, 
44–45, 49–52

cases and examples, 21
Data Envelopment Analysis 

(DEA), 106–114
degeneracy, 156
difference between nonlinear 

programming (NLP), 371
effect of change, 33–34
formulating models, 21–23
general form of, 23–24
graphical approach to problems, 

25–34
implementing in spreadsheets, 

47–48
intuitive solutions to problems, 

24–25
network modeling, 198
problem solutions, 46
for the recycling problem, 207–208
relaxation, 248–249
scaling, 86
sensitivity analysis, 141–142
Solver, 52–54
solving problems in spreadsheets, 

47
special conditions in, 34–38
spreadsheet solvers, 46–47
summary of the example problem, 

23
Linear regression analysis, 450–451
Linear trend models, 603–606
Line graphs, creating, 569
Linkage, 553

average, 553
average group, 553
complete, 553
single, 553

Links in supply chain cases and 
examples, 134–136

Linoff, G., 559
Live Well, Die Broke example, 

711–712
Local area networks (LANs), 221, 642
Local optimal solutions, 374–376
Location problems, 382–388

alternate solutions, 386–387
analysis, 385–386
comments, 388
constraints, 384
decision variables, 383
defining the objective, 383
implementing the model, 384–385
solving the model, 385–386

Loflin, Carolyn, 173
Loflin, Wayne, 173
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Logical conditions and binary 
variables, 268–269

Logistic regression, 520–525
Logistics, 18
LOOKUP() function, 387
Loosening constraints, 38
Lotus 1-2-3, 47
Lower bounds, 23, 51–52, 251

M
Mabert, Vincent A., 620
Macros, 49
Maderos, Jose, 201
Mahalanobis distance measure, 513
Major Electric Corporation case, the, 

244–246
Make vs. buy decisions, 67–71

analysis, 71
constraints, 68
decision variables, 68
models, 69–70
objective function, 68
solving problems, 70–71

Making Windows at Wella case, 
444–445

Makridakis, S., 620
Management science (MS), 12, 13, 14
Mann, L., 743
Manufacturing, 17–18
Marcus, A., 695
Markland, R., 301, 302
Markowitz, H., 424
MasterDebt Lockbox problem case, 

323–324
Mathematical models, 3–7
Mathematical programming (MP), 

17–18
characteristics of problems, 18–19
techniques, 20–21

Matrices
correlation, 692
pairwise comparison, 805–806
payoff matrix, 756–758, 759

MAX() function, 387
Maximal Flow problem, 214–218
Maximax decision rule, 759
Maximin decision rule, 760
Maximization problems, 251
May the (Police) Force Be with You 

case, 751–752
McKay, A., 115
McKeown, Davis, 327
M/D/1 model, 742
Mean absolute deviation (MAD), 568
Mean absolute percent error 

(MAPE), 568
Means, populations, 657–658
Mean squared error (MSE), 464, 568
Mean squared regression (MSR), 464
Measuring accuracy, 567–568

Memoryless property, 725
Mental models, 3
Merkhofer, M. W., 812
Methods

alternate RNG entry, 647–648
extrapolation, 567
Holt’s, 591–595
Holt-Winter’s for additive 

seasonal effects, 595–599
Holt-Winter’s for multiplicative 

seasonal effects, 599–603
least squares, 452
nonprobabilistic, 758–762
probabilistic, 758, 762–767
risk analysis, 636–639
simplex, 62, 168–172
time series forecasting, 567
Ward’s, 553

M/G/1 model, 738–741
Microsoft Excel, 47
MIN() function, 387
Minimal Spanning Tree problem, 

221–223
Minimax decision rule, 760–762
MINIMAX objective, 347–348
Minimum cost network flow 

problems, 191
Minimum Order/Purchase Size 

problem, 285–286
Minimum spanning tree problem, 

189
M/M/s model, 729–732

with finite population, 734–738
with finite queue length, 732-–734

Modeling, 1–16, 46
approach to decision making, 3
characteristics and benefits of, 3–4
computer models, 1
seasonality with regression 

models, 609
special considerations, 218–221 
trends using regression, 603

Models
computer, 1
Descriptive, 6, 7
economic order quantity (EOQ), 

376–382
existing financial spreadsheet, 

optimizing, 398–401
extrapolation, 567
forming fair teams, 418
goal programming, 335–336
linear programming (LP), 21–23
linear trend, 603–606
location problems, 384–385
make vs. buy decisions, 69
mathematical, 3, 4–6
M/D/1, 742
mental, 3
M/G/1, 738–741
M/M/s, 729–732

with finite population, 734–738
with finite queue length, 

732-–734
multicriteria scoring, 801–804
network flow problem, 390–391
physical, 3
Portfolio Selection model, 404–406
Predictive, 6, 7
Prescriptive, 6, 7
project selection problems, 

395–396
quadratic trend, 606–609
queuing theory, 721–722, 727–728
regression analysis, 449–450, 

470–476
replications, 673
rescaling, 85–86
reviewing, 61–62
scale, 3
scores, 810–811
seasonal patterns, 567
simulation using Analytic Solver 

Platform, 645–648
spreadsheet, 1
time series forecasting, 567
Traveling Salesperson problem, 

422–423
trend, 587–588
valid, 3
visual, 3

Modes
Guided, 64
interactive simulation, 652

Modifiability, 65
Monitor Value property, 113, 162
Montgomery, D., 485
Moore, D., 12
Moore, L., 424
Morrison, D. F., 559
Mortality rate, 712
Moving averages, 569–572

double, 589–591
weighted, 572–575

Multicollinearity, 475
Multicriteria

decision making, 800–801
scoring model, 801–804

Multiperiod cash-flow problem, 
94–106

analysis, 101, 105–106
constraints, 96–98
decision variables, 95–96
implementing models, 98–100
modifying to account for risk, 

102–104
objective function, 96
risk constraints, 104–105
solving problems, 100–101, 105

Multiple objective linear 
programming (MOLP), 338, 
339
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cases and examples, 340–351
constraints, 341
decision variables, 340
defining the objectives, 340–341
determining target values, 

342–344
GP objectives, 345–347
implementing revised models, 

348
implementing the model, 

341–342
MINIMAX objective, 347–348
solving the model, 348–351
summarizing target solutions, 

344–345
comments, 351–352
defining the objectives, 340–341

Multiple objective optimization, 326, 
338–339

cases and examples
Planning Diets, 368–369
Removing Snow in Montreal, 

366–367
Sales Territory Planning at Caro-

Life, 369–370
questions and problems, 353–366
references, 352

Multiple regression, 467–469, 
470–476

cases and examples, 469–470
Multiple R statistic, 460
Multiple simulations, 664–666
Multiplicative effects, 578
Multiplicative seasonal effects, 584–

587, 599–602
Holt-Winter’s method for, 

599–602
stationary data with, 584–587

Multipliers, Lagrange, 413
Multistage decision problems, 

777–780
Murdick, R., 620
Mutation, 415

N
Naïve Bayes, 539–546
National Broadcast Network 

Company (NBNC), 2
Nature of goal programming, 

336–337
Nauss, R., 301, 302
Negative numbers, 190
Nemhauser, G., 301
Neter, J., 485
Net present value (NPV), 264
Network flow problems, 189, 

388–393
analysis, 195–196, 391–393
characteristics, 189–191
constraints, 192–193, 389–390

decision variables, 191, 388
defining the objective, 388–389
generalized, 205–214
implementing the model, 193–195, 

390–391
nonlinear, 388–393
objective function, 191
solving the model, 391–393

Network modeling, 189
balance-of-flow rules, 192
cases and examples

Hamilton and Jacobs, 241–242
The Major Electric Corporation, 

244–246
Old Dominion Energy, 242–243
U.S. Express, 243–244

minimum cost network flow 
problems, 191

problems
Equipment replacement, 

201–204
flow, 189
Generalized Network Flow, 

205–214
Maximal Flow, 214–218
Minimal Spanning Tree, 221–223
shortest path, 196–201
Transportation/Assignment, 

204–205
Transshipment, 189–196

questions and problems, 225–240
references, 223–224
side constraints, 200
special considerations, 218–221

Neural networks, 536–539
Newspaper Advertising Insert 

Scheduling case, 445–446
Nodes, 189

adding event, 772–775
decision, 769
demand, 190
dummy/artificial, 218
event, 770, 772–775
supply, 190
terminal, 770
transshipment, 190

Nonbasic variables, 170
Nonbinding constraints, 144, 149
Nonlinear objectives, 371, 372
Nonlinear programming (NLP), 371

cases and examples
Electing the Next President, 

443–444
Making Windows at Wella, 

444–445
Newspaper Advertising Insert 

Scheduling, 445–446
Tour de Europe, 442–443

economic order quantity (EOQ) 
models, 376–382

local vs. global solutions, 374–376

location problems, 382–388
nature of NLP problems, 371–372
network flow problem, 388–393

analysis, 391–393
constraints, 389–390
decision variables, 388
defining the objective, 388–389
implementing the model, 

390–391
solving the model, 391–393

optimizing existing financial 
spreadsheet models, 398–401

Portfolio Selection problem, 
401–410

project selection problems, 
393–397

constraints, 394–395
decision variables, 393–394
defining the objective function, 

394
implementing the model, 

395–396
solving the model, 396–397

questions and problems, 425–442
references, 424
sensitivity analysis, 410–413
solution strategies for NLP 

problems, 373–374
Solver options, 413–415

Nonlinear relationships, 480–484
Nonnegativity conditions, 60–61, 144
Nonprobabilistic methods, 758–762
Nonstationary time series, 567
Norback, J., 12
Normalized data, 500
Normalizing comparisons, 806–807
Notation, Kendall, 727
Numbers

negative, 190
positive, 190

O
Objective cells, 52, 55–56
Objective Coefficient column, 147
Objective function, 20, 22

adding, 59
blending problems, 83
Capital Budgeting problem, 265
cells, 52, 53
changes in coefficients, 145–147
coefficients, 24
Contract Award problem, 288–289
creation of formulas, 48
Data Envelopment Analysis 

(DEA), 107
Employee Scheduling problem, 

260
Fixed-Charge problem, 279–280
goal programming, 330–331
investment problems, 73
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make vs. buy decisions, 68
multiperiod cash-flow problem, 96
network flow problems, 191, 

388–389
nonlinear programming (NLP), 

394
plotting, 29
production and inventory 

planning problem, 90
project selection problems, 394
representation of, 50–51
simultaneous changes in 

coefficients, 155–156
Solver, 55–56
transportation problems, 78

Objectives
determining target values for, 

342–344
location problems, 383
nonlinear, 372
Portfolio Selection problem, 

403–404
Observations, 566. See also Time 

series
Old Dominion Energy case, 242–243
Olson, D., 695
One Hundred Percent (100%) Rule, 

The, 155
Operations research (OR), 12, 13, 14
Opportunities, 7
Optimization, 17

adding, 59
calculating values, 451
characteristics of problems, 18–19
decision analysis, 780
enumerating corner points, 32
evolutionary, 371
existing financial spreadsheet 

models, 398–401
expressing problems 

mathematically, 19–20
level curves, 29–32
mathematical, 17–18
non-smooth problems, 387
Portfolio Optimization example, 

689–695
robust, 164–168
sensitivity analysis, 410–413
simulation using Analytic Solver 

Platform, 674–680
Solver Tables, 163
Spider Plots, 160

Optimizing a Timber Harvest case, 
321

Options
engine, 380
Input X-Range, 473
nonlinear programming (NLP), 

413–415
Solver, 62–63

Options dialog box, 650, 651, 652

Organization of date for models in 
spreadsheets, 47–48, 50

Outcomes, good decisions vs. good, 
11–12

Outflow, 192
Output cells, 5

cumulative distributions, 654–655
frequency distributions, 653–654
tracking, 649–650

Overfitting data in samples, 470, 501

P
Pairwise comparison matrix, 805–806
Parallel curves, 29
Parameters, population, 451

analysis of variances (ANOVA), 
464–465

assumptions for statistical tests, 
465–466

statistical tests for, 464–467, 
478–479

Partitioning, data mining 
classification, 510–511

Patel, N., 559
Patterns

modeling seasonal, 567
seasonality, 578–579

Payoff matrix, 756–758, 775–776
PB Chemical Company case, 614–615
Peck, E., 485
Peck, Ken E., 224
Peiser, R., 301
Percentage deviations, 330
Perfect information, expected value 

of, 767–769
Performance

distributions, 637
simulation, 638–639

Personal financial planning, 
applying simulation in, 662

Phillips, D., 224
Phillips, N., 223
Physical models, 3
Pindyck, R., 620
Planes, 469
Planning Diets for the Food Stamp 

Program case, 368–369
Plotting

boundary lines, 25
double moving averages, 591
first constraints, the, 26
objective functions, 29
scatterplots, 448, 449, 510, 569
second constraints, the, 27–28
Spider Plots, 157–161
third constraints, the, 28
univariate plots, 509

Points, 29, 32
Poisson distributions, 724, 725, 730
Polynomial regression, 479–484

Pon, Lisa, 639
Population parameters, 451

analysis of variances (ANOVA), 
464–465

assumptions for statistical tests, 
465–466

statistical tests for, 464–467, 
478–479

Populations
constructing confidence intervals, 

657–658
infinite, 651
proportions, 659

Portfolio Optimization example, 
689–695

Portfolio Selection problem, 401–410
analysis, 406–408
constraints, 404
decision variables, 403
handling conflicting objectives, 

408–410
implementing the model, 404–406
objectives, 403–404

Positive numbers, 190
Powell, Warren B., 224
Power Dispatching at Old Dominion 

case, 322–323
Precision, 517
Predictions

adjusting trends with seasonal 
indices, 609–615

confidence intervals for mean 
values of Y, 463

data mining, 501, 548
errors, 460–461
extrapolation, 463
intervals for new values of Y, 

461–463
regression analysis, 460–463, 

471–472, 477
Predictive models, 6, 7
Premiums, risk, 796
Prescriptive models, 6, 7
Prices

meaning of reduced costs, 152–154
shadow, 148, 149, 150, 151, 164

Probabilities
conditional, 790, 791–793
cumulative, 655–656
decision analysis, 789–790
scores, 518
utility theory, 794

Probabilistic methods, 758, 762–767
Problems, 7

analysis
multiperiod cash-flow problem, 

101, 105–106
production and inventory 

planning problem, 94
transportation problems, 82
transshipment problem, 195–196

47412_Index_ptg01_829-846.indd   838 8/26/16   10:53 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Index 839

blending problem, 82–89
analysis, 87–89
constraints, 83–85
decision variables, 83
implementing models, 86–87
objective function, 83
reporting, 84–85
scaling, 84–86
solving problems, 87

Blue Ridge Hot Tubs problem, 
44–45, 49–52

analyzing changes in constraint 
coefficients, 154–155

Answer Report, 143–145
conservative robust solution, 

167, 168
example problem, 142–143
Limits Report, 156–157
robust optimization, 166
sensitivity analysis example, 

142–143
Sensitivity Report, 145–156
Spider Plots and Tables, 157–161
spreadsheet models, 49–52

characteristics of optimization, 
18–19

data mining
association rules (affinity 

analysis), 548–551
classification, 502–510
classification trees, 528–535
cluster analysis, 551–557
comments on classification, 

546–547
discriminant analysis (DA), 

512–520
k-nearest neighbor (k-NN), 

525–528
logistic regression, 520–525
naïve Bayes, 539–546
neural networks, 536–539
overview of, 499–502
partitioning, 510–511
predictions, 548
time series, 557–558

decision analysis
analytic hierarchy process 

(AHP), 805–811
characteristics of decision 

problems, 755
computing conditional 

probabilities, 791–793
creating decision trees, 771–777
decision trees, 769–771
example, 755–756
expected value of perfect 

information (EVPI), 767–769
good decisions vs. good 

outcomes, 754–755
multicriteria decision making, 

800–801

multicriteria scoring model, 
801–804

multistage decision problems, 
777–780

nonprobabilistic methods, 
758–762

payoff matrix, 756–758
probabilistic methods, 762–767
rules, 758
sample information, 788–791
sensitivity analysis, 780–787
utility theory, 794–800

decision variables
blending problems, 83
investment problems, 72
multiperiod cash-flow problem, 

95–96
network flow problems, 191
production and inventory 

planning 
problem, 90
transportation problems, 77

equipment replacement problem, 
201–204

evolutionary optimization
forming fair teams, 416–419
Traveling Salesperson, 419–423
expressing mathematically, 

19–20
feasible regions, 25
forming fair teams

analysis, 418–419
solving the model, 418
spreadsheet models, 417–418

generalized network flow, 205–214
integer linear programming (ILP)

Capital Budgeting, 264–268
Contract Award, 287–293
Employee Scheduling, 259–263
Fixed-Charge, 278–285
Line Balancing, 269–278
Minimum Order/Purchase Size, 

285–286
other ILP, 258
Quantity Discounts, 286–287
solving the relaxed, 249–250
solving using Solver, 255–258

investment, 72–76
linear programming (LP)

Blue Ridge Hot Tubs problem, 
44–45, 49–52

example problem, 21
graphical approach to problems, 

25–34
intuitive solutions to problems, 

24–25
problem solutions, 46
solving problems in 

spreadsheets, 47
summary of the example 

problem, 23

maximization, 251
minimum cost network flow, 191
minimum spanning tree, 189
multiperiod cash-flow, 94–106
network modeling, 189–190

Equipment replacement, 
201–204

Generalized Network Flow, 
205–214

Maximal Flow, 214–218
Minimal Spanning Tree,  

221–223
minimum spanning tree, 189
shortest path problem, 196–201
Transportation/Assignment, 

204–205
Transshipment problem, 

189–196
nonlinear programming (NLP)

economic order quantity (EOQ) 
models, 376–382

local vs. global solutions, 
374–376

location, 382–388
nature of, 371–372
network flow, 388–393
portfolio selection, 401–410
project selection, 393–397
solution strategies for, 373–374

objective function
blending problems, 83
investment problems, 73
multiperiod cash-flow problem, 

96
network flow problems, 191
production and inventory 

planning problem, 90
transportation problems, 78

optimizing existing financial 
spreadsheet models, 398–401

production and inventory 
planning problem, 89–93

analysis, 94
constraints, 90–91
decision variables, 90
implementing models, 91–93
objective function, 90
solving problems, 93–94

regression analysis
binary independent variables, 

478
making predictions, 460–463, 

477
multiple regression, 467–469
polynomial regression, 479–484
selecting the model, 470–476
solving using regression tools, 

454–456
solving using Solver, 452–454
statistical tests, 464–467, 478–479

shortest path, 196–198
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LP model of example problems, 
198

network flow models and 
integer solutions, 200–201

spreadsheet model and solution, 
198–200

simulation using Analytic Solver 
Platform, 635

additional uses of, 662
benefits of, 661–662
Corporate Health Insurance 

example, 639–641
data analysis, 652–656
interactive simulation, 660–661
Inventory Control example, 

667–683
methods of risk analysis, 

636–639
Portfolio Optimization example, 

689–695
preparing the model for, 

645–648
Project Selection example, 

684–688
random number generator 

(RNG), 642–645
random variables and risk, 

635–636
reasons to analyze risk, 636
Reservation Management 

example, 662–667
running, 649–652
spreadsheet simulation, 641–642
uncertainty of sampling, 

657–659
Solver

blending problems, 89
solving problems, 63–64
transshipment problem, 195

solving problems
blending problem, 87
Data Envelopment Analysis 

(DEA), 110–113
investment problems, 75
make vs. buy decisions, 70–71
multiperiod cash-flow problem, 

100–101, 105
production and inventory 

planning problem, 93–94
Solver, 63–64
transportation problems, 81–82

spreadsheets
blending problems, 82–89
Blue Ridge Hot Tubs problem, 

49–52
investment problems, 72–76
multiperiod cash-flow problem, 

94–106
production and inventory 

planning problem, 89–94

transportation problems, 76–82
transshipment problem, 193–195

summaries
graphical solution to LP 

problems, 33
LP model for the example 

problem, 23
time series forecasting

adjusting trend predictions with 
seasonal indices, 609–615

combining forecasts, 619
double exponential smoothing 

(Holt’s method), 591–595
double moving averages, 

589–591
exponential smoothing, 575–578
Holt-Winter’s method for 

additive seasonal effects, 
595–599

Holt-Winter’s method for 
multiplicative seasonal 
effects, 599–603

linear trend models, 603–606
measuring accuracy, 567–568
modeling seasonality with 

regression models, 609
moving averages, 569–572
quadratic trend models, 606–609
seasonality, 578–579
seasonal regression models, 

615–618
stationary models, 568–569
trend models, 587–588
weighted moving averages, 

572–575
transportation, 76–82

analysis, 82
constraints, 78
decision variables, 77
heuristic solutions for, 80–81
implementing models, 78–80
objective function, 78
solving problems, 81–82

transportation/assignment 
problems, 204–205

transshipment problem, 189–196
analysis, 195–196
characteristics for network flow 

problems, 189–190
constraints for network flow 

problems, 192–193
decision variables for network 

flow problems, 191
implementing models in 

spreadsheets, 193–195
network flow problems, 189–190
objective function for network 

flow problems, 191
understanding, 21–22

Problem-solving processes, 7–9

Production and inventory planning 
problem, 89–94

analysis, 94
constraints, 90–91
decision variables, 90
implementing models, 91–93
objective function, 90
solving problems, 93–94

Product mix, determining, 17
Profiles, risk, 779–780
Project Selection example, 684–688
Project selection problems, 393–397

constraints, 394–395
decision variables, 393–394
defining the objective function, 

394
implementing the model, 395–396
solving the model, 396–397

Proportions, population, 659
PsiCurrentOpt() function, 111
Psi distributions, 651
PsiOptValue() function, 111, 112
PsiUniform(Lower, Upper) function, 

165

Q
Quadratic trend models, 606–609
Quantity Discounts problem, 

286–287
formulating the model, 286–287
the missing constraints, 287

Questions and problems. See also 
Problems

data mining, 560–564
decision analysis, 813–823
decision analysis and modeling, 

14–15
evolutionary optimization, 

425–442
goal programming, 353–366
integer linear programming (ILP), 

302–320
multiple objective optimization, 

340–353
network modeling, 225–240
nonlinear programming (NLP), 

425–442
optimization and linear 

programming, 39–44
queuing theory, 745–751
regression analysis, 486–496
sensitivity analysis and simplex 

method, 173–183
simulation using Analytic Solver 

Platform, 696–711
solving LP problems in a 

spreadsheet, 116–134
time series forecasting, 621–630

Queuing theory, 721

47412_Index_ptg01_829-846.indd   840 8/26/16   10:53 AM

Copyright 2018 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.  WCN 02-200-203



Index 841

arrival rates, 724–725
cases and examples, 730

Bullseye Department Store, 753
Call Center Staffing at 

Vacations, Inc., 752–753
May the (Police) Force Be With 

You, 751–752
characteristics of systems, 723–727
Kendall notation, 727
M/D/1 model, 742
M/G/1 model, 738–741
M/M/s model, 729–732

with finite population, 734–738
with finite queue length, 

732–734
models, 727–728
purpose of models, 721–722
questions and answers, 745–751
references, 743
service rates, 725–727
simulation and steady-state 

assumption, 742–743
system configurations, 722–723

Quinn, P., 743

R
Radar charts, 803, 804
Random number generator (RNG), 

641, 642–645
alternate entry methods, 647–648
creating, 669–670

Random variables, 635
continuous, 644–645
discrete, 644–645
risk and, 635–636
simulation using Analytic Solver 

Platform, 638–649
Random variations, 449
Ranges, X-Range, 473
Ratios, lift, 550
Recall (or sensitivity) measures, 517
Receiving nodes, 190
Recommender systems, 549
Recycling problem, 207–208
Reduced Cost column, 152
Reduced costs, meaning of, 152–154
Reduced gradients, 413
Redundant constraints, 34–36
Reeves, C. R., 424
References

absolute cell, 70
data mining, 559
decision analysis, 811–812
goal programming, 352
integer linear programming (ILP), 

301
modeling and business analytics, 

12
networking modeling, 223–224

nonlinear programming (NLP), 
424

optimization and linear 
programming, 39

queuing theory, 743
regression analysis, 485
sensitivity analysis and simplex 

method, 172
simulation using Analytic Solver 

Platform, 695
solving LP problems in a 

spreadsheet, 115
time series forecasting, 620

Regions, feasible, 25, 28–29
Regression analysis, 447

cases and examples, 447–449
Diamonds Are Forever, 494–496
Fiasco in Florida, 496–497
Georgia Public Service 

Commission, The, 497–498
multiple regression, 469–470

defining “Best Fit,” 451–452
evaluating the fit, 456–458
models, 449–450, 603
problems

binary independent variables, 
478

making predictions, 460–463, 
477

multiple regression, 467–469
polynomial regression, 479–484
selecting the model, 470–476
solving using regression tools, 

454–456
solving using Solver, 452–454
statistical tests for population 

parameters, 464–467, 478–479
questions and problems, 486–494
R2 statistic, 458–460
seasonal regression models, 

599–603
simple linear, 450–451

Regression sum of squares (RSS), 459
Regret, expected, 764–765
Reid, R., 620
Relationships, 378

linear, 692
nonlinear, 480–484, 692
statistical, 449

Relaxation
integer linear programming (ILP), 

248–249
solving, 249–250

Reliability, 65
Removing Snow in Montreal case, 

324–325, 366–367
Renege, 742
Replications

models, 673
selecting number of, 650–651

Reporting
Answer Report, 143–145
blending problem, 84–85
headings, 145
Limits Report, 156–157
Sensitivity Report, 145–156
shadow prices, 150

Rescaling models, 85–86
Research and development (R&D), 

264
Reservation Management example, 

662–667
Residuals, 452
Restrictions, 18
Reviewing models, 61–62
Revising the model, goal 

programming, 335–336
Riedwyl, H., 559
Right-hand-side (RHS), 20

changes in values, 148
configuring spreadsheets, 147

Risk, 636
analysis, 636

base-case, 637–638
methods, 636–639
reasons to, 638
what-if analysis, 638
worst-case, 637–638

aversion value, 408
conditional value at risk 

constraint, 682
measures of, 682–683
multiperiod cash-flow problem, 

102–104
premiums, 796
profiles, 779–780
random variables and, 635–636
simulation using Solver, 638–639, 

682–683
value at risk constraint, 682

Ritzman, L. J., 486
Ritzman, L. P., 486
Robust optimization, 164–168
Robust solutions, 165
Rogers, Ray, 717
Roles of test data, 547
Rolling back a decision tree,  

770–771
Root mean square error (RMSE), 568
Rounding, integer linear 

programming (ILP), 252–254
Roush, W., 115
Routing, 18
Rows, 66
R2 statistic, 458–460. See also 

Coefficient of determination
adjusted, 474
inflating, 474

Rubin, D., 172
Rubinfeld, D., 620
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Rules
association, 548–551
balance-of-flow, 192
confidence of, 549
decision analysis, 758
expected monetary value (EMV) 

decision, 763–764, 770
lift ratio of, 550
maximax decision, 759
maximin decision, 760
minimax decision, 760–762
stopping, 254–255
support of, 549
The 100% Rule, 155

Running simulation using Analytic 
Solver Platform, 649–652

Russell, R., 695

S
Sales Territory Planning at Caro-Life 

case, 369–370
Sample data, fitting distributions to, 

648
Sample information in decision 

making, 788–791
Samples, overfitting data in,  

470, 501
Sample sizes, confidence interval 

widths, 659
Sampling simulation using Analytic 

Solver Platform, 657–659
Savage, S., 695
Savage, Sam L., 695
Saving the Manatees case, 138–140
Scale models, 3
Scaling

automatic, 86
blending problem, 84–85
and linear models, 86

Scatter diagrams, 448
Scatterplots, 448, 449, 510, 569
Schedules, queuing theory, 721
Schindler, S., 301
Schmidt, C., 39
Schneiderjans, Marc J., 353
Scholtes, S., 695
Schrage, M., 12
Scores

credit scoring, 502
models, 810–811
multicriteria scoring model, 

801–804
new data, 520
obtaining for remaining criteria, 

810
probability, 522

Seasonality
additive seasonal effects (Holt-

Winter’s method), 595–599

adjusting trend predictions with 
seasonal indices, 609–615

modeling with regression models, 
609

multiplicative effects, 584–587
multiplicative seasonal effects, 

599–603
stationary models with, 584–587
time series forecasting, 578–579

Seasonal patterns, models, 567
Seasonal regression models,  

615–618
Segmentation, 501, 551–557
Semmel, T., 301
Sending nodes, 190
Sensitivity analysis, 141, 656

ad hoc, 157–164
analyzing changes in constraint 

coefficients, 154–155
Answer Report, 143–145
approaches to, 142
cases and examples, 142–143
decision analysis, 780–787
Limits Report, 156–157
nonlinear programming (NLP), 

410–413
probabilistic methods, 765–767
purpose of, 141–142
robust optimization, 164–168
Sensitivity Report, 145–156

Series, time, 557–558
Servers, adding, 731, 734, 737–738
Services

rates, 725–727
time, 725

Set Size, 166
Shading, 66
Shadow prices, 148, 164

for nonbinding constraints, 149
other uses of, 151–152
reporting, 150
value of additional resources, 151

Sherali, H., 172
Shetty, C., 424
Shmueli, G., 559
Shogan, A., 39, 115, 172
Shortest path problem, 196–201
Should Larry Junior Go to Court or 

Settle? case, 825–826
Side constraints, 200, 218, 290–292
Simple linear regression analysis, 

450–451
Simplex method, 62, 168–172
Simulation using Analytic Solver 

Platform, 635
additional uses of, 662
analysis, 680–682
benefits of, 661–662
cases and examples

Corporate Health Insurance, 
639–641

Death and Taxes, 712–713
Foxridge Investment Group 

example, The, 717–720
Inventory Control example, 

667–683
Live Well, Die Broke, 711–712
Portfolio Optimization example, 

689–695
Project Selection, 684–688
Reservation Management 

example, 662–667
Sound’s Alive Company 

example, The, 713–717
data analysis, 652–656
interactive simulation, 660–661
methods of risk analysis, 636–639
optimization, 674–680
preparing the model for, 645–648
questions and problems, 696–711
queuing theory, 742–743
random number generator (RNG), 

642–645
random variables and risk, 

635–636
reasons to analyze risk, 636
risk, 682–683
running, 649–652, 666
spreadsheet simulation, 641–642
uncertainty of sampling, 657–659

Single linkage, 553
Single-stage decision problems, 777
Sinkey, J. F., 559
Skinner, D., 812
Slack column, 144
Slack variables, creating equality 

constraints, 168–169
Slope cell, 452
Smith, S., 424
Smoothing, exponential, 575–578
Solutions

global optimal, 374–376
local optimal, 374–376
regression problems, 454

Solution strategies for NLP 
problems, 373–374

Solver, 46, 54–64
additive seasonal effects, 582
blending problems, 88
constraint cells, 52, 57–59
creating decision trees with, 

771–777
Data Envelopment Analysis 

(DEA), 110
economic order quantity (EOQ) 

models, 380
Excel built-in, 64–65
exponential smoothing, 577
Holt’s method, 594
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Holt-Winter’s method, 598, 602
installation, 54
integer linear programming (ILP) 

problems, 255–258
linear programming (LP), 52–54
location problems, 385
Maximal Flow problem, 217
multiplicative seasonal effects, 586
network flow problem, 392
nonlinear programming (NLP), 

413–415
nonnegativity conditions, 60–61
objective cell, 52, 55–56
optimal solutions, 376
options, 62–63
Portfolio Selection problem, 406
quadratic trend models, 614
recycling problem, 212
regression analysis, 454–456
reviewing models, 61–62
seasonal indices, 614
seasonal regression models, 619
solving problems, 63–64
Spider Plots, 158
spreadsheet, 46
Standard LP/Quadratic Engine, 

143
tables, 161–164
tornado charts, 781–783
transshipment problem, 195
Traveling Salesperson problem, 

422
variable cells, 52, 56–57
viewing the model, 52–53
weighted average models, 574

Solving problems
Analytic Solver Platform, 692–695
blending problem, 87
Data Envelopment Analysis 

(DEA), 110–113
economic order quantity (EOQ) 

models, 379–380
goal programming, 333–334
investment problems, 75
location problems, 385–386
make vs. buy decisions, 70–71
multiperiod cash-flow problem, 

100–101, 105
multiple objective linear 

programming (MOLP), 
348–351

network flow problem, 391–393
nonlinear programming, 396–397
production and inventory 

planning problem, 93–94
project selection problems, 

396–397
regression analysis, 452–454
relaxation, 249–250
Solver, 63–64

transportation problems, 81–82
Traveling Salesperson problem, 

422–423
Sonntag, C., 12
Sorensen, Steve, 416
Sound’s Alive Company example, 

The, 713–717
Spanning trees, 221
Special conditions in linear 

programming (LP), 34–38
Special considerations, network 

modeling, 218–221
Specificity, 517
Spider Plots, 157–161
Spreadsheets, 1

additive seasonal effects, 581
blending problems, 82–88
Blue Ridge Hot Tubs problem, 

49–52
Data Envelopment Analysis 

(DEA), 106–114
design guidelines, 65–66
double moving averages, 590
Equipment replacement problem, 

202–204
existing financial models, 

optimizing, 398–401
exponential smoothing, 577
Holt’s method, 593
Holt-Winter’s method, 597, 601
investment problems, 72–76
linear trend models, 604
Maximal Flow problem, 216–218
multiperiod cash-flow problem, 

94–106
multiplicative seasonal effects,  

585
network modeling, 198–200
production and inventory 

planning problem, 89–94
quadratic trend models, 604
random number generator (RNG), 

647
right-hand-side (RHS), 147
seasonal indices, 613
seasonal regression models, 616
simulation using Solver,  

641–642
solvers, 46–47
transportation problems, 76–82
transshipment problem, 193–195
weighted average models, 573

Spreadsheet Wars case, The,  
827–828

Sprint Corp., 13
Standard error predictions, 460–461
Standard LP/Quadratic Engine 

(Solver), 143
Starting

Analytic Solver Platform, 642

starting points, 373, 376
States of nature, 755, 758
Stationary models, time series 

forecasting, 568–569
with additive seasonal effects, 

579–584
with multiplicative seasonal 

effects, 584–587
Stationary time series, 567
Statistics

descriptive, 505
multiple R, 460
R2, 458–460
statistical relationships, 449
statistical tests, population 

parameters, 464–467,  
478–479

Steady-state assumption, queuing 
theory, 742–743

Step sizes, 373
Steuer, R., 352
Stopping rules, 254–255
Strategic Planning at Fysco Foods 

case, 633–634
Strategy charts, 786–787
Strategy tables, 784–785
Structural variables, 169
Subramanian, R., 115
SUMIF() function, 99, 194, 417
Summaries

branch-and-bound (B&B) 
algorithm, 299–300

goal programming, 337
graphical solution to LP problems, 

33
LP model for the example 

problem, 23
multiple objective linear 

programming (MOLP), 351
of nonlinear regression, 484
of optimal reduced cost values, 

154
shortest path problems, 204

SUMPRODUCT() function, 70, 104, 
262

SUMXMY2() function, 571
Sunk costs, 278
Supply Chains case, 134–136
Supply nodes, 190
Support of rules, 549
SustainAbility, 339
System configurations, queuing 

theory, 722–723

T
Tables

creating Solver, 161–164
creating Spider, 157–161
strategy, 784–785
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Target values, 329
multiple objective linear 

programming (MOLP), 
342–344 

summaries, 344
Task panes, Solver, 54
Tavakoli, A., 301
Taylor, B., 352, 424
Techniques, mathematical 

programming (MP), 20–21
Templates, queuing, 728
Terminal nodes, 770
Test data, role of, 547
Text boxes, 66
Theories

queuing theory. See Queuing 
theory

utility theory, 794–800
Time

interarrival, 725
queue, 725
series, 557
service, 725

Time series forecasting, 566–567
adjusting trend predictions with 

seasonal indices, 609–615
cases and examples, 630–634
combining forecasts, 619
double exponential smoothing 

(Holt’s method), 591–595
double moving averages,  

589–591
exponential smoothing, 575–578
Holt-Winter’s method, 595–603
linear trend models, 603–606
measuring accuracy, 567–568
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